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This Lecture

Mathematical background material

Functions

Differential calculus

Optimization

Basic probability theory

Random variables

Independence

Expectation, Variance, and Covariance

Normal random variables and Central Limit Theorem

Further reading:

D.G. Luenberger: Investment Science, Appendix A & B

D.J. Higham: Financial Option Valuation, Chapter 3
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Functions

Certain functions are commonly used in finance:

Exponential functions: f(x) = acbx where a, b, and c are
constants. Very often c is e = 2.7182818....

Logarithmic functions: the natural logarithm is the

function denoted by ln(·) which satisfies eln(x) = x.

Linear functions: a function f of several variables
x1, x2, . . . , xn is linear if it has the form

f(x1, x2, . . . , xn) = a1x1 + a2x2 + · · · + anxn .

Inverse functions: a function f has an inverse function g
if for all x we have g(f(x)) = x. Inverse functions are
usually denoted by f→1.
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Differential Calculus I

We shall review some concepts that are used in the course:

Limits: if the function f approaches the value L as x
approaches x0, we write L = limx→x0

f(x). An example
is limx→∞ 1/x = 0.

Derivatives: the derivative of a function f at x is

df(x)

dx
= lim

∆x→0

f(x+∆x)− f(x)

∆x
.

Sometimes we write f ′(x) for the derivative of f at x. It
is important to know these common derivatives:

if f(x) = xn, then f ′(x) = nxn→1;

if f(x) = eax, then f ′(x) = aeax;

if f(x) = ln(x), then f ′(x) = 1/x.
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Differential Calculus II

Product rule: the derivative of the product of two
functions f and g is

(fg)′(x) = f ′(x)g(x) + f(x)g′(x) .

Quotient rule: the derivative of the quotient of two
functions f and g is

(f/g)′(x) =
g(x)f ′(x)− f(x)g′(x)

[g(x)]2
.

Chain rule: the derivative of the composition of two
functions f and g is

[f(g)]′(x) = f ′(g(x))g′(x) .
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Differential Calculus III

Higher order derivatives: higher order derivatives are
formed by taking derivatives of derivatives. The second
derivative of f is the derivative of f ′.

Partial derivatives: functions of several variables can be

differentiated partially w.r.t. each argument. We define

∂f(x1, x2, . . . , xn)

∂xi

= lim
∆x→0

f(x1, x2, . . . , xi +∆x, . . . , xn)− f(x1, x2, . . . , xn)

∆x
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Differential Calculus IV

Taylor approximation: a function f can be approximated
in a region near a point x by using its derivatives. The
following approximations are useful:

f(x+∆x) = f(x) + f ′(x)∆x+ O(∆x)2

f(x+∆x) = f(x) + f ′(x)∆x+ 1
2f

′′(x)(∆x)2 +O(∆x)3

where O(∆x)2 and O(∆x)3 denote terms of order (∆x)2

and (∆x)3.
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Differential Calculus V

Taylor approximation for functions of several variables:

a function f : Rn → R can be approximated in a region

near a point (x1, x2, . . . , xn) by using its partial

derivatives. The following approximations are useful:

f(x1 +∆x1, x2 +∆x2, . . . , xn +∆xn)

= f(x1, x2, . . . , xn) +
n
∑

i=1

∂f(x1, x2, . . . , xn)

∂xi

∆xi

+
n
∑

i=1

n
∑

j=1

O(∆xi∆xj)
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Differential Calculus V

Taylor approximation for functions of several variables:

a function f : Rn → R can be approximated in a region

near a point (x1, x2, . . . , xn) by using its partial

derivatives. The following approximations are useful:

f(x1 +∆x1, x2 +∆x2, . . . , xn +∆xn)

= f(x1, x2, . . . , xn) +
n
∑

i=1

∂f(x1, x2, . . . , xn)

∂xi

∆xi

+
1

2

n
∑

i=1

n
∑

j=1

∂2f(x1, x2, . . . , xn)

∂xi∂xj

∆xi∆xj

+
n
∑

i=1

n
∑

j=1

n
∑

k=1

O(∆xi∆xj∆xk)
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Optimization I

Necessary conditions: a function f of a single variable x
is said to have a maximum at a point x0 if f(x0) ≥ f(x)
for all x. If x0 is not a boundary point of an interval over
which f is defined, then for x0 to be a maximum it is
necessary that

f ′(x0) = 0 .

