
Machine Learning Systems
and Hardware

Hongxiang Fan

L1: Algorithm, Operator and Analysis

C A T A L O G

Algorithm
Basis

Convolutional
Neural Networks

Attention-
based Neural

Networks

Roofline
Model

01 02 03 04

2

• Artificial Intelligence (AI)
➢Capability of computational systems to perform tasks

associated with intelligence
➢Learning, reasoning, problem-solving, perception, and

decision-making

• Machine Learning (ML)
➢Core AI approaches using data-driven methods

• Deep Learning (DL)
➢A subset of ML that employs Deep Neural Networks

DL Algorithm Basis: AI, ML and DL

AI

ML

DL

3

• Start from a simple (fundamental) example
➢Input: (𝑥) with weights (𝑤) and bias (𝑏)
➢Compute: 𝑧 = 𝑤 ∗ 𝑥 + 𝑏
➢Activation: y = 𝜎 (𝑧)
➢Loss function 𝐿𝑜𝑠𝑠() with label 𝑦∗

• Forward pass
➢Compute output through linear combination and activation
➢Core AI approaches using data-driven methods

DL Algorithm Basis

𝑥

𝑤

dataOperator

∗

𝑏+

𝜎

• Compute loss
➢Quantifies how far predictions are from ground truth.
➢Regression: Mean Squared Error (MSE)

1
𝑁

σ(𝑦 − 𝑦∗)2

𝐿𝑜𝑠𝑠 𝑦, 𝑦∗

Flow

𝑧

𝑦

4

• Backward pass
➢Calculate gradients via chain rule

➢Get local derivatives, e.g. 𝝏 𝑳𝒐𝒔𝒔 ()
𝝏 𝒚

, 𝝏 𝒛
𝝏 𝒙

, 𝝏 𝒛
𝝏 𝒃

, 𝝏 𝒛
𝝏 𝒘

➢Multiplying local derivatives
➢

𝝏 𝑳𝒐𝒔𝒔 (.)
𝝏 𝒘

= 𝝏 𝑳𝒐𝒔𝒔 (.)
𝝏 𝒚

𝝏 𝒚
𝝏 𝒛

𝝏 𝒛
𝝏 𝒘

➢
𝝏 𝑳𝒐𝒔𝒔 (.)

𝝏 𝒙
= 𝝏 𝑳𝒐𝒔𝒔 (.)

𝝏 𝒚
𝝏 𝒚
𝝏 𝒛

𝝏 𝒛
𝝏 𝒙

DL Algorithm Basis

𝑥

𝑤

dataOperator

∗

𝑏+

𝜎

𝐿𝑜𝑠𝑠 𝑦, 𝑦∗

Flow

𝑧

𝑦
𝝏 𝑳𝒐𝒔𝒔 ()

𝝏 𝒚

𝝏 𝒚
𝝏 𝒛

𝝏 𝒛
𝝏 𝒃

𝝏 𝒛
𝝏 𝒘

𝝏 𝒛
𝝏 𝒙

5

• Compute loss
➢Multi-Class Classification with output logits: 𝑧 ∈ ℝ𝐾
➢Logits (𝑧) to probabilities (𝑝): softmax

 𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 = 𝑒𝑧𝑖−𝑚

σ𝑖=1
𝑘 𝑒𝑧𝑖−𝑚 , 𝑚 = 𝑚𝑎𝑥𝑗 𝑧𝑗

➢Categorical Cross-Entropy (one-hot target 𝑦∗):

− ෍ 𝑦𝑖
∗log(𝑝𝑖)

• Gradient update
➢Adjust parameters in the direction that reduces loss
➢Assume learning rate is 𝜼

 𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜼 𝝏 𝑳𝒐𝒔𝒔 (.)
𝝏 𝒘

➢Different variants to fit real scenarios constraints
➢Stochastic Gradient Descent, Mini-batch Gradient Descent
➢Adam (Adaptive Moment Estimation)

o Momentum: moving average of gradients to smooth updates
o Adaptive Learning Rate

DL Algorithm Basis

𝑥

𝑤

dataOperator

∗

𝑏+

𝜎

𝐿𝑜𝑠𝑠 𝑦, 𝑦∗

Flow

𝑧

𝑦
𝝏 𝑳𝒐𝒔𝒔 ()

