**Computational Neurodynamics** 

# Topic 5 Connecting Neurons

Pedro Mediano

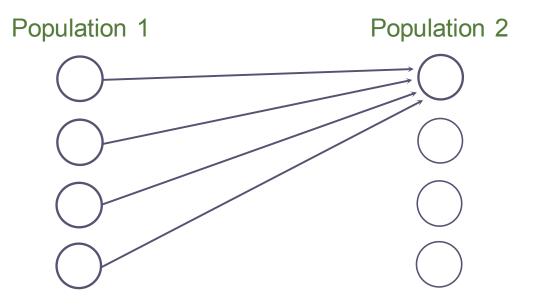
(Slides: Pedro Mediano & Murray Shanahan)

#### Overview

- Connecting two populations
- Spike timing effects
- A neural Braitenberg vehicle

# **Connecting Populations**

- Let's consider two populations of *n* neurons each
- Suppose they are connected in a feed-forward network
  - A *feed-forward* network is one that can be partitioned into m populations  $P_1$  to  $P_m$  such that every connection from a neuron in some  $P_i$  is to a neuron in some  $P_j$  where j > i
- Let's assume the connections are all-to-all. So every neuron in population 1 is connected to every neuron in popultion 2



## Variation and Delay

We therefore and some noise

- Rather than making all the neurons identical, with the same signalling characteristics, our populations will be *heterogenous*. This is not only realistic, but it introduces a richer dynamics to the system
- This can be achieved with Izhikevich neurons by introducing a small amount of random variation in one or more of the model's parameters a, b, c, or d
- We'll also introduce a conduction delay for every connection from a neuron A to a neuron B. This is the combined time it takes for a spike to travel from A's cell body and along its axon to a synapse onto B, then to cross the synaptic gap, and finally to travel along B's dendrite to the cell body of B.
- In this example, we'll use n = 4 excitatory neurons per population, some variation in c and d, and a conduction delay of 5ms for all connections

## Weights and Scaling Factors

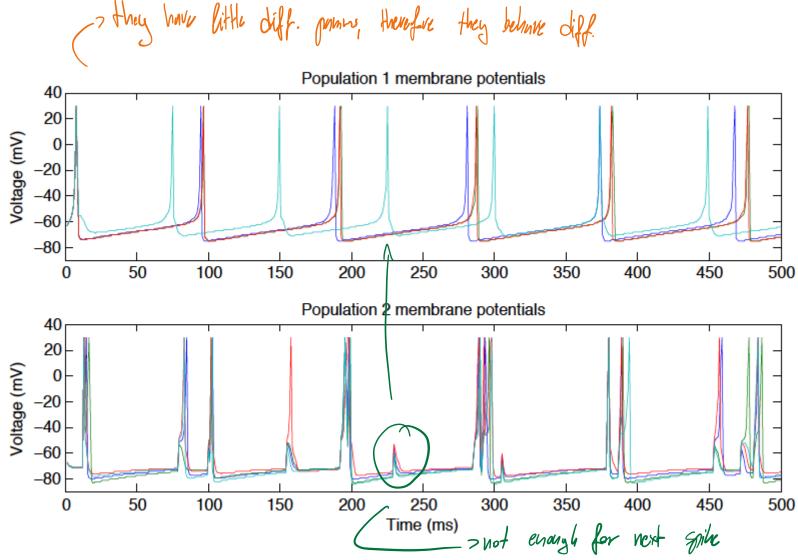
- If i is a neuron in population 1 and j is a neuron in population 2, then let W(i,j) be the connection weight from i to j
- In the network we'll examine, W(i,j) = 1 for all i and j
  - Learning (plasticity) works by modifying the connection matrix W. But for much of the course we won't consider plasticity
- The network we'll study here is unrealistically small. In reality, it takes many more than two incoming spikes to make a neuron fire
- To emulate larger numbers of pre-synaptic neurons, the incoming dendritic current is scaled by a constant factor F (in this case 25) = just to prefund the vetwork is  $25 \times \frac{1}{2} \times \frac{1}{2}$
- This is equivalent to multiplying the connection matrix W by F