This equation can be used to find the maximum x0.

Example: assume that f(x) = −x2 + 12x. To find the
maximum, we solve

f ′(x0) = −2x+ 12 = 0 ⇒ x = 6 .
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Lagrange Multipliers I

Constrained optimization: consider the problem of
maximizing a function f of several variables
x1, x2, . . . , xn which are required to satisfy the constraint
g(x1, x2, . . . , xn) = 0. Formally, this problem can be
written as

maximize
x

f(x1, x2, . . . , xn)

subject to g(x1, x2, . . . , xn) = 0 .

We introduce a Lagrange multiplier λ and form the
Lagrangian function

L(x1, x2, . . . , xn,λ) = f(x1, x2, . . . , xn)− λg(x1, x2, . . . , xn) .
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Lagrange Multipliers II

To solve this constrained problem, we set the partial
derivatives of the Lagrangian w.r.t. each of the variables
equal to zero.

⇒ This gives a system of n+ 1 equations for the n+ 1
unknowns x1, x2, . . . , xn and λ.

A problem with two constraints, for example, is solved
by introducing two Lagrange multipliers λ and µ.

maximize
x

f(x1, x2, . . . , xn)

subject to g(x1, x2, . . . , xn) = 0

h(x1, x2, . . . , xn) = 0 .

L = f(x1, x2, . . . , xn)− λg(x1, x2, . . . , xn)− µh(x1, x2, . . . , xn) .
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Lagrange Multipliers III

A problem with n variables and m constraints is
assigned m Lagrange multipliers, while the Lagrange
function has n+m arguments. Setting all partial
derivatives to zero gives n+m equations for n+m
unknowns.

Some problems have inequality constraints of the form
g(x1, x2, . . . , xn) ≤ 0. Two cases:

if g(x1, x2, . . . , xn) < 0 at the optimum, then the
constraint is not active and can be dropped ⇒ no
Lagrange multiplier is needed;

if g(x1, x2, . . . , xn) = 0 at the optimum, then the
constraint is active ⇒ a Lagrange multiplier is
introduced as before; this multiplier is nonnegative.
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Random Variables

A discrete random variable x is described by a finite
number of possible values x1, x2, . . . , xm which are
assigned probabilities p1, p2, . . . , pm. Interpretation:

pi = prob(x = xi) for any i = 1, 2, . . . ,m.

The probabilities are nonnegative and sum to unity, that
is,
∑m

i=1 pi = 1.

A continuous random variable x is described by a
probability density function p(ξ). The interpretation is

∫ b

a p(ξ)dξ = prob(a ≤ x ≤ b) for any a < b.

The density function is nonnegative and integrates to

unity, that is,
∫ +∞
→∞ p(ξ)dξ = 1.
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Probability Distribution

The probability distribution of a (discrete or continuous)
random variable x is the function F (ξ) defined as

F (ξ) = prob(x ≤ ξ) .

It follows that

F (−∞) = 0,

F (+∞) = 1,

F is monotonically increasing.

If x is a continuous random variable, then

F (ξ) =
∫ ξ

→∞ p(ξ′)dξ′ ⇒ dF (ξ)/dξ = p(ξ) .
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Dependent Random Variables I

Two discrete random variables x and y are described by
their possible pairs of values (x1, y1), (x2, y2), . . . , (xn, yn)
and the corresponding probabilities p1, p2, . . . , pn with
the interpretation

pi = prob(x = xi ∧ y = yi) .

Two continuous random variables x and y are described
by their joint probability density function p(ξ, η) with the
interpretation

∫ bx

ax

∫ by

ay

p(ξ, η)dηdξ = prob(ax ≤ x ≤ bx ∧ ay ≤ y ≤ by) .

COMPUTATIONAL FINANCE: 422 – p. 15/??



Dependent Random Variables II

The joint probability distribution F is defined as

F (ξ, η) = prob(x ≤ ξ, y ≤ η) .