𝝏 𝒚

𝝏 𝒚
𝝏 𝒛

𝝏 𝒛
𝝏 𝒃

𝝏 𝒛
𝝏 𝒘

𝝏 𝒛
𝝏 𝒙

6

• From a single computational unit (neuron) to
large-scale parallel processing within a layer

• Stacking multiple layers to form deep
architectures

• Core building principles of DNNs
• Conceptual analogy to the structure and function

of the human brain

DL Algorithm Basis

𝑥

𝑤∗

𝑏+

𝜎

𝐿𝑜𝑠𝑠 𝑦, 𝑦∗

𝑧

𝑦
𝝏 𝑳𝒐𝒔𝒔 ()

𝝏 𝒚

𝝏 𝒚
𝝏 𝒛

𝝏 𝒛
𝝏 𝒃

𝝏 𝒛
𝝏 𝒘

𝝏 𝒛
𝝏 𝒙

… …

… …

…
 …

…
 …

… … 7

• Two primary stages: Training and Inference
• Training stage: DNNs learn parameters from training data
➢Iteratively performs forward pass, backward pass, and gradient updates
➢Modern NLP: pre-training, RLHF, fine-tuning

• Inference stage: DNNs generates predictions for unseen inputs
➢Executes forward pass only on real-world data
➢Also referred to as test-time execution (closely related to test-time scaling)

DL Algorithm Basis

… …

… …

…
 …

…
 …

… …

Training Inference

8

C A T A L O G

Algorithm
Basis

Convolutional
Neural Networks

Attention-
based Neural

Networks

Roofline
Model

01 02 03 04

9

• Inputs can be different modalities:
➢Image: object recognition, segmentation, detection
➢Audio: speech recognition, audio event detection
➢Text: machine translation, summarization

• Can be single modality or multi-modal inputs
• After preprocessing, inputs are represented as

tensors
➢Text: tokenized into numerical sequences
➢Audio: converted to spectrograms or waveform
➢Image: converted to pixel (RGB or grayscale)

• Tensor: multi-dimensional array
➢Scalar (0D), Vector (1D)
➢Matrix (2D) to higher dimensions (3D, 4D, …)

Deep Neural Networks: Input Data

Text Audio Image

Preprocessing

Tensor

10

Layer-M

Layer-2

• Structure: each neuron in a layer connects to all
neurons in the next layer

• Computation: matrix–vector/matrix multiplication
➢Batch size: 𝐵, input size: 𝑁𝑖𝑛, output size: 𝑁𝑜𝑢𝑡
➢ 𝒚 ∈ ℝ𝐵 ∗ 𝑁𝑖𝑛 , 𝐰 ∈ ℝ𝑁𝑜𝑢𝑡 ∗ 𝑁𝑖𝑛 , 𝒙 ∈ ℝ𝐵 ∗ 𝑁𝑖𝑛 , 𝒃 ∈ ℝ𝑁𝑜𝑢𝑡

𝒚 = 𝒘 ∗ 𝒙 + 𝒃
➢ Floating point operations (FLOPs):

o Multiplication counts: B ∗ 𝑁𝑜𝑢𝑡 ∗ 𝑁𝑖𝑛
o Addition counts: B ∗ 𝑁𝑜𝑢𝑡 ∗ (𝑁𝑖𝑛 − 1)
o Total FLOPs ≈ 2 ∗ B ∗ 𝑁𝑜𝑢𝑡 ∗ 𝑁𝑖𝑛

• Application: Classification layers for image/audio/text…
• Limitations:
➢Poor spatial locality
➢Large parameter count and high computation

Deep Neural Networks: Fully Connected Layer

…
 …

Layer-1

11

• Structure: Applies small learnable filters/kernels
(e.g. 3x3 or 5x5) across local regions of input
feature maps

• Computation: matrix multiplication in a sliding
window manner
➢Input height: 𝐻𝑖𝑛, input width: 𝑊𝑖𝑛
➢Kernel size: 𝐾ℎ ∗ 𝐾𝑤
➢Channel number: 𝑁𝑐, Filter number: 𝑁𝑓
➢Output height (no padding, no strides):

𝐻𝑜𝑢𝑡 = 𝐻𝑖𝑛 − 𝐾ℎ + 1
➢Output width (no padding, no strides):

