Machine Learning Systems
and Hardware

L1: Algorithm, Operator and Analysis

Hongxiang Fan

(S IMPERIAL

2D

CATALOG 01 02 03 04

Algorithm Convolutional Attention- Roofline
Basis Neural Networks based Neural Model
Networks

DL Algorithm Basis: Al, ML and DL

e Artificial Intelligence (Al)

» Capability of computational systems to perform tasks
associated with intelligence

» Learning, reasoning, problem-solving, perception, and
decision-making

* Machine Learning (ML)

» Core Al approaches using data-driven methods

* Deep Learning (DL)
» A subset of ML that employs Deep Neural Networks

DL Algorithm Basis

- Start from a simple (fundamental) example — row () operator () data
»Input: (x) with weights (w) and bias (b)

»Compute:z=w *x+b
»Activation: y = o (2) |
» Loss function Loss() with label y* @ —
* Forward pass !
» Compute output through linear combination and activation @ D @
» Core Al approaches using data-driven methods i
« Compute loss
» Quantifies how far predictions are from ground truth. l
»Regression: Mean Squared Error (MSE) @

1 u*\2
S22y — ¥ (3 toss (")

DL Algorithm Basis

» Compute loss —> Flow O Operator [| data
» Multi-Class Classification with output logits: z € RX
» Logits (z) to probabilities (p): softmax S A o » 9z
gits (z) to p (P;wm His s wot requied 2 (%)
p; = softmax(z;) = Kz M= max;(z;) | 1
i=1 6" < 0z
» Categorical Cross-Entropy (one-hot target y*): @ —_— aw
—z vilog(p:) | 1 5,
@ —> b
* Backward pass | A

» Calculate gradients via chain rule ay

. . dLoss() 0z 0z 0z
> local derivativ .g.
Get local derivatives, e.g 9y ' 9%’ b’ aw l T
» Multiplying local derivatives @%
d Loss (.) dLoss(.) 0y 0z *1'
> — 0 Loss ()
ow dy 90z dw oy LY 5 Loss (y,y")

dLoss() OLoss() 0y 0z
dx = dy 9z dx 5

>

} DL Algorithm Basis

* Gradient update —> flow () operator () data
» Adjust parameters in the direction that reduces loss
» Assume learning rate is dz
grateisy i
t+1 _ ot oss (.)
witl =yt — g ——= I 1
dw E dz
» Different variants to fit real scenarios constraints @ — aw
»Stochastic Gradient Descent, Mini-batch Gradient Descent l T
. . . — dz
»Adam (Adaptive Moment Estimation) @ — T
o Momentum: moving average of gradients to smooth updates i T

Adaptive Learning Rate [
o Adaptive Learing 2

} DL Algorithm Basis

* From a single computational unit (neuron) to
large-scale parallel processing within a layer

 Stacking multiple layers to form deep
architectures

* Core building principles of DNNs

“~
~
~
~
~
~
~
~
~
~
~
~
-~
~

e Conceptual analogy to the structure and function
of the human brain

NNN
~
~
-~
R R -

DL Algorithm Basis

* Two primary stages: Training and Inference

* Training stage: DNNs learn parameters from training data
» Iteratively performs forward pass, backward pass, and gradient updates
»Modern NLP: pre-training, RLHF, fine-tuning

* Inference stage: DNNs generates predictions for unseen inputs
» Executes forward pass only on real-world data
» Also referred to as test-time execution (closely related to test-time scaling)

Training Inference

l

CATALOG 01 02 03 04

Algorithm Convolutional Attention- Roofline
Basis Neural Networks based Neural Model
Networks

} Deep Neural Networks: Input Data

* Inputs can be different modalities:
»Image: object recognition, segmentation, detection

» Audio: speech recognition, audio event detection Text Algio Image
»Text: machine translation, summarization % Y A\]
* Can be single modality or multi-modal inputs ‘ 1
» After preprocessing, inputs are represented as
tensors @_‘]
Preprocessin C
» Text: tokenized into numerical sequences P ; B@
» Audio: converted to spectrograms or waveform ‘v
»Image: converted to pixel (RGB or grayscale)
* Tensor: multi-dimensional array Tensor []

»Scalar (OD), Vector (1D)
» Matrix (2D) to higher dimensions (3D, 4D, ...)