From a joint distribution the distribution of any of the
random variables can easily be recovered. We have

Fx(ξ) = F (ξ,∞);

Fy(η) = F (∞, η).

In general, n random variables are defined by their joint
probability distribution defined w.r.t. n variables.
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Independent Random Variables

Two discrete random variables x and y are independent
if the possible joint values can be written as (xi, yj) for
i = 1, 2, . . . , nx and j = 1, 2, . . . , ny, while the probability
pij of outcome (xi, yj) factors into the form

pij = px,i py,j .

Two continuous random variables x and y are indepen-
dent if the joint density function factors into the form

p(ξ, η) = px(ξ)py(η) .

Example: The pair of random variables defined as the
outcomes on two fair tosses of a die are independent.
The probability of obtaining the pair (3, 5), say, is 1

6 ×
1
6 .
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Moments

The expected value or expectation of a random variable
x is defined as

E(x) =
∑n

i=1 xipi if x is a discrete r.v.;

E(x) =
∫ +∞
→∞ ξp(ξ)dξ if x is a continuous r.v..

The concept of an expectation can be generalized. For
any function f : R → R, we can define

E[f(x)] =
∑n

i=1 f(xi)pi if x is a discrete r.v.;

E[f(x)] =
∫ +∞
→∞ f(ξ)p(ξ)dξ if x is a continuous r.v..

The moment of order m of any random variable x is
defined as E(xm).

⇒ The (ordinary) expectation of x is the first-order
moment of x.
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Variance and Standard Deviation

The variance of a r.v. x is defined as

var(x) = E([x− E(x)]2) .

One easily verifies the identity:

var(x) = E(x2)− E(x)2 .

Loosely, the expectation tells you the ‘typical’ or
‘average’ value of a r.v., while the variance gives the
amount of ‘variation’ around this value.

The standard deviation of a r.v. is defined as

std(x) =
√

var(x) .
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Generalized Expectation

The concept of an expectation can be further genera-
lized to situations in which there are two dependent
random variables x and y. For any function f : R2 → R,
we can define

E[f(x, y)] =
∑n

i=1 f(xi, yi)pi if x and y are discrete
dependent random variables;

E[f(x, y)] =
∫

R2 f(ξ, η)p(ξ, η)dξdη if x and y are
continuous dependent random variables.

Expectations of functions of n random variables are
defined analogously.
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Covariances and Correlations I

The covariance of two dependent random variables x
and y is defined as

cov(x, y) = E([x− E(x)][y − E(y)]) .

Note that cov(x, x) = var(x).

The correlation of x and y is defined as

̺(x, y) =
cov(x, y)

std(x)std(y)
.

If x and y are independent, then

cov(x, y) = E[x− E(x)]E[y − E(y)] = 0 ⇒ ̺(x, y) = 0 .

COMPUTATIONAL FINANCE: 422 – p. 21/??

1,1

theyare also uncorrelated



Covariances and Correlations II

By the Cauchy-Schwartz inequality, we find

|cov(x, y)| ≤ E(|x− E(x)| |y − E(y)|)
≤
√

E([x− E(x)]2)E([y − E(y)]2)

= std(x)std(y) .

⇒ the correlation ̺(x, y) is always between −1 and +1.

Two random variables x and y are said to be

positively correlated if ̺(x, y) > 0;

perfectly positively correlated if ̺(x, y) = 1;

negatively correlated if ̺(x, y) < 0;

perfectly negatively correlated if ̺(x, y) = −1;

uncorrelated if ̺(x, y) = 0.
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Covariances and Correlations III

A random variable x is perfectly positively correlated
with the random variable y = ax+ b for any a, b ∈ R such
that a > 0.

A random variable x is perfectly negatively correlated
with the random variable y = ax+ b for any a, b ∈ R such
that a < 0.

Note that if x and y are independent, then they are
uncorrelated. However, if x and y are uncorrelated, then
they are not necessarily independent.
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Covariances and Correlations IV

Let x and y be two dependent random variables, and let
α and β be real numbers. Then

E(αx+ βy) = αE(x) + βE(y) ,

var(αx+ βy) = α2var(x) + 2αβ cov(x, y) + β2var(y) .