𝑊𝑜𝑢𝑡 = 𝑊𝑖𝑛 − 𝐾𝑤 + 1
➢Total FLOPs count:

≈ 𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡 ∗ 𝑁𝑓 ∗ (𝐾ℎ ∗ 𝐾𝑤 ∗ 𝑁𝑐)

Deep Neural Networks: Convolutional Layer

Layer-M

Layer-2

…
 …

Layer-1

12

• Blue matrices are inputs, and green matrices are outputs

Deep Neural Networks: Convolutional Layer

No padding, no strides

Source: https://github.com/vdumoulin/conv_arithmetic

Arbitrary padding, no strides Same padding, no strides Full padding, no strides

No padding, strides No padding, strides Padding, strides

13

• Parameter efficiency: exploits spatial locality
• Translation invariance: kernels are applied across all spatial positions.
• Application: computer vision
➢Image recognition: LeNet, VGG
➢Object detection: YOLO

➢LeNet-5: Yann LeCun in 1998

Deep Neural Networks: Convolutional Layer

LeNet-5 Architecture

Source: LeCun, Y. et al. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278–2324. 14

• Structure: Applies 3D learnable filters/kernels (e.g. 3×3×3) across spatial
+ temporal (or volumetric) dimensions of input feature maps

• Computation: Extension of 2D convolution with an extra depth dimension
➢Input Dimension: 𝐻𝑖𝑛 ∗ 𝑊𝑖𝑛 ∗ 𝐷𝑖𝑛
➢Kernel size: 𝐾ℎ ∗ 𝐾𝑤 ∗ 𝐾𝑑
➢Channel number: 𝑁𝑐, Filter number: 𝑁𝑓
➢Total FLOPs count:

𝐻𝑜𝑢𝑡 ∗ 𝑊𝑜𝑢𝑡 ∗ 𝐷𝑜𝑢𝑡 ∗ 𝑁𝑓 ∗ (𝐾ℎ ∗ 𝐾𝑤 ∗ 𝐾𝑑 ∗ 𝑁𝑐)

Deep Neural Networks: 3D Convolutional Layer

15Source: Hongxiang, Fan. et al. F-E3D: FPGA-based Acceleration of an Efficient 3D Convolutional Neural Network for Human Action Recognition

• Depth-wise convolution:
➢Kernel is not shared along the channel dimension
➢Each input channel is convolved separately with

its own filter
➢Input channel number equals to output channel

number

Deep Neural Networks: Efficient Convolution Variants

Layer-M

Layer-2

…
 …

Layer-1

16

Layer-2

Layer-1

Layer-2

Layer-1

• Depth-wise convolution:
➢Kernel is not shared along the channel dimension
➢Each input channel is convolved separately with

its own filter
➢Input channel number equals to output channel

number

• Computation:
➢Total FLOPs count:

≈ 𝐻𝑜𝑢𝑡 ∗ 𝐻𝑖𝑛 ∗ 𝑁𝑓 ∗ (𝐾ℎ ∗ 𝐾𝑤 ∗ 𝑁𝑐)

• Drawbacks:
➢Accuracy degradation

o Compensate by point-wise convolution (kernel 1*1)
o Depth-wise separable convolution (MobileNets from

Google)
➢Hardware Inefficiency on GPU

Deep Neural Networks: Efficient Convolution Variants

Layer-2

Layer-1

17

• Limited Parallelism
➢Standard Conv: Channels processed together → High thread occupancy
➢Depth-Wise Conv: Independent channel → Small workloads per kernel

• Poor Weight Reuse
➢Standard Conv: Weights shared across many input pixels
➢Depth-Wise Conv: Each kernel weight is used for one channel

• Reduced FLOPs ≠ Proportional Speedup
➢Depth-wise Conv on MobileNetV2 (edge GPU)
➢FLOPs reduction: ~9×. Latency reduction: only ~2–3×

• Better for Mobile/Edge Devices
➢Memory Constrained: Fewer weights reduce model size.
➢Compute Constrained: Parallelism gap less severe

