Machine Learning Systems
and Hardware

L2: Compilation and Mapping

Hongxiang Fan

B IMPERIAL

} Transition from Algorithms to Systems and Hardware

* Recap (Last Lecture): Explored a variety of neural network architectures
e Convolutional Neural Networks (CNNs)
* Transformers (Attention-based Neural Networks)
* *Emerging architectures: Diffusion models, Mamba, etc.

* Design Decisions Impact Both Algorithm & Hardware:
* Floating point operation (FLOP) count
e Parameter counts /model size

» Key insight: Regardless of architecture, the core computation focuses on:

e Matrix Multiplication (MatMul)
e Activation Functions and Normalization

CATALOG 01 02

ML ML Hardware
Compilation Basic

Why ML Compilation

* Algorithmic Complexity (FLOPS) #+ Hardware Performance

»Any example we visited before?

» Depth-wise convolution: fewer FLOPs but limited parallelism, high
memory bandwidth cost

» End-to-end performance depends on:
e2e_Perf = F(FLOPs, Infrastucture, Hardware)

* Role of ML compilers @

»Bridge between algorithm and hardware Compilers

»Decide how computation is scheduled, fused, and mapped to specific
hardware units (e.g., GPU tensor cores) —

» Translate algorithmic improvements into real speed-up E

Algorlthm

Hardware

} Overview of ML Compilers

* Front-end API for model construction

* Imperative/declarative(symbolic) -)
Front-End API

* Dataflow graph construction \ |)
e Capture computation as nodes (operations) and edges (flows)

Dataflow Construction

* Intermediate Representation (IR) |

* From high-level framework-specific IR to hardware-agnostic IR [Intermediate
Representation

* Graph/Tensor optimizations
* Operator fusion, constant folding, algebraic simplification
 Layout transformations, memory planning, op reordering

Graph/Tensor
Optimizations

e Kernel execution Kernel Execution
* Vendor libraries (cuBLAS, cuDNN, MKL), custom kernel design

e Hardware
* GPU, TPU, CPU, ASIC 5

} Front-End: Imperative Programming - 747"

* Philosophy: Build-and-Execute
* Operations are executed immediately as Python code runs
* No explicit computation graph needs to be defined beforehand

Front-End API]

* Advantages: .
_)) . Dataflow Construction
* Easier for debugging: inspect tensors at any point \ |)
e Beginner-friendly: familiar Python control flow ‘ Intermediate
* Example: Fully Connected (Linear) Layer in PyTorch (L Representation
.) Graph/Tensor
Ui gers el Optimizations

import torch.nn as nn

model = nn.Linear(10, 1) Kernel Execution
X = torch.randn(1l, 10)

y = model(x) # executes immediately
loss = y.sum()

loss.backward()

Front-End: Declarative Programming - Tasy fi.

* Philosophy: Build-then-Execute
* Define a computation graph first, then execute it in a session

* Advantages:
 Easier for compilers to optimize
* Well-suited for distributed execution and batching

* Example: Fully Connected (Linear) Layer in early version of Tensorflow

_',4. |'a, oSty ./17 import tensorflow as tf

c”/im G’"’U”‘l b dw) i

tf.placeholder(tf.float32, shape=(1l, 10))
}h famu»dﬂmy W tf.Variable(tf.random.normal((10, 1)))

y tf.matmul(x, W)

loss = tf.reduce_sum(y)

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(loss, feed_dict={x: [[0.5]*10]})

} Dataflow Construction

[Front-End API 1

* Why dataflow graphs? |
* Makes data dependencies explicit [Dataflow Construction]

* Facilitate graph/tensor optimizations (e.g., reordering) |

 Dataflow representation:

[Intermediate]
 Directed acyclic graph (DAG)

Representation

* Rectangle node: tensor with shape, dtype, layout, etc. Graph/Tensor
Optimizations

» Square node: operation with attributes (e.g., stride, padding)

* Edges: data dependencies and control flow e Beauiten

* Inference: forward DAG only cmii; bqafhm Wm;
A s with dpanives mmmm e .
* Training: forward + gradient update DAG / 4 wded v (] Tensor |
e Gradient update DAG is constructed by Autodiff engine E O Obert :
* Autodiff engine: Forward Mode Autodiff* & Backward Mode i PR :
Autodiff (Link) T2 Flow

* As Backward Mode is mainstreaming, this module only focus on this 8

https://hao-ai-lab.github.io/cse234-w25/assets/slides/jan14.pdf

} Dataflow Construction: Forward DAG

* Example of linear transformation
y=x-w+b
* Forward DAG construction
* Encodes pure tensor computation: Matmul (x - w) and addition (+b)
* Tensor nodes:w, x, b, y
* Op nodes: Mul (x), Add(+)
* No gradient-related nodes.