Deep Neural Networks: Fully Connected Layer

e Structure: each neuron in a layer connects to all
neurons in the next layer

* Computation: matrix—vector/matrix multiplication
»Batch size: B, input size: N;,,, output size: N,,;
>y € RE*Nin we RNout*Nin x € RE*Nin p € RNout
y=w *xX+Db
» Floating point operations (FLOPs):
o Multiplication counts: B * N,,,; * N,
o Addition counts: B * N,,;; * (N;;, — 1)
o Total FLOPs =~ 2 * B * N, * N;,

» Application: Classification layers for image/audio/text...

* Limitations:
» Poor spatial locality
» Large parameter count and high computation

11

Deep Neural Networks: Convolutional Layer

e Structure: Applies small learnable filters/kernels
(e.g. 3x3 or 5x5) across local regions of input %b
feature maps /S

* Computation: matrix multiplication in a sliding OLayer_l
window manner /’
»Input height: H;,,, input width: W;,, -
»Kernel size: K;, * K,, _
»Channel number: N, Filter number: N¢
» Output height (no padding, no strides):

Hout — Hin T Kh +1 D D O OLayer-M

» Output width (no padding, no strides):
Wour = Win — Ky, +1
» Total FLOPs count:
zHout* out*Nf*(Kh*Kw* c)

Layer-2

12

Deep Neural Networks: Convolutional Layer

* Blue matrices are inputs, and green matrices are outputs

No padding, no strides Arbitrary padding, no strides Same padding, no strides Full padding, no strides

No padding, strides No padding, strides Padding, strides

Source: https://github.com/vdumoulin/conv_arithmetic

13

Deep Neural Networks: Convolutional Layer

* Parameter efficiency: exploits spatial locality
* Translation invariance: kernels are applied across all spatial positions.

* Application: computer vision

»Image recognition: LeNet, VGG
» Object detection: YOLO

> LeNet-5: Yann LeCun in 1998

LeNet-5 Architecture

C3: f. maps 16@10x10
S4: f. maps 16@5x5

C1: feature maps

32x32 S2: f. maps

6@14x14

|
I Full oonr‘ection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection
Source: LeCun, Y. et al. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278-2324. 14

Deep Neural Networks: 3D Convolutional Layer

e Structure: Applies 3D learnable filters/kernels (e.g. 3x3x3) across spatial
+ temporal (or volumetric) dimensions of input feature maps

* Computation: Extension of 2D convolution with an extra depth dimension

»Input Dimension: H;,, * W, * Dy,
»Kernel size: Kj, * K,, * K,4
»Channel number: N, Filter number: N¢

» Total FLOPs count:
Hout * Wout * Dout * Nf * (Kh * Kw * Kd * c)

1st ‘ Convolutlon $\
Frame

T
2D o
Convolution i

— P 2nd Convolutlon
2D ? Frame

a

/ 3rd Convolutlon - Output

Frame Frame

Y N 15

Source: Hongxiang, Fan. et al. F-E3D: FPGA-based Acceleration of an Efficient 3D Convolutional Neural Network for Human Action Recognition

} Deep Neural Networks: Efficient Convolution Variants

. . N D

* Depth-wise convolution: ¢%°
Q

»Kernel is not shared along the channel dimension (5\7’%

»Each input channel is convolved separately with Q Q Q OLayer_l

its own filter ><
» Input channel number equals to output channel
number Q O OLaver-Z

16

Deep Neural Networks: Efficient Convolution Variants

* Depth-wise convolution:
»Kernel is not shared along the channel dimension

»Each input channel is convolved separately with
its own filter

» Input channel number equals to output channel
number

* Computation:

» Total FLOPs count;:
~ Hout * Hin * Nf * (Kh * Kw'*_A%)

e Drawbacks:

» Accuracy degradation

o Compensate by point-wise convolution (kernel 1*1)
o Depth-wise separable convolution (MobileNets from
Google)

»Hardware Inefficiency on GPU

T

Layer 1

Layer 2

?x?

