Lecture 1: From Classical to Quantum Computing

Outline

- Brief history of quantum computing.
- Computational problems and efficiency of algorithms.
- Classical circuits and their matrix representation.
- The qubit and its mathematical description.

Intended Learning Outcomes

- Remembering the relationship between physics and computing and what is the current state of quantum computing.
- Analysing the efficiency of algorithms.
- Applying the matrix representation of classical gates.
- Creating new gates using the tensor product.
- Understanding the mathematical description of a qubit.

Why this matters

- Quantum computing allows computations impossible with a classical computer.
 - Deepens understanding of nature and of computational complexity.
 - Technological applications to healthcare, materials design, finance, etc. Several governments and tech companies heavily investing, industry grew by 30% from 2024 to 2025 and expected to continue growing [7]
- Notion of efficiency heart of understanding quantum advantage.
- Mathematical formalism based on linear algebra over complex numbers. Central to quantum theory and other branches of natural sciences and engineering, e.g. machine learning, optimisation.

1 A Brief History of Quantum Computing

- Computational devices are physical. Physics determine computational models and their efficiency.
- Classical computers follow classical physics, can be simulated by billiard balls:

Figure 1: A switch gate realised by billiard balls with perfectly elastic collisions. The presence or absence of a ball corresponds to a bit being 1 or 0. From Fredkin & Toffoli, "Conservative logic" (1982).

• Quantum computers follow quantum physics.

Figure 2: 2025 is UNESCO Year of Quantum

• 2025: anniversary discovery of quantum mechanics by W. Heisenberg in 1925.

(a) Werner Heisenberg

(b) Erwin Schrödinger

Figure 3: The foundation fathers of quantum mechanics.

- Quantum mechanics explains phenomena that classical mechanics cannot
 - Example: Mach-Zender interferometer.

Figure 4: A source of light (photons) hits a beam-splitter (half silvered mirror). Left: measure photon at either A or B. Right: add mirrors and another beam-splitter, measure a photon only at B.

- If photon classical particle, explain left experiment since photon goes through or turns left. However, cannot explain right experiment.
- Solution: associate one amplitude per path ϕ_1, ϕ_2 . Destructive interference at A and constructive at B.
- Quantum mechanics most accurate physical theory. The electromagnetic fine-structure constant α agrees with experiments within part in a billion.
- P.A.M. Dirac in 1929: "The fundamental laws [...] completely known, [...] difficulty [...] equations that are too complex to be solved."
 - -n quantum particles each with k configurations described by k^n amplitudes.
- 1980's: R. Feynman and Y. Main conceived a quantum mechanical computer to simulate nature

Nature isn't classical, dammit!

(a) Yuri Manin

(b) Richard Feynman

- 1985: D. Deutsch proposes to use quantum computers for other problems than physics simulation.
- 1994: P. Shor finds an algorithm to factor integers exponentially faster than any known classical algorithm. 1995:
 P. Shor introduces quantum error correction

- ... A lot of work on building a quantum computer ...
- 2011: First commercial quantum computer by D-Wave. Not universal.
- Today:
 - Gate-based quantum computers with hundreds noisy qubits.
 - They can already do computations intractable for classical computers, however commercial applications not yet demonstrated.

Figure 6: Left: Vacuum chamber housing ion trap chip. Right: Optics preparing visible lasers that drive transitions between energy levels. Source.

Figure 7: A quantum computer based on superconducting qubits require a fridge to cool down the system.

• Current challenges

- Implement quantum error correction
- Discover novel quantum algorithms
- Ethics and regulations
 - * Quantum computers can discover better drugs to cure disease and more sustainable materials.
 - * They can also break RSA cryptosystems, threatening security of communication.
 - * Quantum algorithms have dual use and can be used for nefarious purposes, e.g. weapons.
 - * Quantum computing dev concentrated in a few countries, how can everyone benefit from quantum technologies?

