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This Lecture

f.- Mathematical background material T

s Functions
s Differential calculus
s Optimization

# Basic probability theory
s Random variables
s Independence
s Expectation, Variance, and Covariance
» Normal random variables and Central Limit Theorem

Further reading:
o D.G. Luenberger: Investment Science, Appendix A & B
L.p D.J. Higham: Financial Option Valuation, Chapter 3 J
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Functions

. N

ertain functions are commonly used in finance:

® Exponential functions: f(z) = ac®® where a, b, and c are
constants. Very often cis e = 2.7182818....

# Logarithmic functions: the natural logarithm is the
function denoted by In(-) which satisfies e™(®) = g,

# Linear functions: a function f of several variables
x1,T9,...,Ty, 1S linear if it has the form

f(z1,22,...,2n) = @121 + @222 + - -+ + ATy .

# |nverse functions: a function f has an inverse function g
if for all x we have ¢(f(x)) = x. Inverse functions are

usually denoted by 1. J
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Differential Calculus I

W -
# Limits: if the function f approaches the value L as »
approaches z(, we write L = lim,_,,, f(x). An example

e shall review some concepts that are used in the course:

o Derivatives: the derivative of a function f at z is

dz Ax—0 Ax

Sometimes we write f/(x) for the derivative of f at z. It
IS Important to know these common derivatives:

o if f(z) = 2", then f'(z) = na™1;
s if f(x) = e, then f'(x) = ae™;
o if f(z) = In(z), then f'(z) = 1/x. o



Differential Calculus 11
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# Product rule: the derivative of the product of two
functions f and g is

(f9)'(z) = f(x)g(z) + f(z)g (x).

# Quotient rule: the derivative of the quotient of two
functions f and g is

oy @) f(x) — f(z)g' (2)
(f/g) ('CE) o [g(SE)]Q .

o Chain rule: the derivative of the composition of two
functions f and g is

f(9) (z) = f(9(x)g'(z).
o



Differential Calculus 111

f_. Higher order derivatives: higher order derivatives are T
formed by taking derivatives of derivatives. The second

derivative of f is the derivative of f.

® Partial derivatives: functions of several variables can be
differentiated partially w.r.t. each argument. We define

6‘f(:1:1,:1:2,...,xn)
8:62-
— bm flxy, o, ... x; + Ax, ... x,) — f(x1,20,...,2p)

Az—0 Az




Differential Calculus 1V
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# Taylor approximation: a function f can be approximated
INn a region near a point = by using its derivatives. The
following approximations are useful: ) = o

4

s flo+A0) = f(z) + f'(2) Az +HO(Aw)?
o f(2+Az) = f(z) + [(2) Az + L f"(2)(A)? + O(A)?

where O(Ax)? and O(Ax)? denote terms of order (Ax)?
and (Ax)?.



Differential Calculus V
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# Taylor approximation for functions of several variables:
a function f : R™ — R can be approximated in a region
near a point (zq, x2,...,z,) by using its partial
derivatives. The following approximations are useful:

f(xl —|—A5131,ZC2 _|_A£C27° oyl _|_A£En)

.0 e T
= flonanay s 3 Tt

+> >1 (Azx;Ax;)

=1 j7=1




Differential Calculus V
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# Taylor approximation for functions of several variables:
a function f : R™ — R can be approximated in a region
near a point (zq, x2,...,z,) by using its partial
derivatives. The following approximations are useful:

f(il?l -+ ACIfl, To + ACEQ, O I + A.CCn)

8f xl,ﬂfg,...,ﬂjn)
f(x17a:27 —I_ axz 'CE
"L 0% f(x1, 29, ..., Tn)
Y Y n A ,LA '
2 z>1]>1 8:1328:13] e
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Optimization I

#® Necessary conditions: a function f of a single variable x

IS said to have a maximum at a point zq if f(xg) > f(x)
for all x. If z¢ Is not a boundary point of an interval over
which f is defined, then for xy to be a maximum it is

necessary that LWW o o &Jy&%
f/(ZIZ()) = 0.