Let x1, x2, . . . , xn be n dependent random variables. The
covariance matrix of these random variables is defined
as the n× n-matrix V with entries

Vij = cov(xi, xj) for i, j = 1, . . . , n.

if α1,α2, . . . ,αn are n real numbers, then

E

(

n
∑

i=1

αixi

)

=
n
∑

i=1

αiE(xi) and var

(

n
∑

i=1

αixi

)

=
n
∑

i=1

n
∑

j=1

αiVijαj .
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Uniform Random Variables
A continuous random variable x with density function

p(ξ) =

{

(β − α)→1 for α ≤ ξ ≤ β,

0 otherwise,

is said to have a uniform distribution over [α,β].

x takes only values between α and β and is equally
likely to take any such value.

The uniform distribution function is given by

F (x) =















0 for x < α,

x−α
β−α

for α ≤ x ≤ β,

1 for x > β.

E(x) = (β + α)/2 and var(x) = (β − α)2/12.
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Normal Random Variables I

A (continuous) random variable x is said to be normal or
Gaussian if its probability density function is of the form

p(ξ) = 1√
2π σ

e→
1

2σ2 (ξ→µ)2.

It follows that E(x) = µ and var(x) = σ2.

A normal r.v. is said to be standard if µ = 0 and σ = 1.

A standard normal random variable has density

p(x) = 1√
2π
e→

1

2
x2

,

and the standard normal distribution N is given by

N(x) = 1√
2π

∫ x

→∞ e→
1

2
ξ2dξ .
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Normal Random Variables II

There is no analytic expression for N(x), but tables of
its values are available.

Let x = (x1, x2, . . . , xn) be a vector of n normal random
variables. We introduce the vector x̄ whose components
are the expected values of the components in x. The
covariance matrix V associated with x can be written as

V = E[(x− x̄)(x− x̄)&] .

If the n variables are jointly normal, the density of x is

p(x) = 1
(2π)n/2det(V )1/2

e→
1

2
(x→x̄)V −1(x→x̄)" .
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Normal Random Variables III

If n jointly normal random variables are uncorrelated,
then the covariance matrix V is diagonal ⇒ the joint
density function factors into a product of densities for
the n separate variables.

⇒ If n jointly normal random variables are uncorrelated,
then they are independent.

Summation property: if x and y are jointly normal
random variables and α,β ∈ R, then αx+ βy is normal.

Generalization: if x is a vector of n jointly normal r.v.s
and T is a m× n-matrix, then Tx is a vector of m jointly
normal r.v.s.
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Normal Random Variables IV

To express that x is a normal r.v. with expected value µ
and variance σ2 we use the shorthand notation:

x ∼ N (µ,σ2) .

To express that x is a vector of jointly normal r.v. with
expected values x̄ and covariance matrix V we write:

x ∼ N (x̄, V ) .

Some useful properties of normal r.v.s are:

if x ∼ N (µ,σ2), then (x− µ)/σ ∼ N (0, 1);

if y ∼ N (0, 1), then σ y + µ ∼ N (µ,σ2);

if x1 ∼ N (µ1,σ21), x2 ∼ N (µ2,σ22) and x1 and x2 are

independent, then x1 + x2 ∼ N (µ1 + µ2,σ21 + σ22);
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Central Limit Theorem I

Let x1, x2, x2, . . . be an infinite sequence of independent,
identically distributed (i.i.d.) random variables, each
with expected value µ and variance σ2.

Define Sn =
∑n

i=1 xi for n = 1, 2, 3, . . .. Note that

E(Sn) = nµ and var(Sn) = nσ2.

The Central Limit Theorem says that for large n the
random variable (Sn − nµ)/(σ

√
n) is approximately

standard normally distributed. In mathematical terms:

prob

(

Sn − nµ

σ
√
n

≤ x

)

→ N(x) as n → ∞ (∀x ∈ R).
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Central Limit Theorem II

Real-life systems are subject to a range of external
influences that can be reasonably approximated by i.i.d.
random variables.

Hence, by the C.L.T. the overall effect can be
reasonably modelled by a single normal random
variable with appropriate mean and variance.

⇒ Because of the C.L.T. normal random variables are
ubiquitous in stochastic modelling!
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