Forward DAG

} Dataflow Construction: Backward DAG

* Goal: Compute gradients based on loss function: @ Loss(.)
* Adds gradient operations: Handle by Autodiff engine

a .o
e Tensor nOdes‘_aLoss 0 Loss 0 Loss 0 Loss 7%5 2 /‘4’//;///&4'
" dy ' ax ' ow ' ab s 4@74;%,45«,,/@_

e Addition - d(+): Sum rule (branching)
e Multiplication = d(x): Product rule

éj=v/-xv‘é

Backward DAG

(6 Loss _ d Loss

ax awn) "
& J
dLoss 0dLoss dy
; N d(wx) dy 9 (wx)
dLoss 0 Loss @ d Loss
0y

= ox
L ow d (wx))

aLoss_aLoss ﬂ
b 9y ab

} Dataflow Construction: Weights Update

* Update learnable parameters using gradients

* Gradient Decent:
d Loss (.)

ow
e Different variants to fit real scenarios constraints

t+1

witl =wt —

} Intermediate Representation

 Why Dataflow Graph Is Not Enough?

e Captures only functional dependencies -)
Front-End API

* Lacks optimization metadata (e.g., layout, loop structure) N)

* Why Intermediate Representation (IR): _
. . Dataflow Construction
* Bridge between high-level models and low-level kernel \ y
execution .
_ _ . Intermediate
* Provides richer, structured abstraction for advanced graph &
tensor optimizations

Representation

. Graph/Tensor
* IR designs and stacks: Optimizations
* Pytorch: FX Graph - Aten/Prims IR = Inductor Loop-level IR
* Tensorflow: MLIR (TF Dialect) - HLO Kernel Execution

* Triton-Python: Triton IR - LLVM IR
* Torch-MLIR: Unified bridge to MLIR ecosystem [GitHub]

12

https://github.com/llvm/torch-mlirhttps:/github.com/llvm/torch-mlir

} Intermediate Representation

* Key Design Principles

* Abstraction: Remove unnecessary details to simplify
transformations

* Layered Representation: Different IRs for different optimization
scopes

* Lowering Pathway: IRs gradually transform computations into
backend-executable

* Example: PyTorch IR Stack

| X Graph/Dynamo
* FX Graph: operator fusion, constant folding ...) v
: . : : Aten / Prims IR
» Aten / Prims IR: type promotion, broadcasting ops ... ()
* Inductor Lpo!o-le.vel IR: loop fusion, loop unrolling, memory (Inductor Loop-level IR
layout optimization ... - g

} Multi-Level Intermediate Representation (MLIR)

* A compiler infrastructure that facilitate developers to design custom IR

* Introduced by Google in 2019
e MLIR: A Compiler Infrastructure for the End of Moore’s Law

* Key design philosophy:
* Multi-Level IRs: Capture computation at different levels of abstraction
* Progressive lowering: Gradually refine high-level IRs into lower-level ones

 Extensibility via Dialects: Easily define domain-specific ops/types with custom
semantics

* Dialects: a logical grouping of Ops, attributes and types under a unique namespace

* Trade-offs and Limitations:

* Increased IR Complexity: Complexity shifts to managing dialects and lowering
passes

e Steep Learning Curve: Requires understanding of dialect design, and
transformation rules

https://arxiv.org/pdf/2002.11054
https://arxiv.org/pdf/2002.11054

} Optimization-1: Operator Fusion /ég footsr Jor ghir I
* Combine adjacent ops into a single fused op to reduce) | X
overh ead Dataflow Construction
* BGﬂEfItSZ [Intermediate
* Reduced kernel launches ! Representation
* Lower memory access & transfer cost
Graph/Tensor
» Better backend-specific fused kernels Optimizations

* PyTorch Example: Linear and RelLU

Kernel Execution

* Note: Operator fusion is enabled by FX and Torchinductor
together in PyTorch

. Unoptimized _ ” Optimized
import torch.nn as nn 7 B /5 W%/’Mq%
—
model = nn.Sequential(e
nn.Linear(4, 4), @ @
nn.ReLU() , bond shve
) / MteC/ }Mumvg WWMQ’% k&l’é 0”/3 15