# Signalling Properties

For these plots, population 1 has a constant input current of 1 unit

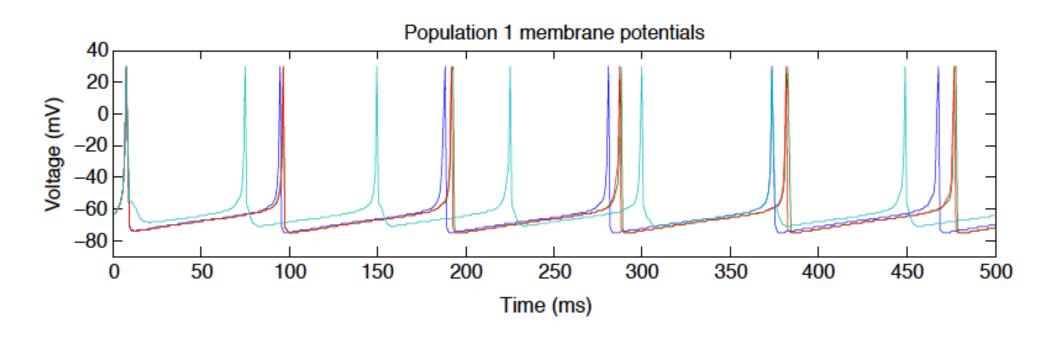
 The only input to population 2 is from population 1

 Even in this small example we see a variety of phenomena



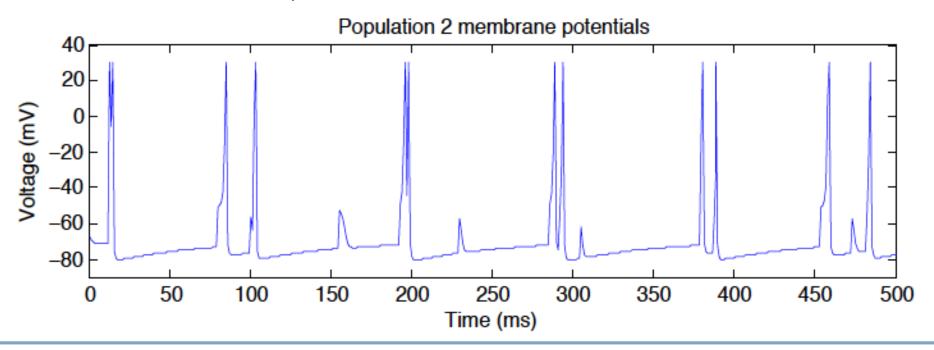
## The Impact of Variation

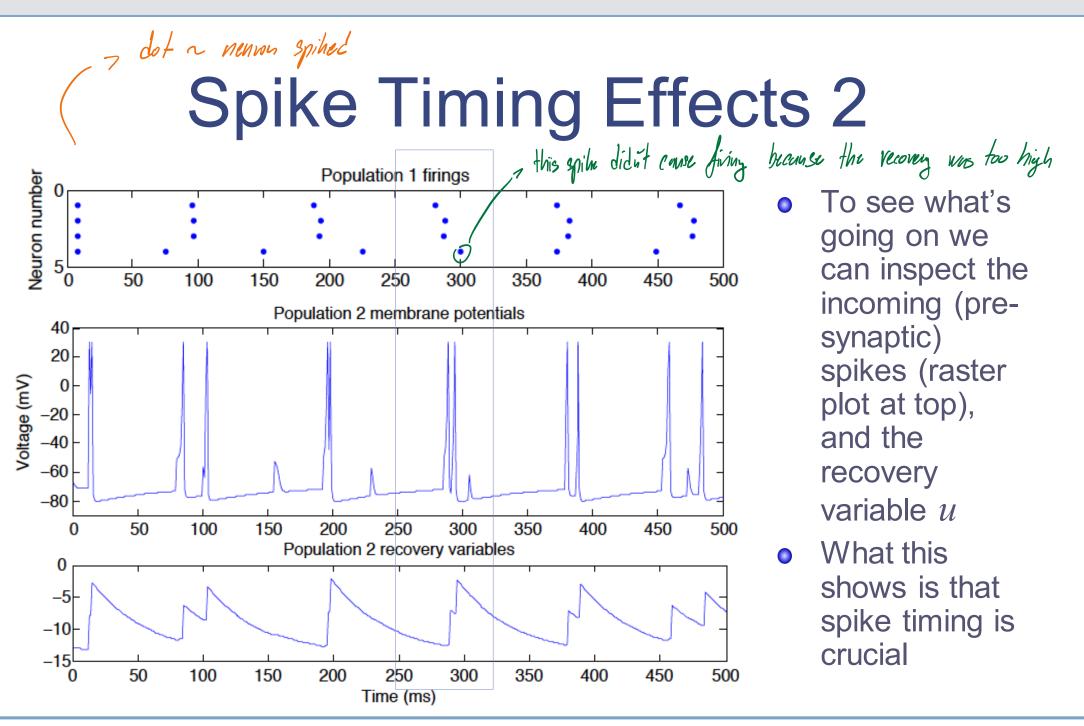
- Let's look at population 1
- Because of slight differences in their characteristics, some neurons fire more frequently than the others
- ullet One is much faster, because it has a higher value for c