This equation can be used to find the maximum xy.

Example: assume that f(z) = —22? + 122. To find the
maximum, we solve

fl(xg)=—-20+12=0 = x=6.

-
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Lagrange Multipliers 1

# Constrained optimization: consider the problem of

maximizing a function f of several variables
T1,xo,...,T, Which are required to satisfy the constraint
g(x1,x0,...,2,) = 0. Formally, this problem can be
written as y ‘WV}S

. . /
maximize f(x1,22,...,2n) ok

subject to g(x1,2,...,2,) =0.

We introduce a Lagrange multiplier A and form the
Lagrangian function Xe R

-

L(x1,22,...,2n,A) = f(x1,22,...,2n) — Ag(T1,29,...,2p).



Lagrange Multipliers 11

f.o To solve this constrained problem, we set the partial T
derivatives of the Lagrangian w.r.t. each of the variables
equal to zero.

= This gives a system of n + 1 equations for the n + 1
unknowns z1, zo, ..., x, and .

# A problem with two constraints, for example, is solved
by introducing two Lagrange multipliers A and .

maximize f(x1,xo,...,Tn)
xr
subject to g(x1,x2,...,2y) =0
h(x1,x2,...,2,) =0.

L L=f(x1,22,....,2,) — Ag(x1,T2,...,Tn) — ph(x1, T2, ..., Tpn) . J



Lagrange Multipliers 111
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# A problem with n variables and m constraints is
assigned m Lagrange multipliers, while the Lagrange
function has n + m arguments. Setting all partial
derivatives to zero gives n + m equations for n + m
unknowns.

# Some problems have inequality constraints of the form
g(x1,z9,...,2,) < 0. TWO Ccases:

s Ifg(xy,20,...,2,) <0 at the optimum, then the
constraint is not active and can be dropped = no
Lagrange multiplier is needed,;

s if g(x1,29,...,2,) =0 at the optimum, then the
constraint is active = a Lagrange multiplier is
introduced as before; this multiplier is nonnegative.

- |



Random Variables

f.o A discrete random variable x is described by a finite T
number of possible values x1, zo, ..., x,, which are
assigned probabillities p1, po, ..., pm. Interpretation:

p; = prob(x =x;) foranyi=1,2,...,m.

The probabilities are nonnegative and sum to unity, that
iS, Z:il Di = 1.

# A continuous random variable = is described by a
probability density function p(¢). The interpretation is

[7p(€)de = prob(a <z < b) foranya <b.

The density function is nonnegative and integrates to

 unity, that is, [T p(e)de = 1. |



Probability Distribution
- -

o The probability distribution of a (discrete or continuous)
random variable x is the function F'(£) defined as

F(£) = prob(z < £) .

It follows that
s F(—o0) =0,
s [(4+00) =1,
s F'is monotonically increasing.
# |f x i1s a continuous random variable, then

= [£ p(E)de = dF(€)/dt = p(¢).

- |



Dependent Random Variables 1
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# [wo discrete random variables x and y are described by
their possible pairs of values (x1,41), (x2,v2), ..., (Tn, yn)
and the corresponding probabillities p1, po, ..., p, With
the interpretation

pi =prob(r =x; N y=1y;).

#® Two continuous random variables x and y are described
by their joint probability density function p(&,n) with the
interpretation

be by
/ / p(§,n)dnd§ = prob(a, <z < by AN ay <y <by).

- |



Dependent Random Variables 11
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# The joint probability distribution F' is defined as

F(&,m) =prob(z <& y<n).