Deep Neural Networks: Efficient Convolution Variants

18

• DNNs suffer from vanishing gradients:
➢Difficult to train as depth increases

• Idea: Add a shortcut (skip connection)
y = 𝜎 𝑤 ∗ 𝑥 + 𝑏 + 𝒙

• Mitigates vanishing gradients:
➢Enables very deep architectures

• Foundation of ResNet (50/101/152)
➢"Deep Residual Learning for Image Recognition", Kaiming He et. al
➢CVPR best paper in 2016
➢Nearly 30k citations

Deep Neural Networks: Residual Block

Layer-N+1

Layer-N

Layer-M

…

19

Source: Kaiming, He. et al. Deep Residual
Learning for Image Recognition

• Key components of memory footprint
➢Model parameter

o Weights: # 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∗ 𝑆𝑖𝑧𝑒(𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒) : FP32, FP16, INT8, INT4
o Bias: Often negligible but still counted 𝑁𝑓

➢Intermediate activations
o Input & output feature maps for each layer, Batch size: 𝐵
o 2D → 𝐵 ∗ 𝐻𝑖𝑛 ∗ 𝑊𝑖𝑛 ∗ 𝑁𝑐
o 3D → 𝐵 ∗ 𝐻𝑖𝑛 ∗ 𝑊𝑖𝑛 ∗ 𝑁𝑐 ∗ 𝐷𝑖𝑛

➢Optimizer States (for training)
o Adam keeps 2× extra memory for momentum & variance terms

Deep Neural Networks: Memory Perspective

20
Source: Jiawei, Zhao. et al. GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

C A T A L O G

Algorithm
Basis

Convolutional
Neural Networks

Attention-
based Neural

Networks

Roofline
Model

01 02 03 04

21

• Model workload composition is evolving rapidly
➢Google TPU usage statistics (% by model type) provide real-world insights
➢Reflects actual production deployment demands

• Observation-1: CNN/MLP share steadily declines over TPU generations
• Observation-2: Transformer models grow rapidly, becoming dominating

Deep Neural Networks: DNN Workload Trend

22Source: TPU-v4

• Sequential data challenges:
➢In tasks like language, speech, or time series, the meaning of current input

depends on past context
➢Can 3D CNN mitigate this? Yes, but not very efficient
➢Feedforward NN: no mechanism to remember previous information

• Key idea of Recurrent Neural Networks (RNNs):
➢A hidden state that propagates information over time steps
➢Enabling the model to “remember” previous inputs (“memory”)

• Example: Predicting the next word
• Context : “ML Systems and Hardware module is amazing, I am going to”
• Generate: “spend more time on it this term”

Deep Neural Networks: Recurrent Neural Networks

23

• Structure: Processes sequential data by maintaining a hidden state
➢Updated at each time step
➢Time-step: 𝑡, input: 𝑥𝑡, hidden state: ℎ𝑡, output: 𝑜𝑡

• Computation: Matrix operations repeated across time steps
➢Hidden state update:

ℎ𝑡 = 𝜎(𝑈 ∗ 𝑥𝑡 + 𝑉ℎ𝑡−1)
➢Output generation:

𝑜𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ∗ ℎ𝑡)
• Total FLOPs? (Tutorial Question)
• Limitations
➢Short-term memory: Gradients vanish for long sequence
➢Difficult to learn long-term patterns in language

Deep Neural Networks: Recurrent Neural Networks

24

Unfold

Source: Wikipedia

• Motivation: Addresses vanishing gradient problem in standard RNNs
• Structure: Maintains a cell state 𝑐𝑡 that carries long-term memory
➢Uses gates to control information flow

• Computation: gates and states update
➢Forget gate: 𝑓𝑡 = 𝜎(𝑈𝑡 ∗ 𝑥𝑡 + 𝑉𝑡ℎ𝑡−1)
➢Input gate: 𝑖𝑡 = 𝜎(𝑈𝑖 ∗ 𝑥𝑡 + 𝑉𝑖ℎ𝑡−1)
➢Output gate: 𝑦𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑦 ∗ 𝑥𝑡 + 𝑉𝑦ℎ𝑡−1)
➢Input node: Ƹ𝑐𝑡 = 𝜎(𝑈𝑐 ∗ 𝑥𝑡 + 𝑉𝑐ℎ𝑡−1)
➢Cell state: 𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀ Ƹ𝑐𝑡
➢Hidden state: ℎ𝑡 = 𝑦𝑡⨀tanh(𝑐𝑡)

