Computational Finance
Questions

Tutorial 1

Exercise 1

1. Let x and y be two dependent random variables, and let o and 3 be
real numbers. Prove that

var(ax + By) = ovar(z) + 2a8cov(z, y) + S2var(y).

2. Suppose that there are two stocks. Let x and y denote the random val-
ues of the first and second stock, respectively, after one year. Further-
more, we know that std(xz) = 0.20, std(y) = 0.18, and cov(z,y) = 0.01.
A portfolio is composed out of a = 2 units of stock 1 and § = 3 units
of stock 2. Calculate the variance of the portfolio value in one year,
that is, var(ax + fy).

Exercise 2
Find the mean and the variance of a random variable described by the
probability density function

x, 0<z<1
plr) =4 2—2, 1<r<2
0, otherwise

Exercise 3
Write the second order Taylor series expansion of

1. f(x) =¢€", around x = 1.



1. Let z and y be two dependent random variables, and let o and (3 be
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2. Suppose that there are two stocks. Let x and y denote the random val-
ues of the first and second stock, respectively, after one year. Further-
more, we know that std(z) = 0.20, std(y) = 0.18, and cov(z,y) = 0.01.
A portfolio is composed out of a = 2 units of stock 1 and § = 3 units
of stock 2. Calculate the variance of the portfolio value in one year,
that is, var(ax + By).
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Find the mean and the variance of a random variable described by the
probability density function

x, 0<z<1
p(z) = 2 z, 1<x<2
otherwise
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