2 Motivating Examples

- Computational problem: compute function from n to m bits.
- General: integral approximation and bitwise representation $x = \sum_{i=0}^{n-1} x_i 2^i, x_i \in \{0, 1\}.$
 - Integer factoring: find prime factors of the integer x.
 - * Example: x = 15, return y =
 - * Classical hardness underlies security of public-key cryptography behind internet transaction.
 - * Shor's algorithm can solve this problem efficiently.
 - **3SAT problem**: is there a *p*-bit string *z* that satisfies all clauses $C_i(z)$? C_i is the logical OR of 3 variables or their negation.
 - * Example: p = 4: $C_1(z) = z_1 \lor z_2 \lor z_3$, $C_2(z) = \neg z_2 \lor \neg z_3 \lor z_4$ Answer:
 - * Central problem in computational complexity, one of the hardest problems.
 - * We do not believe quantum computers can solve this efficiently.

3 Efficiency of Algorithms

- Efficiency of algorithm to compute function depends on 1) computational model (classical vs quantum), 2) resource.
- Focus on worst case runtime
- \bullet Asymptotic complexity: growth with input size n, avoid manufacture hardware details.
- **big-O notation**: f is $\mathcal{O}(g(n))$ if there exists n_0 and $C \geq 0$ such that for $n \geq n_0$, $|f(n)| \leq C|g(n)|$.

Figure 8: f(n) being $\mathcal{O}(g(n))$ means that after some n_0 , f(n) is upper bounded by Cg(n).

- Efficient if runtime is $\mathcal{O}(p(n))$ with p(n) polynomial of n.
- If no polynomial algorithm, problem is hard. Note: if n > 265, then 2^n is greater than atoms in the universe!

4 Classical Circuits

- Mathematical model of classical computer.
- wires (carry bits) and gates (transform bits).

Figure 9: A classical circuit with n = 4 input bits x_0, x_1, x_2, x_3 and m = 4 outputs. Note that we label the bits from 0 to n - 1 and from bottom to top.

- Gate with k inputs/outputs is function $g: \{0,1\}^k \to \{0,1\}^k$.
- Reversible if there exists g^{-1} such that $g(g^{-1}(x)) = x$ for all x.
- We can implement any function $f:\{0,1\}^k \to \{0,1\}^\ell$ reversibly. $R_f:\{0,1\}^{k+\ell} \to \{0,1\}^{k+\ell}$

$$R_f:(x,y)\mapsto (x,y\oplus f(x))$$
.

by taking y = 0. Bitwise XOR:

$$x_{n-1} \cdots x_1 x_0 \oplus y_{n-1} \cdots y_1 y_0 = z_{n-1} \cdots z_1 z_0, \quad z_i = x_i \oplus y_i$$

 $0 \oplus 0 = 1 \oplus 1 = 0, \quad 0 \oplus 1 = 1 \oplus 0 = 1.$

• Inverse of R_f is R_f : check

$$(R_f)^2: (x,y) \mapsto \mathcal{R}_f(x,y) = (x,y) = (x,y) = (x,y)$$
important in quantum computing.

$$(x,y) = (x,y) = (x,y)$$

$$(x,y) = (x,y) = (x,y)$$

$$(x,y) = (x,y)$$

$$(x,y) = (x,y)$$

$$(x,y) = (x,y)$$

Reversible gates important in quantum computing.
Runtime algorithm is number elementary gates.

irrelevant for asymptotic complexity.

- Elementary means acting on constant number of inputs/outputs. Which set
 - Efficient: polynomial gates.
 - Universal gates: implement any functions. E.g. AND and XOR.

Matrix Representation of Classical Gates 5

5.1 Single Bit Gates

5.1.1

• Bit: $x \in \{0,1\}$. Represent as a two-dimensional one-hot vector:

$$0 \mapsto |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad 1 \mapsto |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- $|v\rangle$: "ket", Dirac notation. Analogous to \vec{v} .
- Name from bracket or inner product or scalar product. Define "bra"

$$\langle 0| = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \langle 1| = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

and their scalar products denoted as $\langle x|y\rangle$

$$\langle 0|0\rangle = 1$$

$$\langle 0|1\rangle = \mathcal{O}$$

$$\langle 1|0\rangle = 0$$

$$\langle 1|1\rangle = /$$

json normala, : (111) = (d0) - 1

- $|0\rangle$, $|1\rangle$ for an orthonormal basis of \mathbb{R}^2 .
- $|x\rangle\langle y|$ are matrices:

