
Machine Learning Systems
and Hardware

Hongxiang Fan

L0: Introduction

• Experience
• Research Scientist, Samsung AI Cambridge
• Affiliated Research Fellow, CS, University of Cambridge

• My Research:
• Intersection among Hardware / Machine Learning / Quantum Computing
• System / Hardware Support for Emerging ML (LLM, Neural Rendering)
• Quantum Compilation / Simulation / Error Correction
• ML for Hardware / Software Engineering

• Research Opportunities: UROP/Intern/ISO/Individual Projects/PhD
• Other Lectures in Doc:
❖ Compilers (together with Paul and Jamie)

About Me (Hongxiang Fan, Assistant Professor)

C A T A L O G

Why
ML Sys & HW

Module
Overview

Logistics

01 02 03

• Machine Learning (ML) is becoming pervasive
• Influencing our daily lives across various applications

Why ML Sys & HW: Ubiquity of ML

4

ScienceHealth Care

Education FinanceManufacturing

Content Creation

• Generative AI
• Text generation and understanding such as ChatGPT, Gemini
• Applications: code generation, question answering, dialogue systems

• Beyond text: multi-modal AI
• Audio (Whisper from OpenAI)
• Image/Video (Nano Banana and Veo from Google)

Why ML Sys & HW: Ubiquity of ML

5

• Three key enablers:

Why ML Sys & HW: What Drives the AI Wave?

6

DataAlgorithm GPUs

Deep Neural Networks
were invented in 1960s

Memory
Storage

Compute
Hardware

ML Systems and Hardware?

• Richard Sutton: Turing Award in 2024
• One of the founders of modern computational Reinforcement Learning

Why ML Sys & HW: The Bitter Lesson

7

• “General methods that leverage
computation are ultimately the most
effective”

• “computation”: hardware
• “leverage”: system infrastructure

Source: http://www.incompleteideas.net/IncIdeas/BitterLesson.html

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf

Why ML Sys & HW

Pa
ra

m
et

er
s

Source: Towards Data Science
8

Co
m

pu
te

 (F
LO

Ps
)

Source: Epochai

FLOPs:
Floating Point

Operations

• Increasing computational
complexity

• Computation:
• Linear layers
• Convolutional layers
• Attention layers

• Parameters:
• Weight matrices
• Key-value cache (language models)
• Multi-model (Agentic AI/Reasoning)

• Number of transistors on an integrated circuit doubles every two years
• For decades, performance improvements came from Moore’s Law scaling
• This trend is slowing, creating a need for specialized processors

Slowing Down of Moore’s Law

9

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201810

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

• CPU performance improvement

Slowing Down of Moore’s Law

• CPU performance improvement

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201811

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

Slowing Down of Moore’s Law

~20 years of
performance
improvement

• CPU performance improvement
Improvement slowdown

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201812

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

Slowing Down of Moore’s Law

~20 years of
performance
improvement

Improvement slowdown

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

• How about GPU?

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201813

CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer

Energy efficiency?

Slowing Down of Moore’s Law

• John L. Hennessy, David Patterson, 2017’s Turing Award:
• “A New Golden Age for Computer Architecture”,

Communications of the ACM, 2019
• More performance gain from advanced architecture design,

not just technology scaling

• Reconfigurable Accelerators
• FPGA (Field-Programmable Gate Array)
• CGRA (Coarse-Grained Reconfigurable Array)

• DSA (Domain Specific Architecture)
• TPU from Google, NPU from Samsung
• Processing in/near Memory
• Processing in/near Sensors
• Processing in/near Networks

Golden Age of Computer Architecture

Source: Communications of the ACM

https://dl.acm.org/doi/10.1145/3282307

Why ML Sys & HW

15

• Systems and Hardware are key enablers for ML/AI
➢Pursuing the “most effective” approach (Richard Sutton)

• AI Scaling meets end of Moore’s Law
➢The Golden Age of Computer Architecture
➢Rise of Domain-specific Hardware

• Many additional reasons why ML Systems & Hardware is essential

Why ML Sys & HW

16

• Global AI industry
• Massive investments in AI infrastructure worldwide

• Career Opportunities
• Microsoft, NVIDIA, Google: expanding AI infrastructure in the UK
• AI-driven automation reshaping entry-level software engineering roles
• Widespread adoption in finance and trading companies

Source: BBC

https://www.bbc.co.uk/news/articles/cx2nllgl3q7o#:~:text=The%20UK%20government%20says%20it,hopes%20will%20create%207%2C600%20jobs.

