
Computational Neurodynamics

Topic 3
Numerical Simulation

Pedro Mediano

(Slides: Pedro Mediano & Murray Shanahan)

m



Computational Neurodynamics 1

Overview

The Euler method
The Runge-Kutta method



Computational Neurodynamics 2

Simulating Neurons
Given a mathematical model of a neuron’s behaviour 
expressed as a set of ordinary differential equations 
(like the Hodgkin-Huxley model), we can use 
numerical methods to simulate the neuron’s temporal 
dynamics
The Hodgkin-Huxley model is computationally 
expensive. Shortly we’ll look at some simpler models 
with better computational properties
But first we need to make a short excursion into 
numerical methods



Computational Neurodynamics 3

Numerical Simulation
Suppose we are given an ordinary differential 
equation (ODE) of the form

and the initial value of y
Now we want to compute the value of y as it changes 
over time
This is an example of an initial value problem



Computational Neurodynamics 4

The Euler Method 1
Let y(t) denote the value of y at time t
Given y(t), we can approximate the value of y(t+t)

By repeatedly applying this formula we can plot the 
approximate trajectory of y over time
This is known as the Euler method of numerical 
simulation
But its accuracy is very sensitive to the step size t



Computational Neurodynamics 5

The Euler Method 2
Here the Euler method 
is applied to compute

for which we have

giving



Computational Neurodynamics 6

Euler Python Code
import numpy as np

# Define parameters
f = lambda t, y: y # ODE
dt = 0.1 # Step size
T = 5 # Simulation duration
t = np.arange(0, T + dt, dt) # Numerical grid
y0 = 1 # Initial Condition

# Explicit Euler Method
y = np.zeros(len(t))
y[0] = y0

for i in range(0, len(t) - 1):
  y[i + 1] = y[i] + dt*f(t[i], y[i])

This is a simple Python 
script implementing the 
Euler method
First, variables are 
defined and arrays pre-
allocated
Then, the solution is 
computed iteratively



Computational Neurodynamics 7

The Runge-Kutta Method 1
So one way to improve 
accuracy with the Euler 
method is to use a small 
step size
But a computationally 
more efficient option is the 
Runge-Kutta method
Here we see the 4th order 
Runge-Kutta method 
(RK4) used to 
approximate y=et



Computational Neurodynamics 8

The Runge-Kutta Method 2
Given y(t), we can approximate the value of y(t+t)
using the 4th order Runge-Kutta method by first 
computing

Then we have



Computational Neurodynamics 9

Related Reading

Press, W. et al. (2007). Numerical Recipes: The Art of 
Scientific Computing. Cambridge University Press.