$$|0\rangle\langle 1| = \begin{pmatrix} 1\\0 \end{pmatrix}(0 \quad 1) = \begin{pmatrix} 3 & 1\\3 & 0 \end{pmatrix}, \quad |1\rangle\langle 0| = \begin{pmatrix} 0\\1 \end{pmatrix}.\langle 1 & 0 \rangle = \begin{pmatrix} 0&0\\1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1/2\\0/2 & 0 \end{pmatrix}.\langle 1 & 0/2 & 0 \end{pmatrix} = \begin{pmatrix} 1/2\\0/2 & 0 \end{pmatrix}, \quad |1\rangle\langle 1| = \begin{pmatrix} 0&0\\0&1 \end{pmatrix}$$
$$|0\rangle\langle 0| = \begin{pmatrix} 1/2\\0&0 \end{pmatrix}, \quad |1\rangle\langle 1| = \begin{pmatrix} 0&0\\0&1 \end{pmatrix}$$

 Θ

• Compatible with matrix multiplication.

 $\langle x|y\rangle$: 1 × 2 by 2 × 1 \rightarrow 1 × 1 scalar

 $|x\rangle\langle y|$: 2 × 1 by 1 × 2 \rightarrow 2 × 2 matrix.

• Also, note:

$$(|x\rangle \langle y|) |z\rangle = \langle y|z\rangle |x\rangle$$

Co livenity of scal product.

• Resolution of unity:

$$|0\rangle\langle 0| + |1\rangle\langle 1| = \begin{pmatrix} \Lambda & O \\ O & O \end{pmatrix} + \begin{pmatrix} O & O \\ O & \Lambda \end{pmatrix} = \begin{pmatrix} \Lambda & O \\ O & \Lambda \end{pmatrix}$$

• Matrix elements:

$$M = \begin{pmatrix} M_{00} & M_{01} \\ M_{10} & M_{11} \end{pmatrix}$$

the matrix element $M_{xy} = \langle x | M | y \rangle$. For example,

$$\langle 0 | M | 1 \rangle = \begin{pmatrix} \Lambda & O \end{pmatrix} \cdot \begin{pmatrix} M_{OO} & M_{OA} \\ M_{AO} & M_{AA} \end{pmatrix} \cdot \begin{pmatrix} O \\ \Lambda \end{pmatrix}$$

$$= \left(1 \cdot 0 \right) \cdot \left(\begin{array}{c} \mu_{01} \\ \mu_{M} \end{array} \right)$$

M10> = 10> (201+<11) (0> 5.1.2Gates Lolo> + /110-

• Four possible Boolean functions from bit x to bit y:

$$\frac{x \mid y}{0 \mid 0} \quad M = |0\rangle (\langle 0| + \langle 1|), \qquad \begin{pmatrix} \lambda \\ \delta \end{pmatrix} \cdot (\lambda \Lambda) = \begin{pmatrix} \lambda \\ \delta \end{pmatrix} \cdot \begin{pmatrix}$$

$$M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$M = |0\rangle\langle 1| + |1\rangle\langle 0| = X,$$

$$(|0\rangle\langle 1| + |1\rangle\langle 0|)|0\rangle = (|0\rangle\langle 1|)|0\rangle + (|1\rangle\langle 0|)|0\rangle = |1\rangle$$

$$\frac{x | y}{0 | 0}$$

$$M = |0\rangle\langle 0| + |1\rangle\langle 1| = 1_2$$

$$M = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$1 | 1$$

$$(2) inversion$$

• Interpret M as deterministic dynamical system: $|x\rangle^{t+1}=M\,|x\rangle^t,$ e.g. M=X

• Reversible functions: X (NOT gate), $\mathbf{1}_2$. Dynamics can be time reversed

 $\chi^{2} = (|0 \times 1| + |1 \times 0|) \cdot (|0 \times 1| + |1 \times 0|)$ $= |0 \times 1| + |1 \times 0| \times 1| + |0 \times 1| + |0 \times 1| \times |0| + |1 \times 0|$ > 11>C1 + 10>C0