# From a joint distribution the distribution of any of the
random variables can easily be recovered. We have

P Fy(n) — F(oo,n). \7‘& Wt é\'x WE, W Lam OIS U amumwua variable

# In general, n random variables are defined by their joint
probability distribution defined w.r.t. n variables.

- |
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# [wo discrete random variables x and y are independent

Independent Random Variables

-

If the possible joint values can be written as (z;, y;) for
i=1,2,...,ngyand j =1,2,...,n,, While the probability
pi; of outcome (x;,y;) factors into the form

Two continuous random variables = and y are indepen-
dent if the joint density function factors into the form

p(&§,n) = paz(f)py(ﬁ) :

Example: The pair of random variables defined as the

outcomes on two fair tosses of a die are independent.

The probability of obtaining the pair (3,5), say, is & x . J



Moments
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#® The expected value or expectation of a random variable
r 1S defined as

s E(z)=>""_,zp; if z is a discrete r.v.;
s B(z) = [T ¢p(€)de if x is a continuous r.v..

# The concept of an expectation can be generalized. For
any function f : R — R, we can define

s E[f(z)]=>1_, f(:zzz)pZ If x Is a discrete r.v.;
s E[f(2)] = [T f(&)p(€)d¢ if x is a continuous .v..

# The moment of order m of any random variable z is
defined as E(z™).

= The (ordinary) expectation of x is the first-order

L moment of z. J



Variance and Standard Deviation
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The variance of a r.v. x is defined as
var(z) = E([z — E(z)]%) .
One easily verifies the identity:
var(z) = E(2%) — E(z)?.

Loosely, the expectation tells you the ‘typical’ or
‘average’ value of a r.v., while the variance gives the
amount of ‘variation’ around this value.

The standard deviation of a r.v. is defined as

std(z) = +/var(x) .




Generalized Expectation

- . -

# The concept of an expectation can be further genera-
lized to situations in which there are two dependent

random variables x and y. For any function f : R? — R,
we can define

o E[f(z,y)] =>_1 f(zs,y:)pi if x and y are discrete
dependent random variables;

s E[f = o f(&,m)p(§,m)dédn if z and y are
contlnuous dependent random variables.

# Expectations of functions of n random variables are
defined analogously.

- |



Covariances and Correlations I
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The covariance of two dependent random variables z
and y is defined as

cov(z,y) = E([z — E(2)]ly — E(y)])-
Note that cov(z, z) = var(z).
The correlation of z and y Is defined as

cov(zx,y)

std(x)std(y)

Q(CU,?J): €<_/]/4>

If z and y are independent, then JL% I S——

cov(z,y) = Elz — E(2)|Ely —E(y)] =0 = ofz,y) =0.

|



Covariances and Correlations 11

f.o By the Cauchy-Schwartz inequality, we find T
cov(z,y)| < E(lz —E(2)||y — E(y)|)
< VE([z - E@@))E(ly — E(y)]?)

std(z)std(y) .

= the correlation ¢(x,y) Is always between —1 and +1.

# [wo random variables x and y are said to be

s positively correlated if o(z,y) > 0;
perfectly positively correlated if o(x,y) = 1;
negatively correlated if o(x,y) < 0;
perfectly negatively correlated if o(x,y) = —1;
uncorrelated if o(z,y) = 0.

e o o o



Covariances and Correlations 111
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# A random variable z is perfectly positively correlated
with the random variable y = ax + b for any a,b € R such
that a > 0.

# A random variable x is perfectly negatively correlated
with the random variable y = ax + b for any a,b € R such
that a < 0.

# Note that if x and y are independent, then they are
uncorrelated. However, if x and y are uncorrelated, then
they are not necessarily independent.

- |



Covariances and Correlations 1V

f_. Let x and y be two dependent random variables, and IetT
o and S be real numbers. Then

Elar 4+ py) = oE(z)+ SE(y),

var(az + By) = a’var(z) + 208 cov(z,y) + B*var(y) .

