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• Experience
• Research Scientist, Samsung AI Cambridge
• Affiliated Research Fellow, CS, University of Cambridge

• My Research:
• Intersection among Hardware / Machine Learning / Quantum Computing 
• System / Hardware Support for Emerging ML (LLM, Neural Rendering)
• Quantum Compilation / Simulation / Error Correction
• ML for Hardware / Software Engineering

• Research Opportunities: UROP/Intern/ISO/Individual Projects/PhD
• Other Lectures in Doc:
❖ Compilers (together with Paul and Jamie)

About Me (Hongxiang Fan, Assistant Professor)
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• Machine Learning (ML) is becoming pervasive
• Influencing our daily lives across various applications  

Why ML Sys & HW: Ubiquity of ML
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ScienceHealth Care

Education FinanceManufacturing

Content Creation



• Generative AI 
• Text generation and understanding such as ChatGPT, Gemini 
• Applications: code generation, question answering, dialogue systems

• Beyond text: multi-modal AI
• Audio (Whisper from OpenAI)
• Image/Video (Nano Banana and Veo from Google)

Why ML Sys & HW: Ubiquity of ML
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• Three key enablers: 

Why ML Sys & HW: What Drives the AI Wave?
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DataAlgorithm GPUs

Deep Neural Networks 
were invented in 1960s

Memory 
Storage

Compute
Hardware

ML Systems and Hardware?



• Richard Sutton: Turing Award in 2024
• One of the founders of modern computational Reinforcement Learning

Why ML Sys & HW: The Bitter Lesson
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• “General methods that leverage 
computation are ultimately the most 
effective”

• “computation”: hardware
• “leverage”: system infrastructure

Source: http://www.incompleteideas.net/IncIdeas/BitterLesson.html

https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf


Why ML Sys & HW
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FLOPs:
Floating Point 

Operations

• Increasing computational 
complexity

• Computation:
• Linear layers
• Convolutional layers
• Attention layers 

• Parameters:
• Weight matrices
• Key-value cache (language models)
• Multi-model (Agentic AI/Reasoning)



• Number of transistors on an integrated circuit doubles every two years
• For decades, performance improvements came from Moore’s Law scaling
• This trend is slowing, creating a need for specialized processors

Slowing Down of Moore’s Law
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Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201810

CISC: Complex Instruction Set Computer 
RISC: Reduced Instruction Set Computer

• CPU performance improvement

Slowing Down of Moore’s Law



• CPU performance improvement

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201811

CISC: Complex Instruction Set Computer 
RISC: Reduced Instruction Set Computer

Slowing Down of Moore’s Law

~20 years of 
performance 
improvement



• CPU performance improvement
Improvement slowdown 

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201812

CISC: Complex Instruction Set Computer 
RISC: Reduced Instruction Set Computer

Slowing Down of Moore’s Law

~20 years of 
performance 
improvement



Improvement slowdown 

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

CISC: Complex Instruction Set Computer 
RISC: Reduced Instruction Set Computer

• How about GPU?  

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 201813

CISC: Complex Instruction Set Computer 
RISC: Reduced Instruction Set Computer

Energy efficiency? 

Slowing Down of Moore’s Law



• John L. Hennessy, David Patterson,  2017’s Turing Award:
• “A New Golden Age for Computer Architecture”, 

Communications of the ACM, 2019
• More performance gain from advanced architecture design, 

not just technology scaling 

• Reconfigurable Accelerators
• FPGA (Field-Programmable Gate Array) 
• CGRA (Coarse-Grained Reconfigurable Array) 

• DSA (Domain Specific Architecture)
• TPU from Google, NPU from Samsung
• Processing in/near Memory
• Processing in/near Sensors
• Processing in/near Networks

Golden Age of Computer Architecture

Source: Communications of the ACM

https://dl.acm.org/doi/10.1145/3282307


Why ML Sys & HW
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• Systems and Hardware are key enablers for ML/AI 
➢Pursuing the “most effective” approach (Richard Sutton)

• AI Scaling meets end of Moore’s Law
➢The Golden Age of Computer Architecture
➢Rise of Domain-specific Hardware

• Many additional reasons why ML Systems & Hardware is essential



Why ML Sys & HW
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• Global AI industry
• Massive investments in AI infrastructure worldwide

• Career Opportunities
• Microsoft, NVIDIA, Google: expanding AI infrastructure in the UK 
• AI-driven automation reshaping entry-level software engineering roles 
• Widespread adoption in finance and trading companies

Source: BBC

https://www.bbc.co.uk/news/articles/cx2nllgl3q7o#:~:text=The%20UK%20government%20says%20it,hopes%20will%20create%207%2C600%20jobs.