Why ML Sys & HW

17

• Unique Position of This Module
• Bridges ML algorithms and hardware systems
• Compared with pure hardware modules:

• More related to ML
• Latest research of systems and hardware in AI

• Compared with pure algorithm modules:
• Stronger focus on practical systems and fundamentals
• Hardware-aware Efficient ML algorithm

System/
HardwareML

C A T A L O G

Why
ML Sys & HW

Module
Overview

Logistics

01 02 03

Course Overview: Syllabus

19

1. Introduction & Module Overview
➢Mainly focus on deep learning

2. Workload Analysis (Beyond Algorithm):
➢Basic computation/operations

➢ Linear/Convolutional layers and their efficient variants
➢ Attention layers (auto-regressive LLM, diffusion LLM)

➢Computational patterns and complexity analysis
➢Performance analysis: roofline model

➢ Analysis of memory-bound and compute-bound

3. ML Compiler and Mapping
➢Front-end: imperative and declarative
➢Dataflow construction: forward and backward
➢Intermediate representation
➢Graph/Tensor optimization
➢Kernel Execution

Convolution Attention

ML Framework/Compiler

Algorithm

Compiler

Encoder/Decoder LLMs

……

Course Overview: Syllabus

20

4. Graphics Processing Unit (GPU)
➢GPU hardware architecture
➢GPU programming (CUDA)

➢Memory coalescing
➢ Shared memory caching

➢Custom kernels (Triton)

5. AI Hardware
➢Systolic array / Domain-specific accelerator

➢ TPU architecture and dataflow variations
➢Reconfigurable acceleration

➢ FPGA-based design
➢ Coarse-Grain Reconfigurable Architectures (CGRA)

GPU TPU

NPU Reconfig

Convolution Attention

ML Framework/Compiler

CPU

Algorithm

Compiler

ML Hardware

Encoder/Decoder LLMs

……

Course Overview: Syllabus

21

6. Efficient ML
➢Quantization: linear/logarithmic, static/dynamic
➢Pruning: structured/unstructured
➢AutoML: neural architecture search

7. Distributed ML
➢Parallelism strategies

➢ tensor, spatial, pipeline, data parallelism
➢Decentralized ML

➢ Federated learning
➢Model merging

➢Large-scale LLM systems
➢ Disaggregated acceleration
➢ Scaling Law
➢ Test-time scaling

GPU TPU

NPU Reconfig

Convolution Attention

ML Framework/Compiler

CPU

Algorithm

Compiler

ML Hardware

Encoder/Decoder LLMs

……
Quantization

/Pruning/
Auto ML

Distributed

Tutorial & Guest Lecture

22

• Seven tutorial sessions (1–2 hours each)
• Question-based session (~1 hour)

• Work through example problems
• 20–30 minutes: student answering
• 20–30 minutes: explanation and discussion

• Paper reading session (~1 hour, flexible)
• Engage with the latest research
• 20–30 minutes: individual reading
• 20–30 minutes: discussion (led by lecturer)

• Guest industry lecture
• Insights into current industrial practices and trends

• Basic Mathematics
• linear algebra and calculus

• Deep Learning
• Fundamentals of training and inference

• Computer Architecture
• Basic concepts in instruction pipelines and memory systems

• Programming Skills
• Python and/or C++

Prerequisites

23

• GPU Programming Project
• Performance profiling
• Performance analysis
• Performance optimization

• What to submit
• Code implementation
• Short written report

• Release date: 6th of November (same day of the first lab)
• Deadline: 4th of December

Coursework

24

Course Overview: Tutorials & Lab Sessions

25

• Timetable/Schedule (October)
Date Time Content

6 Oct
11:00-12:00 Introduction

12:00-13:00 Operator and Analysis-1

9 Oct
11:00-12:00 Operator and Analysis-2

12:00-13:00 Tutorial-1 (Q&A)

13 Oct
11:00-12:00

Compilation and Mapping
12:00-13:00

16 Oct
11:00-12:00 Tutorial-2 (Q&A)

12:00-13:00 Tutorial-2 (Paper Reading)

20 Oct
11:00-12:00

GPU
12:00-13:00

23 Oct
11:00-12:00 Tutorial-3 (Q&A)

12:00-13:00 Tutorial-3 (Paper Reading)