• Total FLOPs? (Tutorial Question)
• Limitations: 1. Sequential compute 2. Limited long-range memory

Deep Neural Networks: Long Short-Term Memory (LSTM)

25

Source: Dive into Deep Learning

• “Attention Is All You Need” from Google
• Problem with RNN/LSTM
➢Sequential processing → slow
➢Long-range dependencies degrade

• Idea of Attention:
➢Allow model to attend to any part of the sequence directly
➢No need to pass all information through a single bottleneck hidden state
➢First introduced in 2014 for machine translation
➢“Neural machine translation by jointly learning to align and translate” by

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

• Foundational building block of generative AI

Deep Neural Networks: Attention Mechanism

26

• Each token to dynamically “focus” on other tokens
when generating a representation
➢Captured by Attention Map
➢Code example: Link1, other visualization: Link2

• Example:
➢Word “didn_” attends strongly to “because_”
➢Shows ability to model long-range dependencies

without sequential bottleneck

• Mechanism:
➢Each token has a Query (Q), Key (K), and Value (V).
➢Similarity between Query and Keys determines

attention weights
➢Output is a weighted sum of Values

Deep Neural Networks: Attention Mechanism

27

Attention map of “didn_”

Attention map of “because_”

Source: Link1

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC
https://jalammar.github.io/illustrated-transformer/
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

• Input Linear Projection:
➢Query: 𝑄 = 𝑊𝑞 ∗ 𝑋
➢Key: 𝐾 = 𝑊𝑘 ∗ 𝑋
➢Value:V = 𝑊𝑣 ∗ 𝑋

• Attention Map Computation:
➢Score: 𝑆𝑐𝑜𝑟𝑒 𝑄, 𝐾 = 𝑄𝐾𝑇

➢Weights: 𝑆𝑐𝑜𝑟𝑒𝑛𝑜𝑟𝑚 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝑐𝑜𝑟𝑒 𝑄, 𝐾)
➢Intermediate output: 𝑂𝑢𝑡𝑖𝑛𝑡𝑒𝑟𝑚 = 𝑆𝑐𝑜𝑟𝑒𝑛𝑜𝑟𝑚 ∗ 𝑉
➢Each position can “look” at all other positions weighted by

relevance
➢Shape of each tensor in Attention? (Tutorial Question)

• Output Linear Projection:
➢Final output: 𝑂𝑢𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑊𝑜𝑢𝑡 ∗ 𝑂𝑢𝑡𝑖𝑛𝑡𝑒𝑟𝑚

Deep Neural Networks: Attention Mechanism

28

Input Tensor

Self-Attention

• Why scaling: Stabilizes gradients when 𝑄\𝐾\𝑉 dimension
becomes large

• Formulation
➢Internal dimension of 𝐾: 𝑑𝑘

𝑆𝑐𝑎𝑙𝑒𝑑_𝐴𝑡𝑡(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄 ∗ 𝐾𝑇

𝑑𝑘
) ∗ 𝑉

• Attention Mask
➢Prevents certain positions from influencing others
➢Applied before the softmax: set selected attention scores to -∞
➢Making the softmax output zero at those positions
➢Introduce flexibility to control different causality

Deep Neural Networks: Scaled Dot-Product
Attention

29

Source: Attention is All You Need

• Fully-visible pattern
➢Every token can attend to every other token
➢Used in layers where bidirectional context is available

• Causal pattern
➢Token at position 𝑖 can only attend to positions ≤ 𝑖
➢Prevents information “leak” from the future
➢Used in autoregressive models for left-to-right generation

• Causal with prefix
➢Initial tokens (prefix) visible to all positions (prompts/questions)
➢Subsequent tokens follow causal restriction.
➢Useful for instruction-following tasks where a shared context is

available before generation

Deep Neural Networks: Attention Mask

30
Source: Google T5

−∞

• Multi-Head Attention
➢Multiple attention heads learn different relationships
➢Concatenate outputs from all heads
➢Improves representation capacity
➢FLOPs and tensor shape? (Tutorial Question)

• Building block of Transformer (Attention-based NNs)

Deep Neural Networks: Multi-Head Attention

31Attention map of “didn_” Attention map of different heads

Self-Attention

Source: Link1

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb#scrollTo=OJKU36QAfqOC

• Multi-Head Attention
➢Multiple attention heads learn different relationships
➢Concatenate outputs from all heads
➢Improves representation capacity
➢FLOPs and tensor shape? (Tutorial Question)