} Optimization-2: Constant Folding

* Fold constant subexpressions at compile time to reduce runtime
computation

* Benefits:
* Eliminates redundant calculations
e Reduces runtime overhead
» Simplifies computation graph

e Can be applied in high-level IRs in early stage

4%1\5 (an 5& wm#”ﬂ//!auéd
Unoptimized Optimized

import torch
x = torch.tensor([1.0])

6 —(+)—

y =X+ 3 * 2

} Optimization-3: Tiling — oot chihy, Firk

* Key operations in deep learning: matrix multiplication
* Input matrices: A, B Output matrix: C
C=A-B
* Core idea: divide large computations into smaller blocks (tiles) that fit in
memory/cache

* Benefits of Tiling:
* Improved Data Locality
* Enables parallel execution across tiles A tile

e Better Cache Reuse
Tiling

. im oo
L] - am oE

} Optimization-3: Tiling

* Assumption: full matrices cannot be fitted into cache:
* Frequent data eviction - poor data locality

* A concrete example: 8 X 8 matrix multiplication (naive implementation)
* One compute core with two small input caches (each holds 4 elements)

* Entire row from A and column from B needed for one output element
* Old cache contents are evicted as the computation moves

]
EE——)
EEEEEEEE EEEEEEEE EEEE EEEE R
EREREEEE EREEEEEE [
Doooooodm COooooOom : : L]
Cooooood EREEEREE -
EEEEEEEE) DEEEEEED X1 0
EEEEEEEE DEEEEEEE S
DOODOCOn DOooOoon =
Doooooon Ooooo0o0n
for i1 in range(8): <: Cache-A :> (: Cache-B :)

for j in range(8):

for k in range(8): Compute
C[i1[§] += A[i][K] * BIKI[j] _)(J‘ 18

} Optimization-3: Tiling

* Data locality: reuse of data once it has been loaded into cache
* Temporal locality: reusing the same data soon after it was accessed
 Spatial locality: accessing data that is close in memory to recently accessed data

* Poor data locality in naive implementation
* No data reuse: cache eviction
* 4 multiplication per data load ([1,4] * [4,1])

]
EE——)
EEEEEEEE EEEEEEEE EEEE EEEE R
EREREEEE EREEEEEE [
Doooooodm COooooOom : : L]
Cooooood EREEEREE -
EEEEEEEE) DEEEEEED X1 0
EEEEEEEE DEEEEEEE S
DOODOCOn DOooOoon =
Doooooon Ooooo0o0n
for i1 in range(8): <: Cache-A :> (: Cache-B :)

for j in range(8):

for k in range(8): Compute
C[i1[§] += A[i][K] * BIKI[j] _)(J‘ 19

} Optimization-3: Tiling

* Tiling: multiple 2 X 2 tile blocks
* Splitting along i, j, k dimensions, creating three more loops for tile control ii, jj, kk
e 8 multiplication per data load ([2,2]*[2,2])
* Better data reuse with caching

|

Y

Hl BN BN Em AN NN NN SN EFE EE ..
AN BN NN NN O O @ O R Ee
00 00 OO0 OO L0 00 40 40
OO OO Od Cd.d L0 OO D0 0]
HEE BN BN BN X Hl BN NN Nl
EN NN NN NE O B0 EE S X
O O 08 00 I N 4 3 [
N T O | HinpE NN Eyn

ol G ey L AR

o 1J‘<J)r kk ingr;nge(o, 2;, 2): # tile k C Cache-A) C Cache-B)

for 1 in range(ii, 11+2):

for j in range(jj, jj+2):
for k in range(kk, kk+2): 3 Compute 20
C[iI[j] += A[i][k] * BLKI[]]

} Optimization-3: Tiling

* Enable parallel execution across tiles
* Each core independently computes a subset (tile)
* Input tiles are loaded into local caches (Cache-A and Cache-B)
* Efficient workload distribution
* Reduced contention for memory bandwidth

e
| I —— Bl
HE EE &
[
X | OO
(Cache-A) (Cache-B)

E (Compute c
Core-1

[]
[]

E—)

o O
L O

C Cache-A)

C Cache-B)

—

Compute
Core-2

J(7

21

} Optimization-3: Tiling

* No free lunch: Extra memory to cache intermediate results

» Key trade-off:

* Hardware constraints: Cache size, memory hierarchy, and bandwidth
 Memory manipulation: Requires careful management of on-chip shared memory
* Edge case handling: Irregular shapes or incomplete tiles must be handled

separately
Tiling
—)
EE EE N
EE NN B
X1
N
LI

——)
EERE EEmE

Naive

X

LO0EE OO Em

} Optimization and Beyond

e Additional optimization techniques not covered yet:
* Loop-level optimizations: unrolling, reordering, etc.
 Memory& layout optimization: memory coalescing, layout transformation, etc.
* Hardware-specific Optimizations: instruction scheduling, tuning approaches, etc.