000

17

Deep Neural Networks: Efficient Convolution Variants

Limited Parallelism
»Standard Conv: Channels processed together - High thread occupancy
» Depth-Wise Conv: Independent channel = Small workloads per kernel

Poor Weight Reuse
»Standard Conv: Weights shared across many input pixels

» Depth-Wise Conv: Each kernel weight is used for one channel Acce\e‘a‘O‘
* Reduced FLOPs # Proportional Speedup e OO g P
. . ’d\' 3 esse o_cm““%sz iy o, UE
» Depth-wise Conv on MobileNetV2 (edge GPU) A ComP e e
»FLOPs reduction: ~9x. Latency reduction: only ~2— wer™™ oo Ser i o™
! De‘;\';‘ja:;j‘; o008 " D
. . cor caon © X
 Better for Mobile/Edge Devices e e
66 P e,o@ S “\XXO g\e“%\;\“

. . o 3 S . o
»Memory Constrained: Fewer weights reduce model size D,.?vef*ifo\“nowoo“?;W,Q::-“_%

. . B xp OO oo
» Compute Constrained: Parallelism gap less severe jor ¥

Source: Kaiming, He. et al. Deep Residual
Learning for Image Recognition

Deep Neural Networks: Residual Block

[7x7 con

2

N

w| |w
AR

el 12| 2] g
gl 1&] & [B] B

DNNs suffer from vanishing gradients: Gaver
» Difficult to train as depth increases

& g
al lal lal lal la] 12, 3
4‘%*%"54‘34‘34‘3*’?*5‘—
2| |2
2

\ 4 I
Laye r' N + 1 3x3 conv, 128, /2

[]
<

Idea: Add a shortcut (skip connection) L """ | | 25]
y =c(w *x+b)+x (ir) =

b

33 conv, 128

128

wl |w
FARE:
B &

8 88
EIEIED
=

Mitigates vanishing gradients:
»Enables very deep architectures

Foundation of ResNet (50/101/152)

»"Deep Residual Learning for Image Recognition", Kaiming He et. al
»CVPR best paperin 2016
» Nearly 30k citations

-
B
@ |8

w
#
-3

Layer-M

3x3 conv, 256, /2

-

3:3 conv, 256

e

3x3 conv, 256

-«

3x3 conv, 256

[J
«

3x3 conv, 256

g

33 o 256

®
o
a
8 |8
3 €3 .
= =
8
&

3x3 conv, 256

-

3x3 conv, 256

<+

33 conv, 256

¥
&
a
8
3
2
8
&

33 conv, 512, /2

,,,
gl B &
gl lsl |8

NEIGEHICHE
w| [2
al v |2

33 conv, 512

I
[
[
[
I
[
[
[
[
[
[
[3aconv, 256
[
I
I
[
I
I
I
I
I
(
I
[

-

3x3 conv, 512

H

ﬁm
-
2led o
g

Deep Neural Networks: Memory Perspective

* Key components of memory footprint

»Model parameter
o Weights: # Parameter * Size(data;,,.) : FP32, FP16, INTS, INT4
o Bias: Often negligible but still counted N¢
» Intermediate activations
o Input & output feature maps for each layer, Batch size: B
02D > BxHyy * Wy, * N,
03D—> BxHyy *W;, * N, * Dy,
» Optimizer States (for training)
o Adam keeps 2x extra memory for momentum & variance terms

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Jiawei Zhao! Zhenyu Zhang® Beidi Chen?* Zhangyang Wang® Anima Anandkumar*' Yuandong Tian "2

Abstract
Training Large Language Models (LLMs)
presents significant memory challenges, predom-
inantly due to the growing size of weights and
optimizer states. Common memory-reduction

approaches, such as low-rank adaptation - ¥

(LoRA), add a trainable low-rank matrix to T —

the frozen trained weight in each layer,

reducing trainable parameters and optimizer Figure 1: Memory consu a LLaMA 7B
states. However, such approaches typically model with a token batch size of 256 on a single device, without
underperform training with full-rank weights in activation checkpointing and memory offloading. Details refer to

both pre-training and fine-tuning stages since Section 5.5.