 $-\left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right)$

5.2 States of two bits

• 4 states of 2: $|x_1x_0\rangle$, $x_0, x_1 \in \{0, 1\}$: $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$, four-dimensional one-hot vector:

$$|00\rangle\equiv|0\rangle_2=\begin{pmatrix}1\\0\\0\\0\end{pmatrix}, |01\rangle\equiv|1\rangle_2=\begin{pmatrix}0\\1\\0\\0\end{pmatrix}, |10\rangle\equiv|2\rangle_2=\begin{pmatrix}0\\0\\1\\0\end{pmatrix}, |11\rangle\equiv|3\rangle_2=\begin{pmatrix}0\\0\\0\\1\end{pmatrix}.$$

• Label right to left, 1 in the position integer associated with bit string:

$$|x_1x_0\rangle \equiv \left|2^1x_1 + 2^0x_0\right\rangle_2$$
 $\leftarrow > bit$ repr. of this int.

• Tensor product

$$|\psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \,, |\phi\rangle = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \,, \quad |\psi\rangle \otimes |\phi\rangle = \begin{pmatrix} \boxed{\psi_1} |\phi\rangle \\ \boxed{\psi_2} |\phi\rangle \end{pmatrix} = \begin{pmatrix} \boxed{\psi_1} \phi_1 \\ \psi_1 \phi_2 \\ \boxed{\psi_2} \phi_1 \\ \boxed{\psi_2} \phi_2 \end{pmatrix}$$

finish as an

• Check
$$|x_{1}x_{0}\rangle = |x_{1}\rangle \otimes |x_{0}\rangle$$

$$|0\rangle \otimes |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} \Lambda & \Lambda \\ \Lambda & 0\\0 & \Lambda \end{pmatrix}, \quad |0\rangle \otimes |1\rangle = \begin{pmatrix} \Lambda\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\\Lambda \end{pmatrix} = \begin{pmatrix} \Lambda & 0\\\Lambda & \Lambda \\ 0 & \Lambda \end{pmatrix} = \begin{pmatrix} 0\\\Lambda & 0\\0 & \Lambda \end{pmatrix} = \begin{pmatrix} 0\\\Lambda & 0\\0 & \Lambda \end{pmatrix} = \begin{pmatrix} 0\\\Lambda\\0 & \Lambda \end{pmatrix} = \begin{pmatrix} 0\\$$

• Summary: with $x = 2^1x_1 + 2^0x_0$ – sometimes omit \otimes since no ambiguity

$$|x_1x_0\rangle \equiv |x_1\rangle \otimes |x_0\rangle \equiv |x_1\rangle |x_0\rangle \equiv |x\rangle_2$$

• Inner product $|\psi_1\rangle \otimes |\phi_1\rangle$ with $|\psi_2\rangle \otimes |\phi_2\rangle$ (proof, see exercises)

$$\langle \psi_{2} | \phi_{2} / \psi_{1} | \phi_{1} \rangle \qquad (\langle \psi_{2} | \otimes \langle \phi_{2} |) (|\psi_{1}\rangle \otimes |\phi_{1}\rangle) = \langle \psi_{2} | \psi_{1}\rangle \langle \phi_{2} | \phi_{1} \rangle = \langle 0 | A \rangle \cdot \langle A \rangle = 0 \cdot 0$$

• Example

$$(\langle 0|\otimes\langle 1|)(|1\rangle\otimes|0\rangle)=\left(\begin{smallmatrix}\mathfrak{J}\wedge\mathfrak{O}\\\mathfrak{J}\\\mathfrak{J}\end{pmatrix}\bullet\circlearrowleft\mathfrak{O}$$

chech

5.3 Transformations of two bits

• Functions 2 to 2 bits as $2^2 \times 2^2$ matrices. Example: Dirac and matrix notation.

$$\frac{x_1 \ x_0 \ y_1 \ y_0}{0 \ 0 \ 0 \ 0} = \frac{|x_0| \ y_1 \ y_0}{0 \ 0 \ 0 \ 0} = \frac{|x_0| \ y_0}{0 \ 0} = \frac{|x_0| \ y_0}{0 \ 0 \ 0} = \frac{|x_0| \ y_0}{0 \ 0} = \frac{|x_0| \ y_$$

• SWAP gate

$$S_{01} |x\rangle |y\rangle = |y\rangle |x\rangle$$

Note $S_{01} = S_{10}$.

