Machine Learning Systems
and Hardware

LO: Introduction

Hongxiang Fan

(S IMPERIAL

2D

} About Me (Hongxiang Fan, Assistant Professor)

* Experience

* Research Scientist, Samsung Al Cambridge
 Affiliated Research Fellow, CS, University of Cambridge

* My Research:

* Intersection among Hardware / Machine Learning / Quantum Computing
» System / Hardware Support for Emerging ML (LLM, Neural Rendering)

e Quantum Compilation / Simulation / Error Correction

* ML for Hardware / Software Engineering

* Research Opportunities: UROP/Intern/ISO/Individual Projects/PhD

* Other Lectures in Doc:
** Compilers (together with Paul and Jamie)

Machine
Learning

WV

Domain
Specific
Hardware

Quantum
Computing

CATALOG 01 02 03

Why Module

Logistics
ML Sys & HW Overview 8

} Why ML Sys & HW: Ubiquity of ML

 Machine Learning (ML) is becoming pervasive
* Influencing our daily lives across various applications

Content Creation

| .w';m M
l/ ‘ |||'||”I’J|“jl'I"lMlllu 7

Education Manufacturing Finance 4

} Why ML Sys & HW: Ubiquity of ML

* Generative Al

* Text generation and understanding such as ChatGPT, Gemini
* Applications: code generation, question answering, dialogue systems

* Beyond text: multi-modal Al
* Audio (Whisper from OpenAl)
* Image/Video (Nano Banana and Veo from Google)

¥ Gemini

} Why ML Sys & HW: What Drives the Al Wave?

* Three key enablers:

E _ innnni _
¢S i
— A
—
Algorithm Data GPUs
2 7 .
;" Deep Neural Networks } Memory Compute
| were invented in 1960s | Storage Hardware

?
_ ML Systems and Hardware: y

Why ML Sys & HW: The Bitter Lesson

* Richard Sutton: Turing Award in 2024
* One of the founders of modern computational Reinforcement Learning

The Bitter Lesson

Rich Sutton
March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is
Moore's law, or rather its generalization of continued exponentially falling cost per unit of
computation. Most Al research has been conducted as if the computation available to the agent were
constant (in which case leveraging human knowledge would be one of the only ways to improve
o performance) but, over a slightly Ionger time than a typical research project, massively more
) computation inevitably becomes available. Seeking an improvement that makes a difference in the
e n e ra l I l e O S a eve ra e shorter term, researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run counter to each
other, but in practice they tend to. Time spent on one is time not spent on the other. There are
L4 . psychological commitments to investment in one approach or the other. And the human-knowledge
co m u ta t I o n a re u t I m a te t e m O St approach tends to complicate methods in ways that make them less suited to taking advantage of
general methods leveraging computation. There were many examples of Al researchers' belated

learning of this bitter lesson, and it is instructive to review some of the most prominent.

H ” In computer chess, the methods that defeated the world champion, Kasparov, in 1997, were based on
e e c I V e massive, deep search. At the time, this was looked upon with dismay by the majority of computer-
chess researchers who had pursued methods that leveraged human understanding of the special
structure of chess. When a simpler, search-based approach with special hardware and software proved
vastly more effective, these human-knowledge-based chess researchers were not good losers. They
said that “brute force" search may have won this time, but it was not a general strategy, and anyway it

° o M V24 ° was not how people played chess. These researchers wanted methods based on human input to win
co m p u a I O n (] a r Wa re and were disappointed when they did not.

A similar pattern of research progress was seen in computer Go, only delayed by a further 20 years.
Enormous initial efforts went into avoiding search by taking advantage of human knowledge, or of
o y)) . the special features of the game, but all those efforts proved irrelevant, or worse, once search was
Y . applied effectively at scale. Also important was the use of learning by self play to learn a value
e ve ra e S S e I I l I n ra S r u C u re function (as it was in many other games and even in chess, although learning did not play a big role in
° the 1997 program that first beat a world champion). Learning by self play, and learning in general, is

like search in that it enables massive computation to be brought to bear. Search and learning are the
two most important classes of techniques for utilizing massive amounts of computation in Al research.
In computer Go, as in computer chess, researchers’ initial effort was directed towards utilizing human
understanding (so that less search was needed) and only much later was much greater success had by
embracing search and learning.