Source: Jiawei, Zhao. et al. Galore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

CATALOG 01 02 03 04

Algorithm Convolutional Attention- Roofline
Basis Neural Networks based Neural Model
Networks

} Deep Neural Networks: DNN Workload Trend

* Model workload composition is evolving rapidly
»Google TPU usage statistics (% by model type) provide real-world insights
» Reflects actual production deployment demands

* Observation-1: CNN/MLP share steadily declines over TPU generations
* Observation-2: Transformer models grow rapidly, becoming dominating

TPU vi Z%l"g TPU v4 Lite| TPU v4
DNN Model | 7/2016 (Training & 2/2020 1 0/?()?2
(Inference) Inference) (Inference) | (Training)
MLP/DLRM 61% 27% 25% 24%
IRNN 29% 21% 29% 2%
CNN 5% 24% 18% 12%
Transformer -- 21% 28% 57%
(BERT) -- - (28%) (26%)
(LLM) - - - (31%)

Source: TPU-v4

22

} Deep Neural Networks: Recurrent Neural Networks

* Sequential data challenges:

»In tasks like language, speech, or time series, the meaning of current input
depends on past context

»Can 3D CNN mitigate this? Yes, but not very efficient
» Feedforward NN: no mechanism to remember previous information

e Key idea of Recurrent Neural Networks (RNNs):
» A hidden state that propagates information over time steps
»Enabling the model to “remember” previous inputs (“memory”)

* Example: Predicting the next word
e Context : “ML Systems and Hardware module is amazing, | am going to”
* Generate: “spend more time on it this term”

} Deep Neural Networks: Recurrent Neural Networks

e Structure: Processes sequential data by maintaining a hidden state

»Updated at each time step O,
»Time-step: t, input: x;, hidden state: h;, output: o;) hTw
 Computation: Matrix operations repeated across time steps
»Hidden state update: ®
hy =c(U *x; +Vhe_q) Unfold 1
» Output generation:
0; = Softmax(W * h;) OS>
* Total FLOPs? (Tutorial Question)] hHTW]T[htTW]T[hMTW]v
T I P M
* Limitations G & &

»Short-term memory: Gradients vanish for long sequence
» Difficult to learn long-term patterns in language

Source: Wikipedia

} Deep Neural Networks: Long Short-Term Memory (LSTM)

* Motivation: Addresses vanishing gradient problem in standard RNNs

* Structure: Maintains a cell state ¢; that carries long-term memory

» Uses gates to control information flow

 Computation: gates and states update
»Forget gate: f; = o(Us * x¢ + Vihe_q)
»Input gate: i; = o(U; * x4 + V;hi_1)

Memory cell
internal state
C[—I

»Output gate: y, = tanh(U,, * x; + V,hi_q)

»Inputnode: ¢, = o (U, * x; + V.hy_q)
»Cell state: ¢c; = f;Oc—1 +1: O &
»Hidden state: h; = y,®Otanh(c;)

e Total FLOPs? (Tutorial Question)

Hidden state
Hl—l

/

Source: Dive into Deep Learning

* Limitations: 1. Sequential compute 2. Limited long-range memory

;@ >(+)
Forget Input (@ O,
| wE? o
"Le] ‘o] ¢ [tamn] Of o
j j > H
[

} Deep Neural Networks: Attention Mechanism

. A ion Is All You Need
* “Attention Is All You Need” from Google fention & A7 Ton e

* Problem with RNN/LSTM

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research

> S e q u e n t i a I p ro C e SS i n g % S I OW avaswani@google.com noam@google.com nikip@google.com usz@google.com
. Llion Jones* Aidan N. Gomez* Fukasz Kaiser”
Google R h University of Tt Google Brai
» Long-range dependencies degrade R o ks . con
N Illia Polosukhin*
. A . .
* |dea of Attention: i prlonidintpa o

» Allow model to attend to any part of the sequence directly
»No need to pass all information through a single bottleneck hidden state
» First introduced in 2014 for machine translation

»“Neural machine translation by jointly learning to align and translate” by
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

* Foundational building block of generative Al

Source: Linkl

} Deep Neural Networks: Attention Mechanism =g

» Each token to dynamically “focus” on other tokens o

when generating a representation "o po.
» Captured by Attention Map becs:ue:é? EZE:L?e-

» Code example: Link1, other visualization: Link2 ”ij;f Z“

* Example: " -
»Word “didn_" attends strongly to “because ” Attention map of “didn_"
»Shows ability to model long-range dependencies Loy 5] eren Tkt~

without sequential bottleneck arimal L=

* Mechanism: : :

