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Overview

o Low-dimensional neuron models
o Integrate-and-fire neurons
o |lzhikevich’s model
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1D Neuron Models 1

o Our goal is to simulate large numbers of interacting neurons.
Therefore, we should make simulations computationally cheap.

o Much research exists on low-dimensional (approximate) neuron
models. In the 1D case, they often take the form:

T%=f(v)+1

for some function f, where 7 is the neuron’s timescale and / is
the dendritic (input) current.

o Often these are expanded with a fixed voltage threshold 6 that
triggers a spike and reset.
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1D Neuron Models 2

o Foragiven current /, the solution to the following equation
shows the steady-state voltage v:

dv
QT

Vg

o Thereis a critical current I. that makes ,,, —exctatoy
v, = 6. The neuron will begin firing for
any current higher than I...

o Plotting input current vs firing rate
reveals the neuron’s frequency-
intensity curve.
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Integrate-and-Fire Neurons 1

o The Hodgkin-Huxley model is biologically accurate, but
computationally expensive

o At the opposite end of the spectrum we have the leaky integrate-

and-fire (LIF) model, which is computationally inexpensive but
has limited biological fidelity

o Inthe LIF model, the membrane potential v is given by
fhe cdl - polomtia
:
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where v is the resting potential, 7 is the dendritic current, and 7
and R are constants. (We'lluse 7=5, R =1, and v, = —65mV)
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Integrate-and-Fire Neurons 2

o The sub-threshold (before spiking) dynamics of the sodium and
potassium currents are approximated by the v,—v term

o The detailed dynamics of the spike itself are ignored. Instead,
when the membrane potential reaches a threshold, we record a
spike and explicitly reset the neuron

iftv=ytheny < v,

o A good value for the threshold 9is —-50mV

o An instantaneous value to represent the actual spike (a Dirac
pulse) can be inserted immediately before the neuron is reset
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Integrate-and-Fire Neurons 3

o Here we see the regular spiking behaviour of a leaky integrate-
and-fire neuron, simulated using the Euler method, and subject

to a constant dendritic current / = 20
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LIF Leakage
o Inthe absence Leaky Integrate—and—Fire Neuron
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LIF Refractory Periods

o The simple integrate-and-fire model has no refractory period —
the period during which a real neuron is unable to fire even if it
receives high dendritic current

o To overcome this, we can force the neuron to rest by introducing
an absolute refractory period o

o We simply adjust the conditions under which a spike occurs to
take account of the time since the last spike

o Let? ;. be thetime of the most recent spike. Then we have

Ve v,

spike > O then < t

"

ifv=9dandt -t

< 1

spike
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Quadratic Integrate-and-Fire

o The sub-threshold profile of the membrane potential is modeled
more accurately in the quadratic integrate-and-fire model

dv o Inthe absence of
r—=a(v,—v)(v,—v)+RI dendritic current,
dt v decays to the
10 | Quadratic Ilntegrate—and—ll:ire Neuron | reSting potential
ol _ v,aslongasitis

ol _ below a critical
value v,

40_// j/ | o Butifitis above v,
/ It increases

| . 7 quickly until the

0 10 20 30 20 50 neuron fires

Time (ms)

Membrane potential v
o
(=)
|

Computational Neurodynamics



Imperial College
London

|zhikevich Neurons 1

o Integrate-and-fire neurons have a limited repertoire of signalling
behaviours compared to the variety foud in real neurons, but
they are computationally inexpensive to simulate

o Hodgkin-Huxley neurons are biologically accurate, but
computationally expensive

o Izhikevich neurons (introduced by Eugene Izhikevich in 2003)
are a good compromise between computational efficiency and a
biologically realistic repertoire of behaviours

o Thisis the main neuron model used on this course
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|zhikevich Neurons 2

o In lzhikevich’'s model, the membrane potential v and a recovery
variable u are governed by two equations

ﬂ:0.04v2+5v+140—u+1

dr —
du 4Mnémko '.m{-mvd-{’/o ‘}hﬁ/(}n’&ww 7[> newob 7lv Qﬂiéz,;

? — a(bv — u) / i owhin Gibudiors
[

where [ is the dendritic current, and a and b are parameters of
the model

o Note that, without the recovery variable, the model is equivalent
to QIF
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|Zh|keVICh Neurons 3

o A spike occurs, and the neuron is reset, when the membrane
potential reaches a threshold (30mV)

V¢
1f v > 30 then 1

u<—u+d

o By varying the four parameters of the model a, b, ¢, and d, a
wide variety of realistic signalling behaviours can be obtained

o lzhikevich neurons will be used throughout this course. Two
types of neurons will be used — fegular spiking (excitatory) and

fast spiking (inhibitory) — by setting a, b, ¢, and d appropriately
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|lzhikevich Parameters
«— peak 30 mV o This figure (from
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Excitatory Izhikevich Neurons

o Ifweseta=0.02,b
=0.2,c=-65,and d
= 8, we get reqular
Spiking behaviour

o This is suitable for

modelling excitatory
neurons

-
Ve madl waa (pwwl, =
éou/mr 0)1/:] /%0 /7[ 1,/ 0 w dbll
(A fl'w/ hnz/ dometimes // wu/s

yere  [POWy

Izhikevich Neuron
40 T

N
o
T

o
T

Membrane potential v
o
(=]

=

< .

AN

0 50 100 150 200

Reset variable u
b o

0 50 100 150 200
Time (ms)

Computational Neurodynamics

14



Imperial College
London

Inhibitory lzhikevich Neurons

o Ifweseta=0.02,b
= (0.25, ¢ = -65, and
d = 2, we get fast
Spiking behaviour

o This is suitable for
modelling inhibitory
neurons
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Bursting I1zhikevich Neurons

Izhikevich Neuron
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Other Neuron Models

o [There are several other common neuron models in
addition to those we've looked at
o FitzHugh-Nagumo
o Hindmarsh-Rose
o Morris-Lecar

o But we will use the Izhikevich model for the rest of
this course, because it presents a good compromise
between biological fidelity and computational
efficiency
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