In speech recognition, there was an early competition, sponsored by DARPA, in the 1970s. Entrants
included a host of special methods that took advantage of human knowledge---knowledge of words,
of phonemes, of the human vocal tract, etc. On the other side were newer methods that were more
statistical in nature and did much more computation, based on hidden Markov models (HMMs).
Again, the statistical methods won out over the human-knowledge-based methods. This led to a major
change in all of natural language processing, gradually over decades, where statistics and
computation came to dominate the field. The recent rise of decilcarning in speech recognition is the
most recent step in this consistent direction. Deep learning methods rely even less on human
knowledge, and use even more computation, together with learning on huge training sets, to produce
dramatically better speech recognition systems. As in the games, researchers always tried to make
systems that worked the way the researchers thought their own minds worked-—they tried to put that 7

knowledge in their systems---but it proved ultimately counterproductive, and a colossal waste of

Source: http://www.incompleteideas.net/Incldeas/BitterLesson.html

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

} Why ML Sys & HW

* Increasing computational
complexity

[le+22

e+18;

* Computation:

e+14

@pute (FL@

* Linear layers i g ©
. @ __---"0 oo © gl ‘E

* Convolutional layers Lope. 0 I S .
e Attention layers Floating Point\&/ | = | 1
Operatlons ” ’ ’ Publicaotion dateo) SourcejEPochai

* Parameters:
* Weight matrices roons
« Key-value cache (language models) /@\w-
e Multi-model (Agentic Al/Reasoning)

Parameters

1.0e+2 3 Ao Ap
N ==
— o
1.0e+1 o e
1.0e+0 P
1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018 8

PUb"cation date Source: Towards Data Science

Slowing Down of Moore’s Law

 Number of transistors on an integrated circuit doubles every two years
* For decades, performance improvements came from Moore’s Law scaling

* This trend is slowing, creating a need for specialized processors

16-Core SPARC T3

2,600,000,000

1,000,000,000 -
16
1Sk
= |4F
100,000,000 - L 13}
—
Z5 12t
3311
£ Zgt 10r
S 10,000,000~ “3a 9t
o Ouu 8 b
© —
o oyl <t 7 -
.9 hod Og 6~
7] | o
g Z= 4fF
L 2
= Sax 3
Zw ol
100,000 o |
0
10,000
2300 soie e

r T T T 1
1971 1980 1990 2000 2011

Date of introduction

Slowing Down of Moore’s Law

* CPU performance improvement

100000
10000
o
R
: 1000
g
<
8 100
g (12%lyr)
£ cIsc RISC
C 2X/1.5yrs
o 10 2X/3.5yrs (52%/,,3/
(22%lyr)

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

. 280 1985 1990 1995 2000 2005 2010 2015

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018 10

Slowing Down of Moore’s Law

* CPU performance improvement

100000
10000
5 ~20 years of
- performance
% 1000 i
s improvement
E 100
E (12%lyr)
£ cisc RISC
C 2X /1 1.0yrs
= 0 2X/3.5yrs vy
(22%lyr)

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

. 280 1985 1990 1995 2000 2005 2010 2015

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018 11

Slowing Down of Moore’s Law

* CPU performance improvement
Improvement slowdown

100000 \

\ End of

10000 the
S ~20 years of Am- BELTY.
s dahl’s)¢
S oo performance P 20 yrs
< . 0
= Improvement = Bl
@ 2X /
§ 100 6 yrs
E (12%lyr)
- cisc e
B 2X 1.5
= 10 2X/3.5yrs ol
(22%lyr)

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

. 280 1985 1990 1995 2000 2005 2010 2015

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018 12

} Slowing Down of Moore’s Law

* How about GPU?
Improvement slowdown

Energy efficiency?

ki e @

End of
the
Am- EE{T-¥
dahl’s)¢

Law IRV
= (3%lyr)
2X/
6 yrs
(12%lyr)

RISC

CISC 2X /1.5 yrs
/T \ [3.5 yrs (52%lyr)
‘0—0? Lo—o? lo—o "2

IUIUT: ITLUULL U I W MLV Ue L v wl TV ULel

]

. 280 1985 1990 1995 2000 2005 2010 2015

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018 13

Golden Age of Computer Architecture

* John L. Hennessy, David Patterson, 2017’s Turing Award:

* “A New Golden Age for Computer Architecture”, turing lecture
Communications of the ACM, 2019

* More performance gain from advanced architecture design,

Innovations like domain-specific hardware,
enhanced security, open Instruction sets, and
aglle chip development will lead the way.

not just technology scaling IANewGonlden
* Reconfigurable Accelerators Age for
* FPGA (Field-Programmable Gate Array) g?(';'ll'lli)t:tcetilre

* CGRA (Coarse-Grained Reconfigurable Array)

* DSA (Domain Specific Architecture)
* TPU from Google, NPU from Samsung
* Processing in/near Memory
* Processing in/near Sensors
* Processing in/near Networks

Source: Communications of the ACM

https://dl.acm.org/doi/10.1145/3282307

} Why ML Sys & HW

» Systems and Hardware are key enablers for ML/AI
»Pursuing the “most effective” approach (Richard Sutton)