® lLetxy,xo, ..., 2, be n dependent random variables. The
covariance matrix of these random variables is defined
as the n x n-matrix V with entries

]
ool
— \/e/TZV)m
0</ \/x

E (i: ozz-xi> = zn:oziE(:ci) and var (i: ozz-a:i> = zn:zn:aivijozj .
i=1 i=1 J

Vij =cov(zs,x;) fori,j=1,....,n.

® ifay,a,...,a, are n real numbers, then

-



Uniform Random Variables

A continuous random variable = with density function T
p

(B—a)™! fora<¢&<p, S\W(X)Jﬁ - |

0 otherwise, X

(

p(€) = 1

\

IS said to have a uniform distribution over |«, 3.

x takes only values between o« and g and is equally
likely to take any such value.

The uniform distribution function is given by

)
0 forxz < a,

F(z)=q =% fora<z<p,

1 forxz > 6.

\

E(x) = (8+ «a)/2 and var(z) = (8 — a)?/12. J



Normal Random Variables 1

f.o A (continuous) random variable z is said to be normal orj
Gaussian if its probability density function is of the form

p(E) = e e’

o It follows that E(z) = u and var(z) = o2.
# A normalr.v. is said to be standard if x =0 and o = 1.
# A standard normal random variable has density

1 2
1 —5T

p(ﬂf) — \/—2—7_‘_6 )

and the standard normal distribution NV is given by

B N@) = 75 [l e de N



Normal Random Variables 11
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# There is no analytic expression for N(x), but tables of
its values are available.

® lLetx=(x1,29,...,2,) be avector of n normal random
variables. We introduce the vector x whose components
are the expected values of the components in . The
covariance matrix V' associated with x can be written as

V=E[z-2)(z—1)7].

# If the n variables are jointly normal, the density of = Is

P(T) = Gryreaeyze 2

3

n ok | pRde-h dn! |

-
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Normal Random Variables 111
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# If n jointly normal random variables are uncorrelated,
then the covariance matrix V is diagonal = the joint
density function factors into a product of densities for
the n separate variables.

= If n jointly normal random variables are uncorrelated,
then they are independent.

# Summation property: if x and y are jointly normal
random variables and «, 5 € R, then ax + Sy Is normal.

o Generalization: if x is a vector of n jointly normal r.v.s
and T is a m x n-matrix, then Tz is a vector of m jointly

L normal r.v.s. J



Normal Random Variables 1V

To express that = is a normal r.v. with expected value u T
and variance o2 we use the shorthand notation:

r~ N(p,0%).

To express that x is a vector of jointly normal r.v. with
expected values z and covariance matrix V' we write:

z~N(z,V).

Some useful properties of normal r.v.s are:

o ifx~N(u,o?),then (z —pu)/o ~N(0,1);

s ify ~N(0,1), then oy + i~ N, 02); ~r | o guer w di

o |f T1 ~~ N(,Lél, J%), To r~ N(,LLQ, O%) and T and Tro dle
independent, then z1 + 2o ~ N (1 + 2, 0% + 05); J
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Central Limit Theorem I

® lLetuxy,z9,19,... 0e an infinite sequence of independent,

identically distributed (i.i.d.) random variables, each
with expected value ;. and variance 2. =="4! fhy 0 1ol o

Define S, =Y ", x; forn=1,2,3,.... Note that
E(S,) = nu and var(S,,) = no?.

The Central Limit Theorem says that for large n the

random variable (S,, — nu)/(o+/n) IS approximately
standard normally distributed. In mathematical terms:

prob <ST;\_/§'M < :zt) — N(z) asn— o (Vx € R).



Central Limit Theorem 11
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# Real-life systems are subject to a range of external
iInfluences that can be reasonably approximated by i.i.d.
random variables.

#® Hence, by the C.L.T. the overall effect can be
reasonably modelled by a single normal random
variable with appropriate mean and variance.

® = Because of the C.L.T. normal random variables are
ubiquitous in stochastic modelling!