Why ML Sys & HW
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• Unique Position of This Module 
• Bridges ML algorithms and hardware systems 
• Compared with pure hardware modules: 

• More related to ML
• Latest research of systems and hardware in AI 

• Compared with pure algorithm modules: 
• Stronger focus on practical systems and fundamentals
• Hardware-aware Efficient ML algorithm

System/
HardwareML
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Course Overview: Syllabus  
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1. Introduction & Module Overview
➢Mainly focus on deep learning 

2. Workload Analysis (Beyond Algorithm): 
➢Basic computation/operations

➢ Linear/Convolutional layers and their efficient variants
➢ Attention layers (auto-regressive LLM, diffusion LLM)

➢Computational patterns and complexity analysis
➢Performance analysis: roofline model

➢ Analysis of memory-bound and compute-bound

3. ML Compiler and Mapping
➢Front-end: imperative and declarative
➢Dataflow construction: forward and backward
➢Intermediate representation
➢Graph/Tensor optimization
➢Kernel Execution 

Convolution Attention

ML Framework/Compiler

Algorithm

Compiler

Encoder/Decoder LLMs

……



Course Overview: Syllabus  
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4. Graphics Processing Unit (GPU) 
➢GPU hardware architecture
➢GPU programming (CUDA)

➢Memory coalescing
➢ Shared memory caching

➢Custom kernels (Triton) 

5. AI Hardware
➢Systolic array / Domain-specific accelerator 

➢ TPU architecture and dataflow variations
➢Reconfigurable acceleration

➢ FPGA-based design
➢ Coarse-Grain Reconfigurable Architectures (CGRA)

GPU TPU

NPU Reconfig

Convolution Attention

ML Framework/Compiler

CPU

Algorithm

Compiler

ML Hardware

Encoder/Decoder LLMs

……



Course Overview: Syllabus  
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6. Efficient ML
➢Quantization: linear/logarithmic, static/dynamic 
➢Pruning: structured/unstructured 
➢AutoML: neural architecture search

7. Distributed ML
➢Parallelism strategies 

➢ tensor, spatial, pipeline, data parallelism 
➢Decentralized ML 

➢ Federated learning 
➢Model merging 

➢Large-scale LLM systems
➢ Disaggregated acceleration
➢ Scaling Law
➢ Test-time scaling 

GPU TPU

NPU Reconfig

Convolution Attention

ML Framework/Compiler

CPU

Algorithm

Compiler

ML Hardware

Encoder/Decoder LLMs

……
Quantization

/Pruning/
Auto ML

Distributed



Tutorial & Guest Lecture
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• Seven tutorial sessions (1–2 hours each) 
• Question-based session (~1 hour) 

• Work through example problems 
• 20–30 minutes: student answering 
• 20–30 minutes: explanation and discussion 

• Paper reading session (~1 hour, flexible) 
• Engage with the latest research 
• 20–30 minutes: individual reading 
• 20–30 minutes: discussion (led by lecturer)

• Guest industry lecture 
• Insights into current industrial practices and trends



• Basic Mathematics 
• linear algebra and calculus 

• Deep Learning 
• Fundamentals of training and inference 

• Computer Architecture 
• Basic concepts in instruction pipelines and memory systems 

• Programming Skills 
• Python and/or C++

Prerequisites

23



• GPU Programming Project 
• Performance profiling 
• Performance analysis 
• Performance optimization 

• What to submit 
• Code implementation 
• Short written report 

• Release date: 6th of November (same day of the first lab) 
• Deadline: 4th  of December

Coursework

24



Course Overview: Tutorials & Lab Sessions  
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• Timetable/Schedule (October)
Date Time Content

6 Oct
11:00-12:00 Introduction

12:00-13:00 Operator and Analysis-1

9 Oct
11:00-12:00 Operator and Analysis-2

12:00-13:00 Tutorial-1 (Q&A)

13 Oct
11:00-12:00

Compilation and Mapping
12:00-13:00

16 Oct
11:00-12:00 Tutorial-2 (Q&A)

12:00-13:00 Tutorial-2 (Paper Reading)