• CNOT (Controlled-NOT) C_{ij} . Not symmetric: i control, j target. Target flips if control is 1: $C_{ij}/(1)/(2) \approx 1/(1)/(2) \approx 1/($

Recall $\oplus = XOR$: $0 \oplus 0 = 0, 0 \oplus 1 = 1 \oplus 0 = 1, 1 \oplus 1 = 0$.

• Dirac and matrix notation:

$$\begin{array}{c} C_{10} \left| 00 \right\rangle = \left| 00 \right\rangle \\ C_{10} \left| 01 \right\rangle = \left| 0 \right\rangle \otimes \left| \right\rangle \left\langle 0 \right\rangle = \left| 0 \right\rangle \\ C_{10} \left| 10 \right\rangle = \left| \right\rangle \left\langle 0 \right\rangle \left\langle 0 \right\rangle = \left| \left\langle 1 \right\rangle \right\rangle \\ C_{10} \left| 10 \right\rangle = \left| \left\langle 1 \right\rangle \left\langle 0 \right\rangle \left\langle 0 \right\rangle = \left| \left\langle 1 \right\rangle \right\rangle \\ C_{10} \left| 11 \right\rangle = \left| \left\langle 1 \right\rangle \left\langle 0 \right\rangle \left\langle 1 \right\rangle = \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle + \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \right\rangle \\ \left| \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \right\rangle \\ \left| \left\langle 1 \right\rangle \\ \left| \left\langle 1 \right\rangle \right\rangle \\ \left| \left\langle 1 \right$$

• Reversible:

$$C_{10}^{2} |x\rangle |y\rangle =$$

$$C_{10}^{2} = \lambda_{10}$$

M= 120> < 001 + 101> <101 + 110> + (01) + 111> <111 MIO1 > - 100 > < 00 | 01 > + (00 | 01 > + (10 | 01 > + M 10> = 100> <00110> + 101> <10110> + 10> <01 10> + 1M> <11/N> = 101> M 11/2 = 100> < 00 | 11> + 101> < 101 > + 10> < 01 | 11> + 111> < 11 | 11> = Controlled - NOT Cij: i = control, j= target (1/0/x> @ 1y> = 1x> @ (y 0 x> - indices counter from mylet Co1 1x> & 1y> = 1x & y> & 1y>

- Reversible transformation 2 bits is $A \otimes B$ where A, B are reversible 1 bit gates, i.e. $A, B \in \{\mathbf{1}_2, X\}$.
- Tensor product matrices

$$A \otimes B | \psi \rangle \otimes | \phi \rangle = A | \psi \rangle \otimes B | \phi \rangle$$

• $A \otimes B$ is $MN \times MN$ matrix:

$$A \otimes B |\psi\rangle \otimes |\phi\rangle = A |\psi\rangle \otimes B |\phi\rangle$$
first apply mothix

Then apply a tensor product
$$A \otimes B = \begin{pmatrix} A_{00}B & \dots & A_{0,N-1}B \\ \vdots & \ddots & \vdots \\ A_{N-1} & 0B & \dots & A_{N-1} & N-1B \end{pmatrix} \longrightarrow \text{going bloch by black}$$

• In our case:

$$X \otimes \mathbf{1}_{2} = \begin{pmatrix} \mathcal{O} & \Lambda \\ \Lambda & \mathcal{O} \end{pmatrix} \otimes \begin{pmatrix} \Lambda & \mathcal{O} \\ \mathcal{O} & \Lambda \end{pmatrix} = \begin{pmatrix} \mathcal{O} & \mathcal{O} & \Lambda & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} & \Lambda \\ \Lambda & \mathcal{O} & \mathcal{O} & \mathcal{O} \end{pmatrix}$$

$$\mathbf{1}_2 \otimes X =$$

$$X \otimes X = \begin{pmatrix} \mathcal{O} & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} \mathcal{O} & 1 \\ 1 & \mathcal{O} \end{pmatrix} = \begin{pmatrix} \mathcal{O} & \mathcal{O} & 1 \\ 0 & \mathcal{O} & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & \mathcal{O} & 0 & \mathcal{O} \end{pmatrix}$$
Thingps:
$$uut i_{1} \times u_{2} \times u_{3} \times u_{4} \times u_{5} \times$$