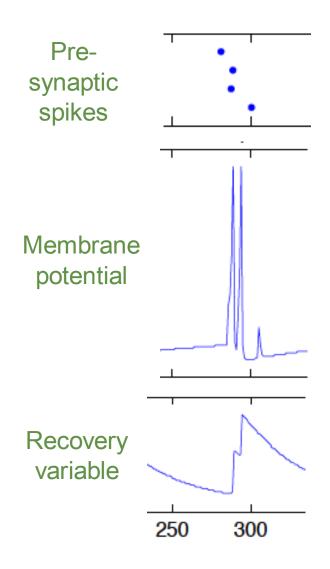
# Spike Timing Effects 1

- Now let's look at population 2, whose only input is from population 1.
   We'll isolate a single neuron
- Sometimes the neuron fires several times in quick succession (eg: at 200ms and 290ms)
- Sometimes it doesn't manage to fire despite an incoming spike (eg: at 160ms and 230ms)





# Spike Timing Effects 3



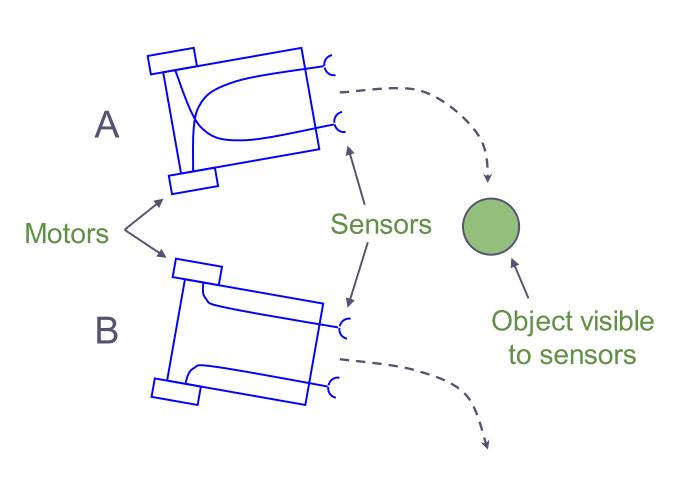
- Here, the first incoming (pre-synaptic) spike causes the neuron to fire
- The neuron is reset, and the recovery variable jumps to a higher value, making it harder for the neuron to fire again
- But two further spikes quickly arrive, which is enough to make the neuron fire a second time
- The neuron is reset once more, and the recovery variable jumps again
- When the fourth spike arrives, it's too soon after the preceding spikes for the recovery variable to have drifted back down
- So we see a sub-threshold bump in membrane potential, but no firing

#### Embodiment

"The brain is encased in the head, the part of the body which in most walking, flying or swimming animals is the leading end of the moving body" V.Braitenberg, *Scholarpedia* 

