
Machine Learning Systems
and Hardware

Hongxiang Fan

L2: Compilation and Mapping

• Recap (Last Lecture): Explored a variety of neural network architectures
• Convolutional Neural Networks (CNNs)
• Transformers (Attention-based Neural Networks)
• *Emerging architectures: Diffusion models, Mamba, etc.

• Design Decisions Impact Both Algorithm & Hardware:
• Floating point operation (FLOP) count
• Parameter counts /model size

• Key insight: Regardless of architecture, the core computation focuses on:
• Matrix Multiplication (MatMul)
• Activation Functions and Normalization

Transition from Algorithms to Systems and Hardware

2

C A T A L O G

ML
Compilation

ML Hardware
Basic

01 02

3

• Algorithmic Complexity (FLOPS) ≠ Hardware Performance
➢Any example we visited before?
➢Depth-wise convolution: fewer FLOPs but limited parallelism, high

memory bandwidth cost
➢End-to-end performance depends on:
𝑒2𝑒_𝑃𝑒𝑟𝑓 = 𝐹(𝑭𝑳𝑶𝑷𝒔, 𝑰𝒏𝒇𝒓𝒂𝒔𝒕𝒖𝒄𝒕𝒖𝒓𝒆, 𝑯𝒂𝒓𝒅𝒘𝒂𝒓𝒆)

• Role of ML compilers
➢Bridge between algorithm and hardware
➢Decide how computation is scheduled, fused, and mapped to specific

hardware units (e.g., GPU tensor cores)
➢Translate algorithmic improvements into real speed-up

Why ML Compilation

Algorithm

Hardware

Compilers

4

• Front-end API for model construction
• Imperative/declarative(symbolic)

• Dataflow graph construction
• Capture computation as nodes (operations) and edges (flows)

• Intermediate Representation (IR)
• From high-level framework-specific IR to hardware-agnostic IR

• Graph/Tensor optimizations
• Operator fusion, constant folding, algebraic simplification
• Layout transformations, memory planning, op reordering

• Kernel execution
• Vendor libraries (cuBLAS, cuDNN, MKL), custom kernel design

• Hardware
• GPU, TPU, CPU, ASIC

Overview of ML Compilers

Front-End API

Dataflow Construction

Intermediate
Representation

Graph/Tensor
Optimizations

Kernel Execution

5

• Philosophy: Build-and-Execute
• Operations are executed immediately as Python code runs
• No explicit computation graph needs to be defined beforehand

• Advantages:
• Easier for debugging: inspect tensors at any point
• Beginner-friendly: familiar Python control flow

• Example: Fully Connected (Linear) Layer in PyTorch

Front-End: Imperative Programming

6

Front-End API

Dataflow Construction

Intermediate
Representation

Graph/Tensor
Optimizations

Kernel Execution

Pytorch

• Philosophy: Build-then-Execute
• Define a computation graph first, then execute it in a session

• Advantages:
• Easier for compilers to optimize
• Well-suited for distributed execution and batching

• Example: Fully Connected (Linear) Layer in early version of Tensorflow

Front-End: Declarative Programming

7

Tensorflow

it is easierto
optime targetcertaindeal

in tensorflow

• Why dataflow graphs?
• Makes data dependencies explicit
• Facilitate graph/tensor optimizations (e.g., reordering)

• Dataflow representation:
• Directed acyclic graph (DAG)
• Rectangle node: tensor with shape, dtype, layout, etc.
• Square node: operation with attributes (e.g., stride, padding)
• Edges: data dependencies and control flow

• Inference: forward DAG only
• Training: forward + gradient update DAG

• Gradient update DAG is constructed by Autodiff engine
• Autodiff engine: Forward Mode Autodiff* & Backward Mode

Autodiff (Link)
• As Backward Mode is mainstreaming, this module only focus on this

Dataflow Construction

Tensor

Operator

Flow

8

Front-End API

Dataflow Construction

Intermediate
Representation

Graph/Tensor
Optimizations

Kernel Execution
createsbackwardpass
pathswith deviatives

included

https://hao-ai-lab.github.io/cse234-w25/assets/slides/jan14.pdf

• Example of linear transformation
𝒚 = 𝒙 ∙ 𝒘 + 𝒃

• Forward DAG construction
• Encodes pure tensor computation: Matmul (𝒙 ∙ 𝒘) and addition (+𝑏)
• Tensor nodes: 𝒘, 𝒙, 𝒃, 𝒚
• Op nodes: 𝑀𝑢𝑙 × , 𝐴𝑑𝑑(+)
• No gradient-related nodes.