Date Time Content

27 Oct
11:00-12:00 Custom Kernel

12:00-13:00 Industrial Lecture

30 Oct
11:00-12:00 AI Hardware

12:00-13:00 Tutorial-4 (Q&A)

• Room 145
• Lecture
• Tutorial (Q&A)
• Tutorial (Paper Reading)

• Room 219
• Lab Session

Course Overview: Tutorials & Lab Sessions

26

• Timetable/Schedule (November)
Date Time Content

3 Nov
11:00-12:00

Efficient ML-1
12:00-13:00

6 Nov
11:00-12:00 Tutorial-4 (Paper Reading)

12:00-13:00 Lab Session

10 Nov
11:00-12:00 Efficient ML-2

12:00-13:00 Tutorial-5 (Q&A)

13 Nov
11:00-12:00 Tutorial-5 (Paper Reading)

12:00-13:00 Lab Session

17 Nov
11:00-12:00 Tutorial-6 (Q&A)

12:00-13:00 Tutorial-6 (Paper Reading)

20 Nov
11:00-12:00 Distributed ML System-1

12:00-13:00 Lab Session

Date Time Content

24 Nov
11:00-12:00 Distributed ML System-2

12:00-13:00 Tutorial-7 (Q&A)

27 Nov
11:00-12:00 Tutorial-7 (Paper Reading)

12:00-13:00 Lab Session

• Room 145
• Lecture
• Tutorial (Q&A)
• Tutorial (Paper Reading)

• Room 219
• Lab Session

Course Overview: Learning Outcomes

27

1. Understand the computation of deep neural networks and examine
workload characteristics using analytical models.

2. Analyse the architectural features and design trade-offs of modern ML
hardware, including GPUs, TPUs, and emerging AI accelerators.

3. Implement and evaluate efficient kernel design and ML techniques.

4. Understand the principles of algorithm–hardware co-design and AutoML
techniques for architecture search and optimization.

5. Analyse large-scale deep learning workloads and evaluate distributed ML
systems, including parallelism strategies and decentralized learning.

C A T A L O G

Why
ML Sys & HW

Module
Overview

Logistics

01 02 03

• Assessment Strategy
• Exam (80%): Exam Questions are based on taught lectures.
• Coursework/Assignment (20%): Coding and report

• Supplementary Reading
• Deep Learning (Ian Goodfellow, Yoshua Bengio and Aaron Courville)
• Introduction to Machine Learning Systems (Prof. Vijay Janapa Reddi, Harvard

University)
• Dive into Deep Learning

• Online Courses
• Deep Learning Systems: CMU
• Data Systems for Machine Learning (LLM-focused): UCSD
• TinyML and Efficient Deep Learning Computing (EfficientML): MIT

Logistics: Assessment Strategy and Resources

29

https://github.com/janishar/mit-deep-learning-book-pdf
https://github.com/janishar/mit-deep-learning-book-pdf
https://mlsysbook.ai/
https://mlsysbook.ai/
https://d2l.ai/
https://d2l.ai/
https://dlsyscourse.org/
https://hao-ai-lab.github.io/cse234-w25/
https://hanlab.mit.edu/courses/2024-fall-65940

• Module Materials (Scientia)
• Tutorials and slides uploaded one week in advance
• Coursework released one day before the lab session

• Discussion (Ed System)
• Online Q&A and discussion forum
• Lecturer and GTAs will check from time to time

• Lecture Recordings (Panopto)
• Automatically recorded teaching sessions

Logistics: Resources

30

https://scientia.doc.ic.ac.uk/2526/modules
https://edstem.org/us/courses/86634/discussion
https://imperial.cloud.panopto.eu/Panopto/Pages/Home.aspx

Graduate Teaching Assistants

31

• GTA1: Zhiwen Mo
• Research Interests: GPU Microarchitecture, Performance Modeling and

Kernel Optimization
• GTA2: Bakhtiar Zadeh

• Research Interests: Efficient ML Inference and Novel Architectures
• GTA3: Qianzhou (Terry) Wang

• Research Interests: Hardware Verification and Formal Methods
• GTA4: Guoyu Li

• Research Interests: Domain Specific Accelerator Design / AI Software-
Hardware Co-Optimization

• GTA5: Jinnan Guo
• Research Interests: ML System and Federate Learning

Q&A

32

Any Questions?