20 Oct
11:00-12:00

GPU
12:00-13:00

23 Oct
11:00-12:00 Tutorial-3 (Q&A)

12:00-13:00 Tutorial-3 (Paper Reading)

Date Time Content

27 Oct
11:00-12:00 Custom Kernel

12:00-13:00 Industrial Lecture

30 Oct
11:00-12:00 AI Hardware

12:00-13:00 Tutorial-4 (Q&A)

• Room 145 
• Lecture
• Tutorial (Q&A) 
• Tutorial (Paper Reading)

• Room 219 
• Lab Session



Course Overview: Tutorials & Lab Sessions  
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• Timetable/Schedule (November)
Date Time Content

3 Nov
11:00-12:00

Efficient ML-1
12:00-13:00

6 Nov
11:00-12:00 Tutorial-4 (Paper Reading)

12:00-13:00 Lab Session

10 Nov
11:00-12:00 Efficient ML-2

12:00-13:00 Tutorial-5 (Q&A)

13 Nov
11:00-12:00 Tutorial-5 (Paper Reading)

12:00-13:00 Lab Session

17 Nov
11:00-12:00 Tutorial-6 (Q&A)

12:00-13:00 Tutorial-6 (Paper Reading)

20 Nov
11:00-12:00 Distributed ML System-1

12:00-13:00 Lab Session

Date Time Content

24 Nov
11:00-12:00 Distributed ML System-2

12:00-13:00 Tutorial-7 (Q&A)

27 Nov
11:00-12:00 Tutorial-7 (Paper Reading)

12:00-13:00 Lab Session

• Room 145 
• Lecture
• Tutorial (Q&A) 
• Tutorial (Paper Reading)

• Room 219 
• Lab Session



Course Overview: Learning Outcomes
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1. Understand the computation of deep neural networks and examine 
workload characteristics using analytical models. 

2. Analyse the architectural features and design trade-offs of modern ML 
hardware, including GPUs, TPUs, and emerging AI accelerators. 

3. Implement and evaluate efficient kernel design and ML techniques.

4. Understand the principles of algorithm–hardware co-design and AutoML 
techniques for architecture search and optimization.

5. Analyse large-scale deep learning workloads and evaluate distributed ML 
systems, including parallelism strategies and decentralized learning.
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• Assessment Strategy
• Exam (80%): Exam Questions are based on taught lectures.
• Coursework/Assignment (20%): Coding and report

• Supplementary Reading
• Deep Learning (Ian Goodfellow, Yoshua Bengio and Aaron Courville)
• Introduction to Machine Learning Systems (Prof. Vijay Janapa Reddi, Harvard 

University)
• Dive into Deep Learning 

• Online Courses
• Deep Learning Systems: CMU
• Data Systems for Machine Learning (LLM-focused): UCSD
• TinyML and Efficient Deep Learning Computing (EfficientML): MIT

Logistics: Assessment Strategy and Resources
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https://github.com/janishar/mit-deep-learning-book-pdf
https://github.com/janishar/mit-deep-learning-book-pdf
https://mlsysbook.ai/
https://mlsysbook.ai/
https://d2l.ai/
https://d2l.ai/
https://dlsyscourse.org/
https://hao-ai-lab.github.io/cse234-w25/
https://hanlab.mit.edu/courses/2024-fall-65940


• Module Materials (Scientia) 
• Tutorials and slides uploaded one week in advance 
• Coursework released one day before the lab session 

• Discussion (Ed System) 
• Online Q&A and discussion forum 
• Lecturer and GTAs will check from time to time

• Lecture Recordings (Panopto) 
• Automatically recorded teaching sessions

Logistics: Resources
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https://scientia.doc.ic.ac.uk/2526/modules
https://edstem.org/us/courses/86634/discussion
https://imperial.cloud.panopto.eu/Panopto/Pages/Home.aspx


Graduate Teaching Assistants
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• GTA1: Zhiwen Mo
• Research Interests: GPU Microarchitecture, Performance Modeling and 

Kernel Optimization
• GTA2: Bakhtiar Zadeh

• Research Interests: Efficient ML Inference and Novel Architectures
• GTA3: Qianzhou (Terry) Wang

• Research Interests: Hardware Verification and Formal Methods
• GTA4: Guoyu Li

• Research Interests: Domain Specific Accelerator Design / AI Software-
Hardware Co-Optimization

• GTA5: Jinnan Guo
• Research Interests: ML System and Federate Learning



Q&A
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Any Questions?