• Building block of Transformer (Attention-based NNs)

Deep Neural Networks: Layer Normalization

32

• Encoder Block
• Attention mask: fully-visible (tokens attend to all positions)
• Purpose: Capture bidirectional relationships and global context
• Strength: Effective for understanding and representation

• Decoder Block
• Attention mask: causal (each token attends only to previous tokens)
• Purpose: Capture autoregressive dependencies
• Strength: Generates target sequences one token at a time

• Different combinations
• Different model architectures/variants (e.g., BERT, GPT)
• Multi-modal architectures with multiple encoders (e.g., vision-language models)

Deep Neural Networks: Encoder and Decoder

33

• Encoder for understanding, Decoder for generating
• Divides work into two specialized modules (Google T5)

• Architecture Flow:
• Encoder encodes the input → generates 𝐾𝑒𝑛𝑐 and 𝑉𝑒𝑛𝑐
• Decoder uses 𝑄𝑑𝑒𝑐 (its own hidden state) and 𝐾𝑒𝑛𝑐 / 𝑉𝑒𝑛𝑐
• Output tokens are generated one at a time

• Cross-Attention:
• Query: Comes from the decoder’s hidden state
• Keys and Values: Come from the encoder’s output

representations

𝐶𝑟𝑜𝑠𝑠_𝐴𝑡𝑡(𝑄𝑑𝑒𝑐, 𝐾𝑒𝑛𝑐, 𝑉𝑒𝑛𝑐) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑑𝑒𝑐 ∗ 𝐾𝑒𝑛𝑐

𝑇

𝑑𝑘
) ∗ 𝑉𝑒𝑛𝑐

Deep Neural Networks: Encoder-Decoder Architecture

34

Source: Google T5

Source: “The Illustrated
Transformer” from Jay Alammar

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

• Encoder-only for bidirectional understanding
• No decoder: only a stack of encoder blocks
• Used in masked language models (e.g., BERT)

• Architecture Flow:
• Each token attends to all other tokens in the sequence
• Bidirectional attention = deep context embedding

• Limitation
• Cannot perform autoregressive generation
• Requires full input sequence to start
• Computationally expensive for very long sequences

Deep Neural Networks: Encoder-Only Architecture

35

Source: Google T5

• Decoder-only for autoregressive generation
• No encoder: a stack of masked self-attention layers
• Used in autoregressive language models (e.g., GPT family)

• Architecture Flow:
• All layers use causal masking to prevent access to future tokens
• Tokens are generated one at a time, based only on prior tokens

• Limitation
• Cannot use bidirectional context
• No explicit conditioning on separate input sequence
• Less effective for understanding tasks

Deep Neural Networks: Decoder-Only Architecture

36

Source: Google T5

• Key Ideas:
➢A variant of decoder-only model with a prefix section that is fully

visible to all tokens
➢Remaining tokens still use causal

• Architecture Flow:
➢Prefix tokens (system prompts, instructions) visible to all positions
➢Target tokens generated autoregressively using causal masking

• Advantages
• Allows strong conditioning without modifying model weights

significantly
• Commonly used in existing LLMs

Deep Neural Networks: Prefix Decoder-Only Architecture

37

Source: Google T5

• Limitations of LLMs (Autoregressive Models):
• System-level mitigation: batching and scheduling optimization (e.g. PD Split)
• Algorithm-level mitigation: speculative decoding, parallel decoding

• Diffusion Language Model: Core Idea
• Inspired by image diffusion models (e.g., Stable Diffusion)
• Image Diffusion Models: Operate in continuous latent space
• Diffusion Language Models: denoising process in discrete token space
• Generate by iteratively denoising a sequence of noise tokens (from mask tokens)
• Enables parallel decoding of entire sequence (non-autoregressive)

Deep Neural Networks: Diffusion Language Model

38
Input

Out-1 Out-2 Out-3

AR Models DLM

Input Mask Mask Mask Mask...

Out-N Mask Mask...Out-1 Mask ...