 Why not cover them now?

* Many require knowledge on computer architecture of Al hardware:
e Compute core and pipeline design
* Memory hierarchy (e.g., registers, caches)
* Interconnects and communication

* These topics will be revisited later in the module:

* Concrete examples
* Hands-on tutorials

Kernel Execution

* Final stage after graph-level and IR-level optimizations [frontEnd APl
* Two main backend strategies: 4 |)
L. . . Dataflow Construction
* Vendor-optimized libraries ! |)
* Call precompiled kernels (e.g., cuBLAS, cuDNN, MKL, MIOpen) T ———TE—
e High performance with minimal codegen overhead Representation

* Limited flexibility and harder to fuse or schedule across ops.

* Custom kernel generation Graph/Tensor
Optimizations

* Generate hardware-specific code (e.g., CUDA, Triton, Metal, or C++)
* Enables kernel fusion, layout tuning, tiling, etc.

* More flexible and tunable, but codegen is more complex. Kernel Execution

Example of Calling vendor-optimized library

High-level PyTorch Daflow # After lowering, backend call with cublas:
C = torch.matmul(A, B) 4 IR Lowering call_cublasGemmEx(handle, A, B, C, ...)

Optimization
24

} Kernel Execution

e Code Generation Path

 Different paths for different hardware backends
* Enables hardware-aware kernel optimization

* GPU backend:
e CUDA C++ (via NVTRC to PTX)
e Triton Kernel (via Triton JIT)
 AMD GPUs take different routes (ROCm IR)

e CPU backend:
e C++ code (via LLVM)

e Other Architectures (e.g., XPU, IPUs)

* Requires custom backend support

FX Graph/Dynamo |

v

Aten / Prims IR

v

Inductor Loop-level IR

v

Optimized IR

v

Triton/CUDA

Nvidia 4%

GPU

02

ML Hardware
Compilation Basic

CATALOG 01
ML

ML Hardware

* Untilnow: e

Algorithm :
- CNN, RNN, Attention-based NN S Attention i
* Emerging NN: MAMBA, Diffusion LLM i

] Quantization/Pruning/Auto ML
. ML Compiler J cuentisation/Pruning/automL

* Front-end framework: Imperative & declarative

e Basic DNN algorithms

—— o ——

* IR stacks: different abstraction and optimizations ! Compiler i
* Kernel execution | ML Framework/Compiler i

* Next to cover:
* ML Hardware (T Vil Hardware 7T

* CPU, GPU, FPGA, etc.
* NPU, Processing in/near memory/sensor
e Hardware-level optimizations

GPU TPU

From Basic Computer Architecture

e Art of Computer Architecture

e Structure of a hardware system
* Main hardware components
* Interconnects
* Hardware/software interface

Analogy

: 14 GiB/s

<

14 GiB/s

N

PCle
Interface

~—

[CJoff-chip I/0
[CJData Buffer

| Computation
[E control

Not to Scale

Host
Interface

Google TPU

14 GiB/s

(——C [~ DDR3 % Weight FIFO
Interfaces (Weight Fetcher)

[| Control ﬂ 30 GiB/s
4 - % -
165
10 GiB/s |Unified Buffer Systolic| GiB/s i b
> Aéfﬁﬁ?alon Array |——>| Multiply Unit
Storage) || Control (64K per cycle)
Systolic Array
U L y
o 165 GiB/s
-] | Normalize/Pool
Sourcer
:ﬁ 4} N.P. Jouppi et al.
= R G A

From Basic Computer Architecture

* Processing:
e control system, functionality of compute unit...

* Communication
* Bus, Interface, bandwidth...

* Storage
* memory system, caches...