• Note

$$C_{10} = |0\rangle \langle 0| \otimes \mathbf{1}_2 + |1\rangle \langle 1| \otimes X,$$

$$C_{01} = \mathbf{1}_2 \otimes |0\rangle \langle 0| + X \otimes |1\rangle \langle 1|.$$

Check:

Check:
$$|0\rangle \langle 0| \otimes \mathbf{1}_{2} + |1\rangle \langle 1| \otimes X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

States of n bits 5.4

• n bits, 2^n bit strings:

me-hot vietor

$$|x_{n-1}\cdots x_0\rangle = |x_{n-1}\rangle \otimes \cdots \otimes |x_0\rangle \equiv |x\rangle_n$$
, $x = \sum_{j=0}^{n-1} 2^j x_j$,

 $\{|x\rangle_n\}_{x=0}^{N-1}$ orthonormal basis of $\mathbb{R}^N,\,N=2^n.$

• n-fold tensor product recursively using (output has length MN)

$$|\psi\rangle = \begin{pmatrix} \psi_0 \\ \vdots \\ \psi_{N-1} \end{pmatrix}, |\phi\rangle = \begin{pmatrix} \phi_0 \\ \vdots \\ \phi_{M-1} \end{pmatrix}, \quad |\psi\rangle \otimes |\phi\rangle = \begin{pmatrix} \psi_0 |\phi\rangle \\ \psi_1 |\phi\rangle \\ \vdots \\ \psi_{N-1} |\phi\rangle \end{pmatrix}$$

• Example: n = 3

Example:
$$n=3$$

$$|110\rangle = |1\rangle \otimes |1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = |6\rangle_3.$$

$$|110\rangle = |1\rangle \otimes |1\rangle \otimes$$

• Notation

$$|x_2\rangle\otimes|x_1\rangle\otimes|x_0\rangle\equiv|x_2\rangle|x_1\rangle|x_0\rangle \leq |x_2\times_4\times_0\rangle$$

5.5 Transformations of n bits

- Functions of n bits are represented by $2^n \times 2^n$ matrices. Reversible: permutations.
- SWAP 1-st and 3-rd bits

$$S_{31}|x_3\rangle |x_2\rangle |x_1\rangle |x_0\rangle = |x_1\rangle |x_2\rangle |x_3\rangle |x_0\rangle$$

- CNOT C_{ij} (recall: i control, j target) $C_{20} \ket{x_3} \ket{x_2} \ket{x_1} \ket{x_0} = \ket{x_3} \ket{x_2} \ket{x_1} \ket{x_0} \oplus x_2$ $C_{20} \ket{x_3} \ket{x_2} \ket{x_1} \ket{x_0} = \ket{x_3} \ket{x_2} \ket{x_1} \ket{x_0} \oplus x_2$
- Shortcut notation for 2×2 matrix A acting on the i-th vector of an n-fold tensor product:

$$A_i = \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes \cdots \otimes A \otimes \cdots \otimes \mathbf{1}_2$$
.

• Example:n = 3

$$X_1 = \lambda_2 \otimes X \otimes \lambda_2 \quad , \quad X_1 |x_2\rangle |x_1\rangle |x_0\rangle = \lambda_2 |x_2\rangle \cdot X |x_0\rangle \cdot \lambda_2 |x_0\rangle = |x_2\rangle / |x_0\rangle |x$$

• Operators on different bits commute: $A_iB_j=B_jA_i$ if $i\neq j$. Example, n=6:

$$A_3B_1 = \mathbf{1}_2 \otimes \mathbf{1}_2 \otimes A \otimes \mathbf{1}_2 \otimes B \otimes \mathbf{1}_2 = B_1A_3$$

• Similarly, A_{ij} the 4×4 matrix on the *i* and *j* bits, e.g. S_{ij} and C_{ij} above.