» Each token has a Query (Q), Key (K), and Value (V). “ “
> Similarity between Query and Keys determines e
attention weights too- too_

»Output is a weighted sum of Values

Attention map of “because_”

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC
https://jalammar.github.io/illustrated-transformer/
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

} Deep Neural Networks: Attention Mechanism

* Input Linear Projection:
»Query: Q =W, X
»Key: K =W, x X
»>Value:V =W, x X

* Attention Map Computation:
»Score: Score(Q,K) = QKT
»Weights: Score,,,,m = Softmax(Score(Q, K))
» Intermediate output: Out;,iprm = Score,prm * V

» Each position can “look” at all other positions weighted by
relevance

»Shape of each tensor in Attention? (Tutorial Question)

* Qutput Linear Projection:
»Final output: Outsing = Woyr * OUtinterm

)

Linear
A

Self-Attention

A A A
Linear Linear Linear
7 3 l
V K Q

I

Input Tensor

Deep Neural Networks: Scaled Dot-Product

Attention
* Why scaling: Stabilizes gradients when Q\K\V dimension

becomes large

)

Source: Attention is All You Need

* Formulation A
MatMul

»Internal dimension of K: d, f
Q % KT SoftMax
Scaled_Att(Q,K,V) = Softmax(\/d_) xV TR

k
Scale
* Attention Mask lMtMI
» Prevents certain positions from influencing others)
Q K V

» Applied before the softmax: set selected attention scores to -oo
» Making the softmax output zero at those positions
» Introduce flexibility to control different causality

Fully-visible

} Deep Neural Networks: Attention Mask

* Fully-visible pattern
» Every token can attend to every other token
»Used in layers where bidirectional context is available

e Causal pattern
» Token at position i can only attend to positions < i
» Prevents information “leak” from the future
»Used in autoregressive models for left-to-right generation

1 XZ X3 X4 5

Input

e Causal with prefix —00
» Initial tokens (prefix) visible to all positions (prompts/questions)
» Subsequent tokens follow causal restriction.

» Useful for instruction-following tasks where a shared context is
available before generation

Causal with prefix

Source: Google T5

30

Deep Neural Networks: Multi-Head Attention Linear

* Multi-Head Attention self-Attention
A A A
»Multiple attention heads learn different relationships
Linear Linear Linear
» Concatenate outputs from all heads
» Improves representation capacity r [“ T
> FLOPs and tensor shape? (Tutorial Question) W i <
 Building block of Transformer (Attention-based NNs) 1
Source: Link1 Lmtear
Layﬁ Attention: Layﬁ 1 Attention: ——
The_ The_ The_ The_
animal_ animal_ animal_ animal_
didn_ didn_ didn_ didn_ c
o0 = - N\ - Scaled Dot-Product J
crosst_ ::_ross C'OSS: \\ c_ross_ Attention)
the: the_ E str::aet_ \ ::fe—et ‘t[k[t[
bej:ue:et: ‘ :::L_se_ becausi: \ ﬁfcause‘ Linear P Linear P Linear
waist_ :Itv_as as- \ Il ” v v
too: too__ t?ﬁ; :::Z_
tire tire d_ d_
d_ d_ V K Q

Attention map of “didn_” Attention map of different heads 31

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

} Deep Neural Networks: Layer Normalization

* Multi-Head Attention
»Multiple attention heads learn different relationships
» Concatenate outputs from all heads
» Improves representation capacity
»FLOPs and tensor shape? (Tutorial Question)

 Building block of Transformer (Attention-based NNs)

} Deep Neural Networks: Encoder and Decoder

* Encoder Block
* Attention mask: fully-visible (tokens attend to all positions)
* Purpose: Capture bidirectional relationships and global context
 Strength: Effective for understanding and representation

* Decoder Block
» Attention mask: causal (each token attends only to previous tokens)
e Purpose: Capture autoregressive dependencies
» Strength: Generates target sequences one token at a time

e Different combinations

 Different model architectures/variants (e.g., BERT, GPT)
* Multi-modal architectures with multiple encoders (e.g., vision-language models)

} Deep Neural Networks: Encoder-Decoder Architecture

* Encoder for understanding, Decoder for generating
 Divides work into two specialized modules (Google T5)

* Architecture Flow:
* Encoder encodes the input - generates K,,,. and V...
* Decoder uses Q4. (its own hidden state) and K., / Vore
* Output tokens are generated one at a time

* Cross-Attention:
* Query: Comes from the decoder’s hidden state

* Keys and Values: Come from the encoder’s output
representations
T
Qdec * Kenc

/a.