* Al Scaling meets end of Moore’s Law
»The Golden Age of Computer Architecture

» Rise of Domain-specific Hardware

 Many additional reasons why ML Systems & Hardware is essential

} Why ML Sys & HW

* Global Al industry
 Massive investments in Al infrastructure worldwide

* Career Opportunities
* Microsoft, NVIDIA, Google: expanding Al infrastructure in the UK
* Al-driven automation reshaping entry-level software engineering roles
* Widespread adoption in finance and trading companies

ez NVIDIA Corp

NASDAQ: NVDA }

E E) signin A Home wMNews Sport ;i Weather I3 iP
NEWS

Market Summary > NVIDIA Corp

180.92

(452,

Home | InDepth | Israel-Gaza war | War in Ukraine | Climate | UK | World | Business | Pol|

Business | Economy | Technology of Business | Al Business

US firms pledge £150bn
investment in UK as tech deal
Mkt cap 4.42T 52-wk high @4 fs Signed

P/E ratio 58.32 52-wk low 86.63 1 6
022% Qtrlydivamt 0.010 Source: BBC

https://www.bbc.co.uk/news/articles/cx2nllgl3q7o#:~:text=The%20UK%20government%20says%20it,hopes%20will%20create%207%2C600%20jobs.

} Why ML Sys & HW

e Unique Position of This Module

* Bridges ML algorithms and hardware systems
* Compared with pure hardware modules:
* More related to ML
* Latest research of systems and hardware in Al
e Compared with pure algorithm modules:
» Stronger focus on practical systems and fundamentals
* Hardware-aware Efficient ML algorithm

System/
Hardware

17

CATALOG 01 02 03

Why Module
ML Sys & HW Overview

Logistics

Course Overview: Syllabus

1. Introduction & Module Overview Algorithm

» Mainly focus on deep learning

2. Workload Analysis (Beyond Algorithm):

» Basic computation/operations
» Linear/Convolutional layers and their efficient variants

> Attention layers (auto-regressive LLM, diffusion LLM)
» Computational patterns and complexity analysis

» Performance analysis: roofline model
» Analysis of memory-bound and compute-bound

3. ML Compiler and Mapping
» Front-end: imperative and declarative
» Dataflow construction: forward and backward
» Intermediate representation
» Graph/Tensor optimization
» Kernel Execution

19

Course Overview: Syllabus

4. Graphics Processing Unit (GPU) Algorithm

» GPU hardware architecture .
» GPU programming (CUDA) i

» Memory coalescing
» Shared memory caching

» Custom kernels (Triton) c |
ompiler

5. AlHarduare e

»Systolic array / Domain-specific accelerator o SEETTTIEEEEEEEEEEEEEEEEET L)
» TPU architecture and dataflow variations

» Reconfigurable acceleration :’ ML Hardware !
» FPGA-based design i :
» Coarse-Grain Reconfigurable Architectures (CGRA) i !

 —

20

Course Overview: Syllabus

6. Efficient ML

» Quantization: linear/logarithmic, static/dynamic
» Pruning: structured/unstructured
» AutoML: neural architecture search

7. Distributed ML

» Parallelism strategies

» tensor, spatial, pipeline, data parallelism
» Decentralized ML

» Federated learning

» Model merging
» Large-scale LLM systems

» Disaggregated acceleration

» Scaling Law
» Test-time scaling

__

Algorithm

Quantization Attention

/Pruning/
Auto ML I

- e e o =

Compiler

i ML Framework/Compiler

e e o e e e e e o e e e e e e e e Em e e e e e e o e e

P e T TR R

ML Hardware ‘:
o g

PU
£E

21

} Tutorial & Guest Lecture

 Seven tutorial sessions (1-2 hours each)

* Question-based session (~1 hour)
* Work through example problems
e 20-30 minutes: student answering
¢ 20-30 minutes: explanation and discussion

* Paper reading session (~1 hour, flexible)
* Engage with the latest research
e 20-30 minutes: individual reading
e 20-30 minutes: discussion (led by lecturer)

* Guest industry lecture
* Insights into current industrial practices and trends

} Prerequisites

* Basic Mathematics
* linear algebra and calculus

* Deep Learning
* Fundamentals of training and inference

 Computer Architecture
* Basic concepts in instruction pipelines and memory systems

* Programming Skills
e Python and/or C++

} Coursework

* GPU Programming Project

e Performance profiling
* Performance analysis
* Performance optimization

* What to submit
* Code implementation
e Short written report

 Release date: 6" of November (same day of the first lab)
e Deadline: 4 of December

Course Overview: Tutorials & Lab Sessions

* Timetable/Schedule (October)