$$\underbrace{\begin{pmatrix} 1_2 \otimes 1_2 & \otimes A \otimes I_2 \otimes I_2 \otimes I_2 & \otimes I$$

$$\begin{array}{lll}
\chi_{1} = \lambda_{2} \otimes \chi \otimes \lambda_{2} \\
\chi_{1} | \chi_{1} > | \chi_{2} > | \chi_{3} > & = \left(\lambda_{1} \otimes \chi \otimes \lambda_{2} \right) \cdot \left(| \chi_{1} > | \chi_{2} > | \chi_{3} > \right) & = \lambda_{2} | \chi_{1} > \otimes \lambda_{2} | \chi_{2} > \\
& = \frac{| \chi_{1} > | \chi_{2} > | \chi_{3} > | \chi_{3} > | \chi_{3} > | \chi_{2} > | \chi_{3} > | \chi_{3} > | \chi_{2} > | \chi_{3} > | \chi_{3} > | \chi_{4} > | \chi_{5} >$$

Summary

- A computational problem is modelled mathematically as computing a function from n to m bits, e.g. the problem of factoring integers or finding a satisfying assignment to a Boolean formula.
- The efficiency of an algorithm depends on the computational model used to run it. An algorithm is efficient if its runtime grows as $\mathcal{O}(p(n))$ where p(n) is a polynomial of the input size of the problem n.
- A classical circuit is a model of a classical computer that has wires and gates.
- We can associate one-hot vectors to bit strings and matrices to gates. The states and gates of many bits are described by the tensor product.
- Important reversible classical gates are the NOT gate (also called the X gate), the CNOT gate, and the SWAP gate.

Manipulating single qubits 6

6.1 Qubit

Complex numbers 6.1.1

- Imaginary number $i, i^2 = -1$, define complex number $c = a + ib, a, b \in \mathbb{R}$. \mathbb{C} set complex numbers, a = Re(c) real part, b = Im(c) imaginary part.
- Usual addition, product rules: example:

$$(1+i)(2-3i) = 5-i$$

• $\bar{c} = a - ib$ complex conjugate, $|c|^2 = c\bar{c} = a^2 + b^2$ modulus squared. example:

$$\overline{1+i} = \lambda - i$$

$$|1+i|^2 = \lambda - i$$

$$|2+i|^2 = \lambda + \lambda = \lambda + \lambda^2 = 2$$

• Polar representation: with $\rho = |c|,$ Euler's formula

 $c=
ho(\cos(heta)+i\sin(heta))=\underline{
ho}\mathrm{e}^{i heta}$ — proven with Taylor expansion, modulus only

example

Icl is the

gize of the

a defines

the divertion

$$c=1+i=\sqrt{2}\cdot\left(\cos\vartheta+i\sin\vartheta\right)$$
 θ

 $\theta \leq t \cdot \sqrt{2} \cos \theta = 1$ $-2 \theta = \sqrt{2}$

$$c_1 c_2 = \rho_1 \rho_2 e^{i(\theta_1 + \theta_2)}, \quad c_1/c_2 = \rho_1/\rho_2 e^{i(\theta_1 - \theta_2)}.$$

• Complex vectors:

Complex vectors:
$$|\psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \in \mathbb{C}^2, \ /\psi\rangle = \begin{pmatrix} 1+i \\ 2-i \end{pmatrix} \in \mathbb{C}^2$$
 bra is transpose complex conjugate, also use adjoint symbol $|\psi\rangle^{\dagger} = \langle \psi|$

$$\langle \psi | = \begin{pmatrix} \overline{\psi_1} & \overline{\psi_2} \end{pmatrix}$$

Inner product

$$\langle \phi | \psi \rangle = \overline{\phi_1} \psi_1 + \overline{\phi_2} \psi_2 .$$

just as in lin alg. the timespec is timespessing the complex sign as well

Norm squared

$$\| |\psi\rangle \|^2 = \langle \psi | \psi\rangle = \overline{\psi_1} \psi_1 + \overline{\psi_2} \psi_2 = /\psi_1/2 / (1 + |\psi\rangle)^2 \ge 0$$

Similar for N-dimensional vectors \mathbb{C}^N

Qubit can be seen as a coin-flip. However, we have many assignments for <, p EC

Prob (1) = 1 p12

 $\text{Pwb}(0) = \left| \mathsf{k} \right|^2$ • Quantum state of a qubit is superposition of $|0\rangle$ and $|1\rangle$:

gubit e C²

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1.$$

• α, β called amplitudes. Interpret as probability in 0: $|\langle 0|\psi\rangle|^2 = |\alpha|^2$, probability in 1: $|\langle 1|\psi\rangle|^2 = |\beta|^2$. Note: normalisation

$$\langle \psi | \psi \rangle = |\alpha|^2 / |\beta|^2 = 1$$

1312= BB = Q. Rig. = Rig

β-> β·ēⁱ⁸ _,

• Global phase does not change the probability: $|\psi\rangle \equiv e^{i\varphi} |\psi\rangle$. $|\alpha\rangle^2 = \alpha = \alpha$