Processing Communication

29

} Von Neumann Architecture

e Stored program computer: general purpose

e Unified Memory for both instructions and data
* Harvard Architecture: Separate access for instructions and data

e Sequential Instruction Programme

Central Processing Unit

Control Unit

Output
Device

Input

) Arithmetic/Logic Unit
Device

Memory Unit

} World of Trade-Off: Performance Metrics

e Core design trade-off: Performance—Power—Area (PPA)

e Performance (P)
e Latency: Time to complete a task (time to first output)
* Throughput: Tasks completed per time unit (e.g., frame per second)

* Power (P)
* Energy consumption over time
* Affects thermal performance and battery life

* Area (A)
* Physical silicon footprint (chip size) Db abole dond 4 e
* Influences cost, yield, and scalability W/,Wf;g Sl 1t by Iolwedd

* Impacting Factors:
* Hardware architecture (e.g., SIMD, pipelining)
* Technology node (e.g., 5nm, 7nm)

Moore’s Law

 Number of transistors on an integrated circuit doubles every two years
e Motivation for special-purpose processors

Six-Core Core i7

2,600,000,000 Six-Core Xaon 7400, ©10-Cora Xeon Westmere-EX

’ ' ' DuakCore ltanum 2@ @ ‘.~ goore o';".,"ﬁq’l’

1,000,000,000 - mokio. SR i ute

Zore Opteron 2400
15} {Quad) _ é_ // . é %
- 1af Jgff%?; / /g v,
100,000,000 9 |31 /
5: 12 /é ’ .
w3 ol ar W’%‘Wm/ lle
€ 100000004 —=_ ol J// ,
e . gushty
5 au-<t 7
-— QO% 6}
2 10000004 Sew gl
& £= 4 44 Moz /.
2 2z 3 ~hwenyy 7% Mo law
100,000 o ?'
0 doe ot W? o) e
10,000
2,300 woiehcate

I T T T 1
1971 1980 1990 2000 2011

Date of introduction

32

} Golden Age of Computer Architecture

* John L. Hennessy, David Patterson, 2017’s Turing Award:
* “ANew Golden Age for Computer Architecture”, Communications of the ACM, 2019
* Performance boost brought by technology advanced is slowing down
* More performance gain from advanced architecture design

* GPU (Graphics Processing Unit)

* Reconfigurable Accelerator
* FPGA (Field-Programmable Gate Array)
* CGRA (Coarse-Grained Reconfigurable Array)

* DSA (Domain Specific Architecture)
* TPU from Google, NPU from Samsung
* Processing in/near Memory
* Processing in/near Sensor
* Processing in/near Network

} Different Memory Technologies

* Gaps in latency, capacity, and bandwidth across different memory tech

* Modern Memory Hierarchy (Top to Bottom):

* Registers:
* Fastest, smallest, closest to ALU
* Transistor counts: >10 (~30-40) per bit
» Capacity: “KBs (area constraints and port complexity)
* Bandwidth: Very high (single-cycle access)

« SRAM (L1/L2/L3.. Caches):

Registers

* Intermediate latency and capacity 3 SRAM

 Transistor counts: 6 per bit (L1/L2/L3... Caches)

* Capacity: Tens of KBs to MBs DRAM

* Bandwidth: High (few cycles) (HBM/GDDR6/DDR5/...)

Flash
S (SSD/NVMe/...)

‘\’\V]fs aw\it') OM\A \’\) N —— Disk

HDD/...

} Different Memory Technologies

* Modern Memory Hierarchy (Top to Bottom):

* DRAM:
 Larger, slower (depends on generation)
* Transistor counts: 1 transistor + 1 capacitor per bit N Registers
* Capacity: ~ GBs) SRAM
* Bandwidth: Lower than caches (L1/L2/13... Caches)
. Flash: DRAM
Flash: (HBM/GDDR6/DDRS5/...)
* Non-volatile storage Flash
 Capacity: 100s of GBto TB (SSD/NVMe/...)
* Disk: Disk
« Mechanical, slowest (HDD/...)

e Capacity: TB+
 Memory hierarchical design varies by different hardware and purposes

36

Different Memory Technologies

* CPU (e.g., Intel Core i9)
* Registers: stores operands for immediate

use
e Caches (L1, L2, L3): SRAM with different . R‘;ii;t&rs
s 3
access speed and ca pz-mtles | c’btb (L1/L2/13... Caches)
* Main memory: Off-chip DRAM (typically &« DRAM
DDR4/DDR5), tens or hundreds of GBs 2" (HBM/GDDR6/DDR5/...)
. . . _ Flash
Emerging Hierarchy: (SSD/NVMe/...)
* Driven by advanced memory packaging Disk

technology HDD/...
 Example: AMD 3D V-cache, stacking SRAM
on top of the compute die to increase cache
capacity
* Varying Specifications Across Vendors
and Generations: Application driven 37

Different Memory Technologies

* Memory hierarchy design also depends on area and power (thermal) limits:
* SRAM: Fast, but area- and power-hungry — (4.2 L2..
 DRAM: Good density and cost, but lower bandwidth and refresh overhead - 24«
 HBM: High bandwidth and low energy/bit, but complex packaging and thermal limits.