Dataflow Construction: Forward DAG

𝒙

𝒘
×

𝒃

+ 𝒚

Forward DAG

9

• Goal: Compute gradients based on loss function: 𝝏 𝑳𝒐𝒔𝒔(.)
• Adds gradient operations: Handle by Autodiff engine
• Tensor nodes: 𝝏 𝑳𝒐𝒔𝒔

𝝏 𝒚
, 𝝏 𝑳𝒐𝒔𝒔

𝝏 𝒙
, 𝝏 𝑳𝒐𝒔𝒔

𝝏 𝒘
, 𝝏 𝑳𝒐𝒔𝒔

𝝏 𝒃
• Addition → 𝝏(+): Sum rule (branching)
• Multiplication → 𝝏(x): Product rule

Dataflow Construction: Backward DAG

𝝏(+)
𝝏 𝑳𝒐𝒔𝒔

𝝏 𝒚

𝝏(×)

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒙 =

𝝏 𝑳𝒐𝒔𝒔
𝝏 (𝒘𝒙) ∙ 𝒘

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒘

=
𝝏 𝑳𝒐𝒔𝒔
𝝏 (𝒘𝒙)

∙ 𝒙

𝝏 𝑳𝒐𝒔𝒔
𝝏 (𝒘𝒙)

=
𝝏 𝑳𝒐𝒔𝒔

𝝏 𝒚
∙

𝝏 𝒚
𝝏 (𝒘𝒙)

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒃

=
𝝏 𝑳𝒐𝒔𝒔

𝝏 𝒚
∙

𝝏 𝒚
𝝏 𝒃

10

Backward DAG

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒚

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒙

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒘

𝝏 𝑳𝒐𝒔𝒔
𝝏 (𝒘𝒙)

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒃

×

×

𝒙

𝒘

𝝏(+)

𝝏(×)

thisiswhatpytouchdoesautomatically

y w x b

alwaysapplying chainruleforderivatives

• Update learnable parameters using gradients
• Gradient Decent:

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜼
𝝏 𝑳𝒐𝒔𝒔 (.)

𝝏 𝒘
• Different variants to fit real scenarios constraints

Dataflow Construction: Weights Update

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒚

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒙

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒘

𝝏 𝑳𝒐𝒔𝒔
𝝏 (𝒘𝒙)

𝝏 𝑳𝒐𝒔𝒔
𝝏 𝒃

×

×

𝒙

𝒘

+

11

thesemustbeadded

to beabletodo
weightupdates

• Why Dataflow Graph Is Not Enough?
• Captures only functional dependencies
• Lacks optimization metadata (e.g., layout, loop structure)

• Why Intermediate Representation (IR):
• Bridge between high-level models and low-level kernel

execution
• Provides richer, structured abstraction for advanced graph &

tensor optimizations

• IR designs and stacks:
• Pytorch: FX Graph → Aten/Prims IR → Inductor Loop-level IR
• Tensorflow: MLIR (TF Dialect) → HLO
• Triton-Python: Triton IR → LLVM IR
• Torch-MLIR: Unified bridge to MLIR ecosystem [GitHub]

Intermediate Representation

12

Front-End API

Dataflow Construction

Intermediate
Representation

Graph/Tensor
Optimizations

Kernel Execution

https://github.com/llvm/torch-mlirhttps:/github.com/llvm/torch-mlir

• Key Design Principles
• Abstraction: Remove unnecessary details to simplify

transformations
• Layered Representation: Different IRs for different optimization

scopes
• Lowering Pathway: IRs gradually transform computations into

backend-executable

• Example: PyTorch IR Stack
• FX Graph: operator fusion, constant folding …
• Aten / Prims IR: type promotion, broadcasting ops …
• Inductor Loop-level IR: loop fusion, loop unrolling, memory

layout optimization …

Intermediate Representation

13

FX Graph/Dynamo

Aten / Prims IR

Inductor Loop-level IR

• A compiler infrastructure that facilitate developers to design custom IR
• Introduced by Google in 2019
• MLIR: A Compiler Infrastructure for the End of Moore’s Law

• Key design philosophy:
• Multi-Level IRs: Capture computation at different levels of abstraction
• Progressive lowering: Gradually refine high-level IRs into lower-level ones
• Extensibility via Dialects: Easily define domain-specific ops/types with custom

semantics
• Dialects: a logical grouping of Ops, attributes and types under a unique namespace

• Trade-offs and Limitations:
• Increased IR Complexity: Complexity shifts to managing dialects and lowering

passes
• Steep Learning Curve: Requires understanding of dialect design, and

transformation rules

Multi-Level Intermediate Representation (MLIR)