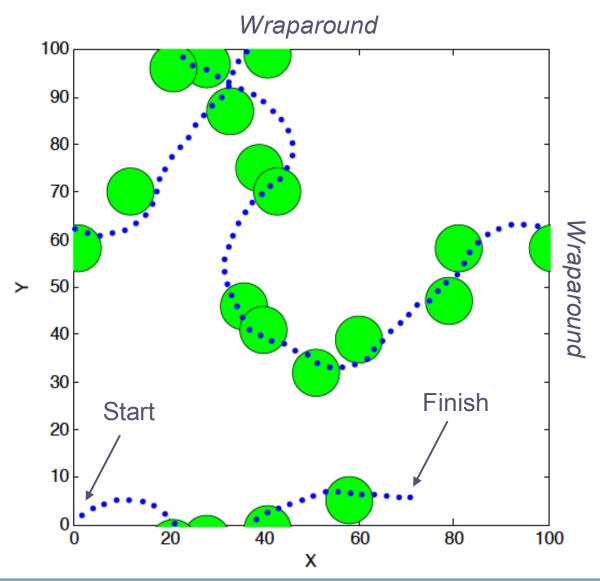
- The brain is part of an animal's body, and it has evolved to control the movement of that body
- Ultimately, it makes *no sense* to try to understand the brain while ignoring its underlying function, which is to direct bodily movement
- In much of this course, we treat neurodynamics as a disembodied phenomenon, independent of sensory input or motor output
- But so that we don't lose sight of what really matters, we'll take occasional excursions into robotics, albeit in a highly simplified, simulated environment

# Braitenberg Vehicles



- In his classic short book Vehicles, Braitenberg described some very simple robots
- Robot A orients towards the object because its right sensor is stimulated more than its left, which causes its left motor to spin faster than its right
- Proposed Robot B orients away from the object because its connections are swapped

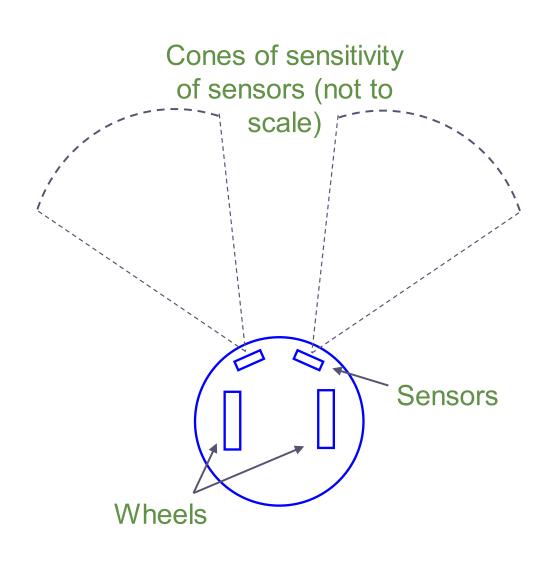
### A Robot Forager



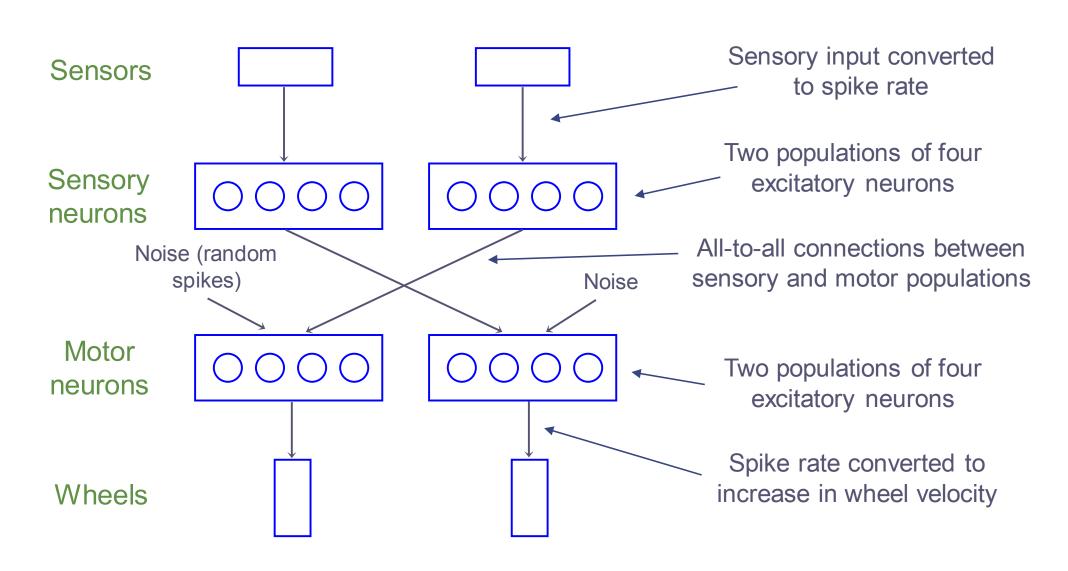
- We're going to look at a simple robot "forager" living on the surface of a torus, which works like a Braitenberg vehicle, but is controlled by spiking neurons
- The robot's mission is to pass over as many green objects as it can (which are analogous to a food source)
- Here we see a sample run. You can see how the robot steers towards objects when it gets near enough to detect them