Re-masking
(Denoising)

Autoregressive
Generation

• Key Difference from Autoregressive LLMs
• LLMs: generate one token at a time (left-to-right)
• Diffusion LMs: generate all tokens simultaneously, then refine
• Tradeoff: Better parallelism, but higher number of inference steps

• Industry: Gemini Diffusion achieves 1498 tokens per second
• Current Status

• Early stage, but gaining traction
• Requires new system support (e.g., token caching, kernel fusion)
• Still behind LLMs in generation quality and efficiency
• Active research by Google, Inception Labs, Bytedance, etc. (as of 2025)
• Huge potential for multi-modality (e.g., MMADA)

Deep Neural Networks: Diffusion Language Model

39

https://www.youtube.com/watch?v=WsYVE8xN-do
https://arxiv.org/pdf/2505.15809

• Mamba (State Space Model)
• Key idea: Uses selective state space models (SSMs) to model long-range

dependencies with linear time complexity
• Advantages:

• Efficient for long sequences (1M+ tokens)
• Lower memory footprint than Transformers

• Applications: Long-context modeling, time-series, genomics

• Looped Transformer
• Key idea: Reuses a smaller number of Transformer layers multiple times over

the sequence
• Advantages:

• Lower parameter count and memory footprint
• Maintains Transformer-level performance for certain tasks

• Applications: Edge devices, low-resource inference

Deep Neural Networks: Other Emerging Architectures

40

C A T A L O G

Algorithm
Basis

Convolutional
Neural Networks

Attention-
based Neural

Networks

Roofline
Model

01 02 03 04

• Neural networks vary and keep evolving:
• Encoder-only (e.g., BERT), decoder-only (e.g., GPT), diffusion models, Mamba, etc.

• Core computations are largely the same:
• Matrix multiplications (e.g., attention: 𝑄𝐾ᵀ𝑉)
• Element-wise ops (ReLU, GeLU, normalization)
• Batch operations over sequences

• Goals of ML System Developers:
• Implement and optimize performance (latency/throughput) for target platforms
• Challenge: hardware diversity (GPU, TPU, NPU) with varied specs (compute/memory)

Deep Neural Networks: Roofline Model

42

• Even within one vendor: NVIDIA from Tesla (2006) to Blackwell (2024)
• Each generation improves memory bandwidth, compute FLOPs, and interconnect

• Need tools to:
• Quantify bottlenecks (compute-bound vs memory-bound)
• Guide optimization efforts
• Compare hardware suitability

Deep Neural Networks: Roofline Model

43
Source: hotchips’25

• Roofline model:
• X-axis: Operational/Arithmetic Intensity

(OI = FLOPs/byte)
• Y-axis: Performance (FLOPs)
• Region 1: Memory-bound (limited by

bandwidth)
• Region 2: Compute-bound (limited by

peak FLOPs)
• Turning point: where bandwidth limit

meets compute limit

• Key characteristics:
• Sloped line: Bandwidth × OI
• Horizontal line: peak achievable FLOPs

Deep Neural Networks: Roofline Model

44

• Memory-Bound Example:
• GEMV (Matrix-Vector Multiplication)
• Operation: 𝑦 = 𝐴 ∙ 𝑥

• Matrix 𝐴 ∈ ℝ4096×4096

• Vector 𝑥 ∈ ℝ4096

• Output 𝑦 ∈ ℝ4096

• Operational counts:
• One multiply-add counts as two operations
• 𝐹𝐿𝑂𝑃𝑠 = 2 × 40962 = 33.6 × 106

• Memory access:
• Weights and activations are 32-bit (4B)
• 𝐴: 4096 × 4096 × 4𝐵 = 67.1𝑀𝐵
• 𝑥, 𝑦: 4096 × 4𝐵 = 16𝐾𝐵

• Operational Intensity (OI): 33.6×106

67×106 ≈ 0.5𝐹𝐿𝑂𝑃𝑠/Byte

Deep Neural Networks: Roofline Model

45

• Algorithm Basis
• Forward → Loss → Backward → Gradient Update
• Training and Inference

• Convolutional Neural Network
• Computational Complexity
• Different Variants

• Attention-based Neural Network
• RNN/LSTM → Attention
• Attention Mask, Encoder/Decoder/Encoder-Decoder Architectures

• Roofline Model
• Operational Intensity/Turning Point
• Compute-Bound/Memory-Bound

Recap

46