14

tosupportreusing implementations inbetween compilers

https://arxiv.org/pdf/2002.11054
https://arxiv.org/pdf/2002.11054

• Combine adjacent ops into a single fused op to reduce
overhead

• Benefits:
• Reduced kernel launches
• Lower memory access & transfer cost
• Better backend-specific fused kernels

• PyTorch Example: Linear and ReLU
• Note: Operator fusion is enabled by FX and TorchInductor

together in PyTorch

Optimization-1: Operator Fusion

𝒙 𝑳𝒊𝒏𝒆𝒂𝒓 𝑹𝒆𝑳𝑼 𝒚 𝒙 𝑳𝒊𝒏𝒆𝒂𝒓
 𝑹𝒆𝑳𝑼 𝒚

Unoptimized Optimized

Front-End API

Dataflow Construction

Intermediate
Representation

Graph/Tensor
Optimizations

Kernel Execution

15

keyfactorforoption

1

thisis inefficient

I
needlmemory

operationshere

load
fstone

• Fold constant subexpressions at compile time to reduce runtime
computation

• Benefits:
• Eliminates redundant calculations
• Reduces runtime overhead
• Simplifies computation graph

• Can be applied in high-level IRs in early stage

Optimization-2: Constant Folding

𝟐 × + 𝒚

Unoptimized Optimized

𝟑 𝒙

𝟔 + 𝒚

𝒙 16

thiscanbeconstantfolded

• Key operations in deep learning: matrix multiplication
• Input matrices: 𝑨, 𝑩 Output matrix: 𝑪

𝑪 = 𝑨 ∙ 𝑩
• Core idea: divide large computations into smaller blocks (tiles) that fit in

memory/cache
• Benefits of Tiling:

• Improved Data Locality
• Enables parallel execution across tiles
• Better Cache Reuse

Optimization-3: Tiling

Tiling

A tile

17

Datorestrutting Fink

• Assumption: full matrices cannot be fitted into cache:
• Frequent data eviction → poor data locality

• A concrete example: 8 × 8 matrix multiplication (naïve implementation)
• One compute core with two small input caches (each holds 4 elements)
• Entire row from A and column from B needed for one output element
• Old cache contents are evicted as the computation moves

Optimization-3: Tiling

Cache-A Cache-B

Compute
Core

…
 …

…
 …

… …

… …

18

• Data locality: reuse of data once it has been loaded into cache
• Temporal locality: reusing the same data soon after it was accessed
• Spatial locality: accessing data that is close in memory to recently accessed data

• Poor data locality in naïve implementation
• No data reuse: cache eviction
• 4 multiplication per data load ([1,4] * [4,1])

Optimization-3: Tiling

Cache-A Cache-B

Compute
Core

…
 …

…
 …

… …

… …

19

• Tiling: multiple 2 × 2 tile blocks
• Splitting along 𝑖, 𝑗, 𝑘 dimensions, creating three more loops for tile control 𝑖𝑖, 𝑗𝑗, 𝑘𝑘
• 8 multiplication per data load ([2,2]*[2,2])
• Better data reuse with caching

Optimization-3: Tiling

Cache-A Cache-B

Compute
Core

…
 …

… …
… …

… …

20

• Enable parallel execution across tiles
• Each core independently computes a subset (tile)
• Input tiles are loaded into local caches (Cache-A and Cache-B)
• Efficient workload distribution
• Reduced contention for memory bandwidth

Optimization-3: Tiling

Cache-A Cache-B

Compute
Core-1

… … … …

… …

Cache-A Cache-B

Compute
Core-2

… …… …

… …

… …

21

• No free lunch: Extra memory to cache intermediate results
• Key trade-off:

• Hardware constraints: Cache size, memory hierarchy, and bandwidth
• Memory manipulation: Requires careful management of on-chip shared memory
• Edge case handling: Irregular shapes or incomplete tiles must be handled

separately

Optimization-3: Tiling

… … … …

… …

…
 …

…
 …

…
 …

… …

… …

Tiling Naive

22

• Additional optimization techniques not covered yet:
• Loop-level optimizations: unrolling, reordering, etc.
• Memory& layout optimization: memory coalescing, layout transformation, etc.
• Hardware-specific Optimizations: instruction scheduling, tuning approaches, etc.

