
Computational Neurodynamics

Topic 5
Connecting Neurons

Pedro Mediano

(Slides: Pedro Mediano & Murray Shanahan)



Computational Neurodynamics 1

Overview

Connecting two populations
Spike timing effects
A neural Braitenberg vehicle
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Connecting Populations
Let’s consider two populations of n neurons each
Suppose they are connected in a feed-forward network

A feed-forward network is one that can be partitioned into m populations P1
to Pm such that every connection from a neuron in some Pi is to a neuron in 
some Pj where j > i

Let’s assume the connections are all-to-all. So every neuron in 
population 1 is connected to every neuron in popultion 2

Population 1 Population 2
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Variation and Delay
Rather than making all the neurons identical, with the same signalling 
characteristics, our populations will be heterogenous. This is not only 
realistic, but it introduces a richer dynamics to the system
This can be achieved with Izhikevich neurons by introducing a small 
amount of random variation in one or more of the model’s parameters 
a, b, c, or d
We’ll also introduce a conduction delay for every connection from a 
neuron A to a neuron B. This is the combined time it takes for a spike to 
travel from A’s cell body and along its axon to a synapse onto B, then 
to cross the synaptic gap, and finally to travel along B’s dendrite to the 
cell body of B.
In this example, we’ll use n = 4 excitatory neurons per population, some 
variation in c and d, and a conduction delay of 5ms for all connections

wetherefore addsome noise
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Weights and Scaling Factors
If i is a neuron in population 1 and j is a neuron in population 2, 
then let W(i,j) be the connection weight from i to j
In the network we’ll examine, W(i,j) = 1 for all i and j

Learning (plasticity) works by modifying the connection matrix W. 
But for much of the course we won’t consider plasticity

The network we’ll study here is unrealistically small. In reality, it
takes many more than two incoming spikes to make a neuron 
fire
To emulate larger numbers of pre-synaptic neurons, the 
incoming dendritic current is scaled by a constant factor F (in 
this case 25)
This is equivalent to multiplying the connection matrix W by F

justtopretend thenetwork is 25 bigger
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Signalling Properties
For these 
plots, 
population 1 
has a constant 
input current of 
1 unit
The only input 
to population 2 
is from 
population 1
Even in this 
small example 
we see a 
variety of 
phenomena

theyhavelittlediff pawns therefore theybehavediff

I
not enoughfornext spike
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The Impact of Variation
Let’s look at population 1
Because of slight differences in their characteristics, some 
neurons fire more frequently than the others
One is much faster, because it has a higher value for c
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Spike Timing Effects 1
Now let’s look at population 2, whose only input is from population 1. 
We’ll isolate a single neuron
Sometimes the neuron fires several times in quick succession (eg: at 
200ms and 290ms)
Sometimes it doesn’t manage to fire despite an incoming spike (eg: at 
160ms and 230ms)
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Spike Timing Effects 2
To see what’s 
going on we 
can inspect the 
incoming (pre-
synaptic) 
spikes (raster 
plot at top), 
and the 
recovery 
variable u
What this 
shows is that 
spike timing is 
crucial

dot neuronspiked

thisspikedidn'tcausefiring becausetherecoverywastoohigh
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Spike Timing Effects 3
Here, the first incoming (pre-synaptic) spike 
causes the neuron to fire
The neuron is reset, and the recovery variable 
jumps to a higher value, making it harder for the 
neuron to fire again
But two further spikes quickly arrive, which is 
enough to make the neuron fire a second time
The neuron is reset once more, and the recovery 
variable jumps again
When the fourth spike arrives, it’s too soon after 
the preceding spikes for the recovery variable to 
have drifted back down
So we see a sub-threshold bump in membrane 
potential, but no firing

Pre-
synaptic 
spikes

Membrane 
potential

Recovery 
variable
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Embodiment

The brain is part of an animal’s body, and it has evolved to control the 
movement of that body
Ultimately, it makes no sense to try to understand the brain while 
ignoring its underlying function, which is to direct bodily movement
In much of this course, we treat neurodynamics as a disembodied 
phenomenon, independent of sensory input or motor output
But so that we don’t lose sight of what really matters, we’ll take 
occasional excursions into robotics, albeit in a highly simplified, 
simulated environment

“The brain is encased in the head, the part of the body which in
most walking, flying or swimming animals is the leading end of
the moving body” V.Braitenberg, Scholarpedia
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Braitenberg Vehicles
In his classic short book 
Vehicles, Braitenberg 
described some very 
simple robots
Robot A orients towards
the object because its 
right sensor is stimulated 
more than its left, which 
causes its left motor to 
spin faster than its right
Robot B orients away
from the object because 
its connections are 
swapped

SensorsMotors

Object visible
to sensors

A

B
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A Robot Forager
We’re going to look at a simple 
robot “forager” living on the 
surface of a torus, which works 
like a Braitenberg vehicle, but 
is controlled by spiking neurons
The robot’s mission is to pass 
over as many green objects as 
it can (which are analogous to 
a food source)
Here we see a sample run. You 
can see how the robot steers 
towards objects when it gets 
near enough to detect them

Start Finish

Wraparound

W
raparound
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The Robot
The simulated robot is a 
differential wheeled platform

It has two wheels that can go at 
different speeds so the robot can 
steer

It has two forward pointing 
sensors, one angled left and one 
angled right
The sensors only detect objects 
within a certain cone of 
sensitivity
The robot cannot see objects 
directly in front of it or that it is on 
top of Wheels

Sensors

Cones of sensitivity 
of sensors (not to 

scale)
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The Neural Controller

Wheels

Sensors

Sensory
neurons

Motor
neurons

Sensory input converted 
to spike rate

Spike rate converted to 
increase in wheel velocity

All-to-all connections between 
sensory and motor populations

Noise (random 
spikes)

Two populations of four 
excitatory neurons

Two populations of four 
excitatory neurons

Noise
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Spike IO

Wheel

Sensor

Sensory
neurons

Motor
neurons

Sensor delivers a number S between 0 and 1
This is converted to a mean firing rate  = 15S
spikes per millisecond
Each millisecond, n spikes are delivered to 
each of the four sensory neurons, where n is 
drawn from a Poisson distribution with rate 

Take the mean firing rate of all four motor 
neurons
Based on an estimate of the maximum firing 
rate, this is normalised to a number r
between 0 and 1
Wheel velocity is then Umin+r(Umax–Umin)
where Umin and Umax are the minimun and 
maximum desired wheel velocities
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The Robot Steers Right
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