Cross_Att(Qgec) Kone» Vone) = Softmax() * Vone

Source: “The Illustrated
Transformer” from Jay Alammar

34

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

} Deep Neural Networks: Encoder-Only Architecture

* Encoder-only for bidirectional understanding

* No decoder: only a stack of encoder blocks
* Used in masked language models (e.g., BERT)

 Architecture Flow: Encoder

e Each token attends to all other tokens in the sequence
* Bidirectional attention = deep context embedding

* Limitation
e Cannot perform autoregressive generation o .
* Requires full input sequence to start Source: Google T5

 Computationally expensive for very long sequences

} Deep Neural Networks: Decoder-Only Architecture

* Decoder-only for autoregressive generation
* No encoder: a stack of masked self-attention layers

* Used in autoregressive language models (e.g., GPT family)
Language model

* Architecture Flow: X, X ¥, Y, -
 All layers use causal masking to prevent access to future tokens OO
* Tokens are generated one at a time, based only on prior tokens onees

* Limitation “ZZ 1 |
e Cannot use bidirectional context auEnn

Xp X X3 Y, Y,

* No explicit conditioning on separate input sequence
 Less effective for understanding tasks

Source: Google T5

} Deep Neural Networks: Prefix Decoder-Only Architecture

* Key ldeas:

» A variant of decoder-only model with a prefix section that is fully
visible to all tokens

»Remaining tokens still use causal

Prefix LM
* Architecture Flow: X2 X Y1 Y -
: : : ===]
» Prefix tokens (system prompts, instructions) visible to all positions :
» Target tokens generated autoregressively using causal masking (100
* Advantages
% o o | Ees Bl
* Allows strong conditioning without modifying model weights X, X5 Y7 Y,
S |gn |f|ca ntly Source: Google T5

e Commonly used in existing LLMs

} Deep Neural Networks: Diffusion Language Model

 Limitations of LLMs (Autoregressive Models):
« System-level mitigation: batching and scheduling optimization (e.g. PD Split)
* Algorithm-level mitigation: speculative decoding, parallel decoding

* Diffusion Language Model: Core Idea
* Inspired by image diffusion models (e.g., Stable Diffusion)
Image Diffusion Models: Operate in continuous latent space
Diffusion Language Models: denoising process in discrete token space
Generate by iteratively denoising a sequence of noise tokens (from mask tokens)
Enables parallel decoding of entire sequence (non-autoregressive)

/lout_ll |0Ut-2 |0Ut-3| Out-1 Mask |Out-N| ces |Mask| |Mask|
/ / /) 1 A 4

Re-masking
[AR M(;pdels J (Denoising) [DLM
At " r A
Autoregressive | Input | |Mask| |Mask| |Mask| |Mask|

Generation

} Deep Neural Networks: Diffusion Language Model

* Key Difference from Autoregressive LLMs

* LLMs: generate one token at a time (left-to-right)
e Diffusion LMs: generate all tokens simultaneously, then refine
* Tradeoff: Better parallelism, but higher number of inference steps

* Industry: Gemini Diffusion achieves 1498 tokens per second

* Current Status
 Early stage, but gaining traction
* Requires new system support (e.g., token caching, kernel fusion)
Still behind LLMs in generation quality and efficiency
Active research by Google, Inception Labs, Bytedance, etc. (as of 2025)
Huge potential for multi-modality (e.g., MIMIADA)

https://www.youtube.com/watch?v=WsYVE8xN-do
https://arxiv.org/pdf/2505.15809

} Deep Neural Networks: Other Emerging Architectures

 Mamba (State Space Model)
» Key idea: Uses selective state space models (SSMs) to model long-range
dependencies with linear time complexity