• Why not cover them now?
• Many require knowledge on computer architecture of AI hardware:

• Compute core and pipeline design
• Memory hierarchy (e.g., registers, caches)
• Interconnects and communication

• These topics will be revisited later in the module:
• Concrete examples
• Hands-on tutorials

Optimization and Beyond

23

• Final stage after graph-level and IR-level optimizations
• Two main backend strategies:

• Vendor-optimized libraries
• Call precompiled kernels (e.g., cuBLAS, cuDNN, MKL, MIOpen)
• High performance with minimal codegen overhead
• Limited flexibility and harder to fuse or schedule across ops.

• Custom kernel generation
• Generate hardware-specific code (e.g., CUDA, Triton, Metal, or C++)
• Enables kernel fusion, layout tuning, tiling, etc.
• More flexible and tunable, but codegen is more complex.

Kernel Execution
Front-End API

Dataflow Construction

Intermediate
Representation

Graph/Tensor
Optimizations

Kernel Execution

Daflow
IR Lowering

Optimization

Example of Calling vendor-optimized library

24

• Code Generation Path
• Different paths for different hardware backends
• Enables hardware-aware kernel optimization

• GPU backend:
• CUDA C++ (via NVTRC to PTX)
• Triton Kernel (via Triton JIT)
• AMD GPUs take different routes (ROCm IR)

• CPU backend:
• C++ code (via LLVM)

• Other Architectures (e.g., XPU, IPUs)
• Requires custom backend support

Kernel Execution

FX Graph/Dynamo

Aten / Prims IR

Inductor Loop-level IR

Optimized IR

Triton/CUDA
Triton JIT/

NVRTC

C++

LLVM

Nvidia
GPU

AMD
CPU

25

C A T A L O G

ML
Compilation

ML Hardware
Basic

01 02

26

• Until now:
• Basic DNN algorithms

• CNN, RNN, Attention-based NN
• Emerging NN: MAMBA, Diffusion LLM

• ML Compiler
• Front-end framework: Imperative & declarative
• IR stacks: different abstraction and optimizations
• Kernel execution

• Next to cover:
• ML Hardware

• CPU, GPU, FPGA, etc.
• NPU, Processing in/near memory/sensor
• Hardware-level optimizations

ML Hardware

27

GPU TPU

NPU Reconfig

CNN Attention

ML Framework/Compiler

Quantization/Pruning/Auto ML

CPU

Algorithm

Compiler

ML Hardware

• Art of Computer Architecture
• Structure of a hardware system

• Main hardware components
• Interconnects
• Hardware/software interface

From Basic Computer Architecture

Analogy

Google TPU

28

• Processing:
• control system, functionality of compute unit…

• Communication
• Bus, Interface, bandwidth…

• Storage
• memory system, caches…

From Basic Computer Architecture

Processing StorageCommunication

29

• Stored program computer: general purpose
• Unified Memory for both instructions and data

• Harvard Architecture: Separate access for instructions and data

• Sequential Instruction Programme

Von Neumann Architecture

30

• Core design trade-off: Performance–Power–Area (PPA)
• Performance (P)

• Latency: Time to complete a task (time to first output)
• Throughput: Tasks completed per time unit (e.g., frame per second)

• Power (P)
• Energy consumption over time
• Affects thermal performance and battery life

• Area (A)
• Physical silicon footprint (chip size)
• Influences cost, yield, and scalability

• Impacting Factors:
• Hardware architecture (e.g., SIMD, pipelining)
• Technology node (e.g., 5nm, 7nm)

World of Trade-Off: Performance Metrics

31

depends on scenarios phoneusdatacenter

PPA actually standforthree
constraintsthatmustbebalanced

• Number of transistors on an integrated circuit doubles every two years
• Motivation for special-purpose processors

Moore’s Law

32

essentially iftheywait
theirnonefficientcode
willmnquickly

howevertheMoore'slaw
doesnotapplyanymore

• John L. Hennessy, David Patterson, 2017’s Turing Award:
• “A New Golden Age for Computer Architecture”, Communications of the ACM, 2019
• Performance boost brought by technology advanced is slowing down
• More performance gain from advanced architecture design

• GPU (Graphics Processing Unit)
• Reconfigurable Accelerator

• FPGA (Field-Programmable Gate Array)
• CGRA (Coarse-Grained Reconfigurable Array)

• DSA (Domain Specific Architecture)
• TPU from Google, NPU from Samsung
• Processing in/near Memory
• Processing in/near Sensor
• Processing in/near Network

Golden Age of Computer Architecture

33

• Gaps in latency, capacity, and bandwidth across different memory tech
• Modern Memory Hierarchy (Top to Bottom):

• Registers:
• Fastest, smallest, closest to ALU
• Transistor counts: >10 (~30-40) per bit
• Capacity: ~KBs (area constraints and port complexity)
• Bandwidth: Very high (single-cycle access)