“ome | tme | coment WM i | Tme | comem

11:00-12:00 Introduction 11:00-12:00 Custom Kernel
6 Oct 27 Oct
12:00-13:00 Operator and Analysis-1 12:00-13:00 Industrial Lecture
11:00-12:00 Operator and Analysis-2 11:00-12:00 Al Hardware
9 Oct _ 30 Oct _
12:00-13:00 Tutorial-1 (Q&A) 12:00-13:00 Tutorial-4 (Q&A)
B 11:00-12:00 . | "
ct ompilation an appin
12:00-13:00 P PPINg * Room 145
(EE 11:00-12:00 Tutorial-2 (Q&A) e Lecture
ct
12:00-13:00 Tutorial-2 (Paper Reading) e Tutorial (Q&A)
11:00-12:00 i i
20 Oct GPU * Tutorial (Paper Reading)
12:00-13:00 R 219
[J
11:00-12:00 Tutorial-3 (Q&A) oom _
23 Oct * Lab Session

12:00-13:00 Tutorial-3 (Paper Reading)
25

* Timetable/Schedule (November)

“ome | tme | comem

3 Nov

6 Nov

10 Nov

13 Nov

17 Nov

20 Nov

11:00-12:00
12:00-13:00
11:00-12:00
12:00-13:00
11:00-12:00
12:00-13:00
11:00-12:00
12:00-13:00
11:00-12:00
12:00-13:00
11:00-12:00
12:00-13:00

Efficient ML-1

Tutorial-4 (Paper Reading)
Lab Session
Efficient ML-2
Tutorial-5 (Q&A)
Tutorial-5 (Paper Reading)
Lab Session
Tutorial-6 (Q&A)
Tutorial-6 (Paper Reading)
Distributed ML System-1

Lab Session

Course Overview: Tutorials & Lab Sessions

Towe | Tme | comem

11:00-12:00
24 Nov
12:00-13:00
11:00-12:00
27 Nov
12:00-13:00
e Room 145
* Lecture

e Tutorial (Q&A)

Distributed ML System-2
Tutorial-7 (Q&A)
Tutorial-7 (Paper Reading)

Lab Session

e Tutorial (Paper Reading)

* Room 219
e Lab Session

26

} Course Overview: Learning Outcomes

1.

Understand the computation of deep neural networks and examine
workload characteristics using analytical models.

Analyse the architectural features and design trade-offs of modern ML
hardware, including GPUs, TPUs, and emerging Al accelerators.

Implement and evaluate efficient kernel design and ML techniques.

Understand the principles of algorithm—hardware co-design and AutoML
techniques for architecture search and optimization.

Analyse large-scale deep learning workloads and evaluate distributed ML
systems, including parallelism strategies and decentralized learning.

CATALOG 01 02 03

Why Module

Logistics
ML Sys & HW Overview &

} Logistics: Assessment Strategy and Resources

* Assessment Strategy

* Exam (80%): Exam Questions are based on taught lectures.
* Coursework/Assignment (20%): Coding and report

* Supplementary Reading

* Deep Learning (lan Goodfellow, Yoshua Bengio and Aaron Courville)

* Introduction to Machine Learning Systems (Prof. Vijay Janapa Reddi, Harvard
University)

* Dive into Deep Learning

* Online Courses
* Deep Learning Systems: CMU
* Data Systems for Machine Learning (LLM-focused): UCSD
* TinyML and Efficient Deep Learning Computing (EfficientML): MIT

29

https://github.com/janishar/mit-deep-learning-book-pdf
https://github.com/janishar/mit-deep-learning-book-pdf
https://mlsysbook.ai/
https://mlsysbook.ai/
https://d2l.ai/
https://d2l.ai/
https://dlsyscourse.org/
https://hao-ai-lab.github.io/cse234-w25/
https://hanlab.mit.edu/courses/2024-fall-65940

} Logistics: Resources

 Module Materials (Scientia)

e Tutorials and slides uploaded one week in advance
* Coursework released one day before the lab session

* Discussion (Ed System)
 Online Q&A and discussion forum
e Lecturer and GTAs will check from time to time

* Lecture Recordings (Panopto)
* Automatically recorded teaching sessions

30

https://scientia.doc.ic.ac.uk/2526/modules
https://edstem.org/us/courses/86634/discussion
https://imperial.cloud.panopto.eu/Panopto/Pages/Home.aspx

} Graduate Teaching Assistants

e GTA1l: Zhiwen Mo

e Research Interests: GPU Microarchitecture, Performance Modeling and
Kernel Optimization

e GTA2: Bakhtiar Zadeh
e Research Interests: Efficient ML Inference and Novel Architectures

* GTA3: Qianzhou (Terry) Wang
e Research Interests: Hardware Verification and Formal Methods
* GTA4: Guoyu Li

» Research Interests: Domain Specific Accelerator Design / Al Software-
Hardware Co-Optimization

* GTAS: Jinnan Guo
e Research Interests: ML System and Federate Learning

} Q&A

Any Questions?

