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Overview

Low-dimensional neuron models
Integrate-and-fire neurons
Izhikevich’s model
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1D Neuron Models 1
Our goal is to simulate large numbers of interacting neurons. 
Therefore, we should make simulations computationally cheap.
Much research exists on low-dimensional (approximate) neuron 
models. In the 1D case, they often take the form:

for some function f, where 𝜏 is the neuron’s timescale and I is 
the dendritic (input) current.

𝜏
𝑑𝑣
𝑑𝑡

= 𝑓 𝑣 + 𝐼

Often these are expanded with a fixed voltage threshold 𝜃 that 
triggers a spike and reset.
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1D Neuron Models 2
For a given current I, the solution to the following equation 
shows the steady-state voltage 𝑣𝑠:

𝜏 ቤ
𝑑𝑣
𝑑𝑡 𝑣𝑠

= 0

There is a critical current 𝐼𝑐 that makes 
𝑣𝑠 = 𝜃. The neuron will begin firing for 
any current higher than 𝐼𝑐.
Plotting input current vs firing rate 
reveals the neuron’s frequency-
intensity curve.
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Integrate-and-Fire Neurons 1
The Hodgkin-Huxley model is biologically accurate, but 
computationally expensive
At the opposite end of the spectrum we have the leaky integrate-
and-fire (LIF) model, which is computationally inexpensive but 
has limited biological fidelity

In the LIF model, the membrane potential v is given by

where vr is the resting potential, I is the dendritic current, and  
and R are constants. (We’ll use  = 5, R = 1, and vr = –65mV)
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Integrate-and-Fire Neurons 2
The sub-threshold (before spiking) dynamics of the sodium and 
potassium currents are approximated by the vr–v term
The detailed dynamics of the spike itself are ignored. Instead, 
when the membrane potential reaches a threshold, we record a 
spike and explicitly reset the neuron

A good value for the threshold  is –50mV
An instantaneous value to represent the actual spike (a Dirac 
pulse) can be inserted immediately before the neuron is reset
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Integrate-and-Fire Neurons 3
Here we see the regular spiking behaviour of a leaky integrate-
and-fire neuron, simulated using the Euler method, and subject 
to a constant dendritic current I = 20
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LIF Leakage
In the absence 
of dendritic 
current, the 
membrane 
potential drifts 
back down to its 
resting value, 
thanks to the 
leakage current
Here, the 
dendritic current 
is shut off after 
10ms

ur v 0
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LIF Refractory Periods
The simple integrate-and-fire model has no refractory period — 
the period during which a real neuron is unable to fire even if it 
receives high dendritic current
To overcome this, we can force the neuron to rest by introducing 
an absolute refractory period 
We simply adjust the conditions under which a spike occurs to 
take account of the time since the last spike

Let tspike be the time of the most recent spike. Then we have
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Quadratic Integrate-and-Fire
The sub-threshold profile of the membrane potential is modeled 
more accurately in the quadratic integrate-and-fire model

In the absence of 
dendritic current, 
v decays to the 
resting potential 
vr, as long as it is 
below a critical 
value vc

But if it is above vc 
it increases 
quickly until the 
neuron fires
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Izhikevich Neurons 1
Integrate-and-fire neurons have a limited repertoire of signalling 
behaviours compared to the variety foud in real neurons, but 
they are computationally inexpensive to simulate

Hodgkin-Huxley neurons are biologically accurate, but 
computationally expensive

Izhikevich neurons (introduced by Eugene Izhikevich in 2003) 
are a good compromise between computational efficiency and a 
biologically realistic repertoire of behaviours

This is the main neuron model used on this course
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Izhikevich Neurons 2
In Izhikevich’s model, the membrane potential v and a recovery 
variable u are governed by two equations

where I is the dendritic current, and a and b are parameters of 
the model
Note that, without the recovery variable, the model is equivalent 
to QIF

Tunicint
andfire thisprevents neuroctospike

incertain situations



Computational Neurodynamics 12

Izhikevich Neurons 3
A spike occurs, and the neuron is reset, when the membrane 
potential reaches a threshold (30mV)

By varying the four parameters of the model a, b, c, and d, a 
wide variety of realistic signalling behaviours can be obtained
Izhikevich neurons will be used throughout this course. Two 
types of neurons will be used — regular spiking (excitatory) and 
fast spiking (inhibitory) — by setting a, b, c, and d appropriately

in total having 4pumms
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Izhikevich Parameters

From Izhikevich, 2003

This figure (from 
Izhikevich’s paper) 
shows the role of 
each of the four 
parameters of the 
model
Remember that a 
high value for u 
slows the rate of 
increase of v, and 
makes it harder for 
the neuron to fire
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Excitatory Izhikevich Neurons

If we set a = 0.02, b 
= 0.2, c = –65, and d 
= 8, we get regular 
spiking behaviour
This is suitable for 
modelling excitatory 
neurons
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Inhibitory Izhikevich Neurons

If we set a = 0.02, b 
= 0.25, c = –65, and 
d = 2, we get fast 
spiking behaviour
This is suitable for 
modelling inhibitory 
neurons

Inhibitorynervousare spiking

generally movefrequently
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Bursting Izhikevich Neurons
If we set a = 
0.02, b = 0.2, c 
= –50, and d = 
2, we get 
bursting 
behaviour
This is gives 
rise to 
oscillations in 
the theta band 
(4-7 Hz), typical 
of hippocampus

thisshowsthatwecan simulatea lotofdifferent behaviours
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Other Neuron Models
There are several other common neuron models in 
addition to those we’ve looked at

FitzHugh-Nagumo
Hindmarsh-Rose
Morris-Lecar

But we will use the Izhikevich model for the rest of 
this course, because it presents a good compromise 
between biological fidelity and computational 
efficiency
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