• Degrees of freedom: $\alpha = pe^{i\gamma}, \beta = qe^{i\varphi}$.

$$-p^2+q^2=1 \Rightarrow p=\cos\left(\frac{\theta}{2}\right), q=\sin\left(\frac{\theta}{2}\right), \theta \in [0,\pi].$$

- Global phase: $\alpha = p, \beta = qe^{i(\varphi - \gamma)}$

- Two angles: Bloch sphere

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$
, $\theta \in [0, \pi], \varphi \in [0, 2\pi)$.

Figure 12: Bloch sphere

How we represent qubit in reality? - superconducting circuit

- One of the questions is to find physical implementation of a qubit.

6.2 Transformations of a qubit

• Adjoint matrix A as transpose complex conjugate:

$$- A^{\dagger} = \overline{A^T}.$$

$$- \text{ If } |\phi\rangle = A |\psi\rangle, \, \langle\phi| = \langle\psi|\,A^{\dagger}.$$

$$- (AB)^{\dagger} = B^{\dagger}A^{\dagger}.$$

• General linear transform $|\phi\rangle = U |\psi\rangle$, needs to preserve normalization:

$$\langle \phi | \phi \rangle = \langle \psi | U^{\dagger} U | \psi \rangle = \langle \psi | \psi \rangle = 1$$
,

the Springtion of gas

 $U^{\dagger}U = 1$: unitary.

• $U^{-1} = U^{\dagger}$, reversible

$$|\psi\rangle \rightarrow |\phi\rangle = U |\psi\rangle$$

$$|\psi\rangle = U^{\dagger} |\phi\rangle \leftarrow |\phi\rangle$$

• Discrete quantum dynamics $|\psi\rangle^{t+1} = U |\psi\rangle^t$. Example: $U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

Figure 13

• Negative signs: destructive interference, deterministic outcome from randomised operation. Impossible with classical probabilities!

Single qubit gates

Classical reversible gates are unitary

$$X = |0\rangle \langle 1| + |1\rangle \langle 0| = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{1}_2 = |0\rangle \langle 0| + |1\rangle \langle 1| = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Example

$$X | \psi \rangle = X(\alpha | 0 \rangle + \beta | 1 \rangle) =$$

- \bullet X is called the x Pauli matrix. Other important unitary gates:
 - The y and x Pauli matrices

$$Y = iXZ = -i |0\rangle \langle 1| + i |1\rangle \langle 0| = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$
$$Z = |0\rangle \langle 0| - |1\rangle \langle 1| = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- Hadamard gate

$$H = \frac{1}{\sqrt{2}}(X+Z) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

• Relations

- -HZH=X. This follows from the previous property and $H^2=\mathbf{1}_2$.
- Measurement gate, irreversible: projects and returns readout bit (Born rule)

$$\alpha |0\rangle + \beta |1\rangle \to |x\rangle = \begin{cases} |0\rangle & \text{prob } |\alpha|^2 \\ |1\rangle & \text{prob } |\beta|^2 \end{cases}.$$

Only way to get classical information from a qubit. Samples from binary random variable $p = (p_0, p_1)$ with

$$p_0 = |\alpha|^2$$
, $p_1 = |\beta|^2 = 1 - |\alpha|^2$.

6.4 Circuit diagrams for a single qubit

• wire: qubit, gates: transformations (unitary and measurement)

Figure 14

• Concatenation

• Compute the probability of measuring x = 0

Figure 16

$$|0\rangle \mapsto H |0\rangle =$$

probability measuring 0 is

Summary

- Qubit superposition of classical bit strings, normalised complex vector.
- Quantum circuits give a convenient way to describe quantum a sequence of quantum gates.
- The most important unitary single qubit gates are the Pauli matrices and the Hadamard gate.
- Measurement gates are irreversible. Born rule dictates the outcome of a measurement.