• SRAM (L1/L2/L3.. Caches):
• Intermediate latency and capacity
• Transistor counts: 6 per bit
• Capacity: Tens of KBs to MBs
• Bandwidth: High (few cycles)

Different Memory Technologies

Registers
SRAM

(L1/L2/L3… Caches)
DRAM

(HBM/GDDR6/DDR5/…)
Flash

(SSD/NVMe/…)
Disk

(HDD/…)
35

thisappliesonly.toCpu

• Modern Memory Hierarchy (Top to Bottom):
• DRAM:

• Larger, slower (depends on generation)
• Transistor counts: 1 transistor + 1 capacitor per bit
• Capacity: ~ GBs
• Bandwidth: Lower than caches

• Flash:
• Non-volatile storage
• Capacity: 100s of GB to TB

• Disk:
• Mechanical, slowest
• Capacity: TB+

• Memory hierarchical design varies by different hardware and purposes

Different Memory Technologies

Registers
SRAM

(L1/L2/L3… Caches)
DRAM

(HBM/GDDR6/DDR5/…)
Flash

(SSD/NVMe/…)
Disk

(HDD/…)

36

• CPU (e.g., Intel Core i9)
• Registers: stores operands for immediate

use
• Caches (L1, L2, L3): SRAM with different

access speed and capacities
• Main memory: Off-chip DRAM (typically

DDR4/DDR5), tens or hundreds of GBs

• Emerging Hierarchy:
• Driven by advanced memory packaging

technology
• Example: AMD 3D V-cache, stacking SRAM

on top of the compute die to increase cache
capacity

• Varying Specifications Across Vendors
and Generations: Application driven

Different Memory Technologies

Registers
SRAM

(L1/L2/L3… Caches)
DRAM

(HBM/GDDR6/DDR5/…)
Flash

(SSD/NVMe/…)
Disk

(HDD/…)

37

• Memory hierarchy design also depends on area and power (thermal) limits:
• SRAM: Fast, but area- and power-hungry
• DRAM: Good density and cost, but lower bandwidth and refresh overhead
• HBM: High bandwidth and low energy/bit, but complex packaging and thermal limits.

• Scenario Considerations:
• Edge: Prioritizes low power and small form factor, HBM often unsuitable.
• Cloud: Can support HBM and large DRAM due to space and cooling.

• Design Space Exploration:
• Architectural choices demand careful co-design across memory hierarchy:

• Tapeout and verification costs
• Physical layout constraints
• Application-specific access patterns

Different Memory Technologies

38

L1L223
RAM

• GPU (e.g., NVIDIA H100):
• Register file: per-thread storage for operands
• Caches/Shared Memory: on-chip SRAM for

instruction/data caches
• Global Memory: high-bandwidth DRAM such as

HBM3 or GDDR6

Different Memory Technologies

SM design of H100, Source: Nvidia

Register Files

L1 Cache/Shared
Memory
L2 Cache

Global Memory (GDDR)
Faster Speed

39

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

• Why Different Memory Hierarchy?
• Physically: More compute cores allows larger register files.
• Logically: Increasing fast-access memory improves performance.

• Architectures evolve iteratively, driven by application needs
• From NVDIA Maxwell to Hopper Architecture:

Different Memory Technologies

40

• Origin of the Term:
• Introduced by Wulf & McKee, 1994
• “Hitting the Memory Wall: Implications of the Obvious” SIGARCH Computer

Architecture News

• Key Concept: Processor growing speed has outpaced memory speed
• As CPU gets faster, it spends more time waiting for data from memory
• The latency gap creates a performance bottleneck: “Memory Wall”

• Architectural Facts Behind
• Cache (SRAM) is fast but small → limited capacity
• DRAM is large but slow → high latency and energy
• Data must be fetched from DRAM → leads to pipeline
 stalls and low compute utilization

Memory Wall

Source: Reflections on the Memory Wall

41

https://dl.acm.org/doi/10.1145/216585.216588

• ML Compilation Stack
➢Front-end API for model construction
➢Dataflow graph construction (AutoDiff)
➢ Intermediate Representation (IR)
➢Graph/Tensor optimizations (Fusion/Tilling)
➢Kernel execution

• ML Hardware Basis:
➢Moore’s Law
➢Amdal’s Law
➢Memory Wall

• Registers
• SRAM
• DRAM
• Flash Memory
• Disk

Recap

42

Front-End API

Dataflow Construction

Intermediate Representation

Graph/Tensor Optimizations

Kernel Execution

