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Overview

Artificial and real neurons
Axons and dendrites
Neuron behaviour
The Hodgkin-Huxley model
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Artificial Neurons 1
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The kind of artificial neuron traditionally used for neural 
network applications in computer science is very useful, but 
has little biological plausibility

The type of artificial neuron on 
the right is very common. It 
computes a weighted sum (F) 
of its inputs i1 to in

Each connection has an associated weight (wi), and a 
neuron’s output is a function of all its weighted inputs
Many useful applications have been built out of such simple 
artificial neurons
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Artificial Neurons 2
They are often organised into feed-
forward networks, comprising an 
input layer, a hidden layer (or often 
many hidden layers), and an output 
layer
A learning algorithm such as back 
propagation is applied to train the 
network

Input
layer

Output
layer

Hidden
layer

Some applications use recurrent neural networks (RNNs) 
with a loop of feedback from the output back the input 
layer
But this course is NOT about neural network applications
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Real Neurons

Cell body (soma)Axon

Dendrites
Myelin sheath

Nucleus

A real neuron comprises a cell body, a tree of dendrites and an 
axon. The dendrites carry incoming electrical signals, and the 
axon delivers the neuron’s electrical output

Long (white matter) axons are covered in a myelin sheath, which 
increases the speed of electrical conduction

axon carries output

dendrites consumesinput

thisdegrades Fphysialimpacts
andthenwe are less sensible
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Dendrites and Axons
Human cerebral cortex contains 
20 billion neurons, with a variety 
of morphological (shape) and 
signalling properties, organised 
into six layers
This image is of a “vertical” slice 
through cortex. Only a few of the 
densely connected neurons that 
would be found in an area of 
this size are shown
Each neuron’s dendritic tree
ramifies widely
A single neuron can project to 
as many as 10,000 other 
neurons

From Elston (2003), Cereb. Cortex 13:1124-1138
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Synapses 1
The junctions where axons 
meet dendrites and signals 
are transmitted from the 
former to the latter are called 
synapses
Synapses are not direct 
electrical connections. 
Rather, there is a tiny gap 
between the axon and the 
dendrite (the synaptic cleft) 
in which a complex 
electrochemical process 
takes place that allows a 
signal to be transmitted

Synapses

Axon

Dendrites

biological vena ena send signal with weakerpower overlongertime same as
with strongpower overshorttime

andthe
response

mightbedifferen
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Synapses 2
This process of synaptic transmission is fundamental to the 
operation of the brain

There is a whole soup of electrically significant chemicals in the 
synaptic cleft. These are called neurotransmitters, and include 
serotonin, dopamine, and adrenaline
Many antidepressant drugs work by modifying serotonin uptake
Adrenaline influences behaviour in “fight or flight” situations
Dopamine is involved in the brain’s reward system

However, in this course we will treat synapses as simple 
weighted connections, because our focus is dynamics on a 
larger scale. But it’s important to recognise the limitations of 
this simplification
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Excitation and Inhibition
Neurons fall into two major sub-classes

Excitatory neurons increase the activity of the 
neurons they are connected to
Inhibitory neurons 
decrease the 
activity of neurons 
they are 
connected to
Neurons are 
either excitatory or 
inhibitory, but not 
both

Pyramidal cell (excitatory) Inhibitory interneuron2 mudomnessisnotamiable
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Basic Neuron Behaviour
Neurons receive and transmit electrical pulses, or spikes
Incoming spikes travel along a neuron’s dendrites, and cause charge 
to build up in the body of the neuron. When this charge reaches a 
threshold, the neuron fires, and sends a spike along its axon

From Hirsch, et al. (2002). J. Physiol 540:335-350
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This plot shows the spiking 
behaviour of a single 
neuron recorded in the 
visual cortex of a cat
Axons meet dendrites at 
synapses. The transmission 
of a signal across a 
synapse involves a complex 
electrochemical process 
which we won’t go into

abit
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Detailed Neuron Behaviour
Current flowing into a neuron along 
its dendrites, causes its membrane 
potential to increase
Eventually the membrane potential 
reaches a threshold and the neuron 
rapidly depolarises, emitting a spike 
along its axon
It then repolarises, typically 
undershooting its resting potential
This undershoot gives rise to a 
refractory period, during which the 
neuron cannot fire again
When unperturbed, the neuron 
tends towards a stable resting 
potential, normally around -65 mV Time
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Towards a Computer Model
To see how this behaviour can modeled mathematically, and 
then simulated on a computer, we need to understand a bit 
more about the underlying physical processes
The neuron’s potential (v) exhibits 
its characteristic spiky profile 
thanks to the interplay of three 
currents that flow across the 
neuron’s membrane, in addition to 
the incoming current from its 
dendrites (I)

The potassium current IK
The sodium current INa
The leakage current IL

Dendritic
current I

Sodium
current INa

Potassium
current IK

Leakage
current IL

Potential
(v)
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The Hodgkin-Huxley Model 1
More formally, according to the Hodgkin-Huxley model, we have

  

C
dv
dt

= - Ik + I
k
å

where C is the capacitance of the neuron (set to 1), and

  

Ik
k
å = gNam

3h(v - ENa ) + gKn
4 (v - EK ) + gL (v - EL )

Sodium
current INa

Potassium
current IK

Leakage
current IL

MY
input

4h
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The Hodgkin-Huxley Model 2
The gs and Es are parameters of the model, determined 
empirically. The following values are the ones reported by 
Hodgkin and Huxley in their 1952 paper

  

gNa =120

  

gK = 36

  

gL = 0.3
  

ENa =115

  

EK = -12

  

EL =10.6

Three further differential equations govern the evolution of m, n, 
and h
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The Hodgkin-Huxley Model 3
The potassium and sodium currents behave as if gates open 
and close, allowing strong but brief flows of current, first in 
(sodium) then out (potassium)

  

dm
dt

= a m(v)(1 - m) - bm(v)m

  

dn
dt

= a n (v)(1 - n) - bn (v)n

  

dh
dt

= a h (v)(1 - h) - bh (v)h

  

a m = (2.5 - 0.1v) /(e(2.5 - 0.1v ) - 1)
bm = 4e - v /18

  

a n = (0.1 - 0.01v) /(e(1 - 0.1v ) - 1)
bn = 0.125e - v / 80

  

a h = 0.07e - v / 20

bh =1/(e(3 - 0.1v ) +1)

where

exam
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The Hodgkin-Huxley Model 4
The resulting model accurately reproduces the signalling 
properties of neurons, and is still the standard mathematical 
model used today
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