* Scenario Considerations:
e Edge: Prioritizes low power and small form factor, HBM often unsuitable.
e Cloud: Can support HBM and large DRAM due to space and cooling.

* Design Space Exploration:

* Architectural choices demand careful co-design across memory hierarchy:
* Tapeout and verification costs
* Physical layout constraints
» Application-specific access patterns

Different Memory Technologies

* GPU (e.g., NVIDIA H100):

* Register file: per-thread storage for operands
* Caches/Shared Memory: on-chip SRAM for == e

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

INTS2 FP32 FP32 FP64 INTS2 FP32 FP32 FPe4
. . INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP84
Ins ruc Ion a a Ca C es INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 TENSOR CORE INT32 FP32 FP32 FP64 TENSOR CORE
INT32 FP32 FP32 FP64 4™ GENERATION INT32 FP32 FP32 FP64 4™ GENERATION

. . INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

* Global Memory: high-bandwidth DRAM such as
. INT3S2 FP32 FP32 FP64 INT32 FP32 FP32 FPe4

INTS2 FP32 FP32 FP64 INTS2 FP32 FP32 FPe4

INTS2 FP32 FP32 FP64 INTS2 FP32 FP32 FPe4

H BM 3 Or G D D R6 INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

W/ W/ WD WD WD W L LY L) LD LDF DI LD/ DI LDI DI
ST ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 TENSOR CORE INT32 FP32 FP32 TENSOR CORE
INT32 FP32 FP32 4™ GENERATION INT32 FP32 FP32 4™ GENERATION
INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 INT32 FP32 FP32

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP84 INT32 FP32 FP32 FP64

INT32 FP32 FP32 FP64 INT32 FP32 FP32 FP64

W W W W WD WD L LY SFU L L LDF LD/ LD/ DI LDI DI
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Register Files

L1 Cache/Shared
Memory

\ L2 Cache

>

paads i93se4

Global Memory (GDDR)

SM design of H100, Source: Nvidia

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Different Memory Technologies

* Why Different Memory Hierarchy?
* Physically: More compute cores allows larger register files.
 Logically: Increasing fast-access memory improves performance.

* Architectures evolve iteratively, driven by application needs
* From NVDIA Maxwell to Hopper Architecture:

NVIDIA GPU Memory Hierarchy Totals by Architecture

O <
12 Bl Register file total (MB)

L1/Shared total (MB)

|2 cache (MB)

100 4 {

city (MB)

Total capa

o' @

a0 poe®®

40

Memory Wall

* Origin of the Term:
* Introduced by Wulf & McKee, 1994

e “Hitting the Memory Wall: Implications of the Obvious” SIGARCH Computer
Architecture News

* Key Concept: Processor growing speed has outpaced memory speed
* As CPU gets faster, it spends more time waiting for data from memory
* The latency gap creates a performance bottleneck: “Memory Wall”

* Architectural Facts Behind P
e Cache (SRAM) is fast but small = limited capacity o | SRR =
* DRAM is large but slow = high latency and energy ol
e Data must be fetched from DRAM - leads to pipeline
stalls and low compute utilization

-

I 1 1
1980 1990 ceon ce1e

8.1

Source: Reflections on the Memory Wall

41

https://dl.acm.org/doi/10.1145/216585.216588

Recap

* ML Compilation Stack

» Front-end API for model construction

» Dataflow graph construction (AutoDiff)

» Intermediate Representation (IR)

» Graph/Tensor optimizations (Fusion/Tilling)
» Kernel execution

* ML Hardware Basis:

»Moore’s Law
»Amdal’s Law

»Memory Wall
* Registers

SRAM

DRAM

Flash Memory
Disk

[Front-End AP]
|
[Dataflow Construction]

Graph/Tensor Optimizations

Kernel Execution

Registers
SRAM
(L1/L2/L3... Caches)

DRAM
(HBM/GDDR6/DDR5/...)

Flash
(SSD/NVMe/...)
Disk
(HDD/...)

42