* Advantages:
* Efficient for long sequences (1M+ tokens)
* Lower memory footprint than Transformers

* Applications: Long-context modeling, time-series, genomics

* Looped Transformer

* Key idea: Reuses a smaller number of Transformer layers multiple times over
the sequence
* Advantages:
* Lower parameter count and memory footprint
* Maintains Transformer-level performance for certain tasks

* Applications: Edge devices, low-resource inference

CATALOG 01 02 03 04

Algorithm Convolutional Attention- Roofline
Basis Neural Networks based Neural Model
Networks

} Deep Neural Networks: Roofline Model

* Neural networks vary and keep evolving:
* Encoder-only (e.g., BERT), decoder-only (e.g., GPT), diffusion models, Mamba, etc.

e Core computations are largely the same:
« Matrix multiplications (e.g., attention: QK" V)
* Element-wise ops (RelLU, GelLU, normalization)
 Batch operations over sequences

e Goals of ML System Developers:
* Implement and optimize performance (latency/throughput) for target platforms
* Challenge: hardware diversity (GPU, TPU, NPU) with varied specs (compute/memory)

Deep Neural Networks: Roofline Model

* Even within one vendor: NVIDIA from Tesla (2006) to Blackwell (2024)
e Each generation improves memory bandwidth, compute FLOPs, and interconnect

* Need tools to:
e Quantify bottlenecks (compute-bound vs memory-bound)
* Guide optimization efforts
 Compare hardware suitabilitv

Building and Inspiring Al Across Generations

2024
IVL72
|||||||||
NNNNN | NVLink 5
2022 ‘\ B .
ChatGPT N —
pppppp >
Transformer Engine L,
P8 - 2025
2020 P 7 Neura
2017 Ampere (n Renderir
: Sparsity | \ 3 RTX Blackwell
= MIG N /
9 eased Py)
> Volta / A -
£ 2016 V‘ylVSw\tCh \ /,/
o Pascal / N ‘ L’
< 2012 Mk .- L /,r’
2006 ‘ . W
nhofcooA ~ Femi 8 :
\“ 2018
m L
h ST IHRTXGRUs
2006 CUDA Everywhere + Unified Architecture 2024 4 3

Source: hotchips’25

} Deep Neural Networks: Roofline Model

* Roofline model:
 X-axis: Operational/Arithmetic Intensity

(Ol = FLOPs/byte) le14 .
* Y-axis: Performance (FLOPs) 150 " """"TTo AN
e Region 1: Memory-bound (limited by @ 1.25 i turning point
bandwidth) S oo !
e Region 2: Compute-bound (limited by § 0.75 i
peak FLOPs) £ 050 i
* Turning point: where bandwidth limit = 095 !
meets compute limit o memolry'boundi Ic°mp“te:b°“”d | |
* Key characteristics: D aithmetic Inensity (Opsioyte)

 Sloped line: Bandwidth x Ol
* Horizontal line: peak achievable FLOPs

} Deep Neural Networks: Roofline Model

* Memory-Bound Example:
 GEMV (Matrix-Vector Multiplication)

* Operation:y =4 -x leld :
e Matrix A € R*096%4096 1.50{ """~ """"- |\
« Vector x € R*09 @ 1.25 4 | turning point
« Outputy € R*0% % 100 i

e Operational counts: S (.75 i
* One multiply-add counts as two operations S 0.50 :
« FLOPs = 2 X 4096% = 33.6 x 106 & . i

* Memory access: | memory-bound | compute-bound
* Weights and activations are 32-bit (4B) 000 0 100 2(%0 300 400 500 600
e A:-4096 X 4096 X 4B = 67.1MRB Arithmetic Intensity (OPs/byte)
* x,y:4096 X 4B = 16KB Y

6
Operational Intensity (Ol): % ~ 0.5FLOPs/Byte

} Recap

* Algorithm Basis

e Forward - Loss = Backward - Gradient Update
* Training and Inference

 Convolutional Neural Network
e Computational Complexity
e Different Variants

e Attention-based Neural Network

 RNN/LSTM — Attention
* Attention Mask, Encoder/Decoder/Encoder-Decoder Architectures

e Roofline Model

* Operational Intensity/Turning Point
* Compute-Bound/Memory-Bound