#### The Robot

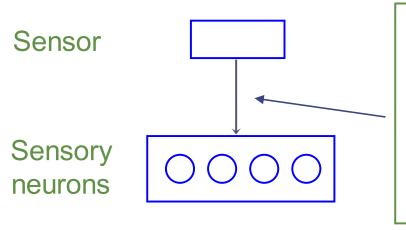
- The simulated robot is a differential wheeled platform
  - It has two wheels that can go at different speeds so the robot can steer
- It has two forward pointing sensors, one angled left and one angled right
- The sensors only detect objects within a certain cone of sensitivity
- The robot cannot see objects directly in front of it or that it is on top of



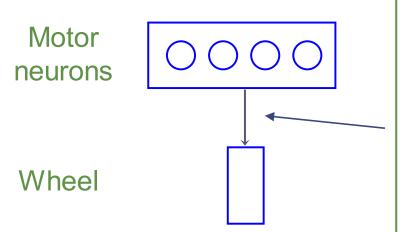
#### The Neural Controller



## Spike IO

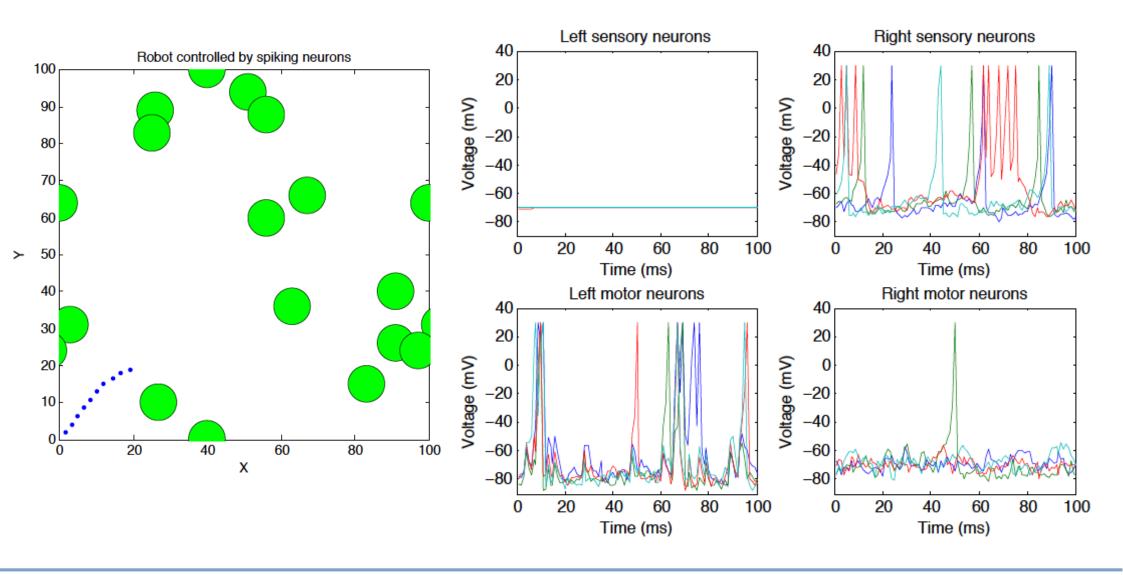


- Sensor delivers a number S between 0 and 1
- This is converted to a mean firing rate  $\lambda = 15S$  spikes per millisecond
- Each millisecond, n spikes are delivered to each of the four sensory neurons, where n is drawn from a Poisson distribution with rate  $\lambda$



- Take the mean firing rate of all four motor neurons
- Based on an estimate of the maximum firing rate, this is normalised to a number r between 0 and 1
- Wheel velocity is then  $U_{\min} + r(U_{\max} U_{\min})$  where  $U_{\min}$  and  $U_{\max}$  are the minimun and maximum desired wheel velocities

## The Robot Steers Right



# Related Reading

Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press