
Lecture 1: From Classical to Quantum Computing

Outline

• Brief history of quantum computing.

• Computational problems and e!ciency of algorithms.

• Classical circuits and their matrix representation.

• The qubit and its mathematical description.

Intended Learning Outcomes

• Remembering the relationship between physics and computing and what is the
current state of quantum computing.

• Analysing the e!ciency of algorithms.

• Applying the matrix representation of classical gates.

• Creating new gates using the tensor product.

• Understanding the mathematical description of a qubit.

Why this matters

• Quantum computing allows computations impossible with a classical computer.

– Deepens understanding of nature and of computational complexity.

– Technological applications to healthcare, materials design, finance, etc. Sev-
eral governments and tech companies heavily investing, industry grew by
30% from 2024 to 2025 and expected to continue growing 1

• Notion of e!ciency heart of understanding quantum advantage.

• Mathematical formalism based on linear algebra over complex numbers. Cen-
tral to quantum theory and other branches of natural sciences and engineering,
e.g. machine learning, optimisation.

1https://quantumconsortium.org/publications/stateofthequantumindustry2025/
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1 A Brief History of Quantum Computing

• Computational devices are physical. Physics determine computational models
and their e!ciency.

• Classical computers follow classical physics, can be simulated by billiard balls:

Figure 1: A switch gate realised by billiard balls with perfectly elastic collisions. The
presence or absence of a ball corresponds to a bit being 1 or 0. From Fredkin & To”oli,
“Conservative logic” (1982).

• Quantum computers follow quantum physics.

Figure 2: 2025 is UNESCO Year of Quantum

• 2025: anniversary discovery of quantum mechanics by W. Heisenberg in 1925.

(a) Werner Heisenberg (b) Erwin Schrödinger

Figure 3: The foundation fathers of quantum mechanics.
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• Quantum mechanics explains phenomena that classical mechanics cannot

– Example: Mach-Zender interferometer.

Figure 4: A source of light (photons) hits a beam-splitter (half silvered mirror). Left:
measure photon at either A or B. Right: add mirrors and another beam-splitter,
measure a photon only at B.

– If photon classical particle, explain left experiment since photon goes through
or turns left. However, cannot explain right experiment.

– Solution: associate one amplitude per path ω1,ω2. Destructive interference
at A and constructive at B.

• Quantum mechanics most accurate physical theory. The electromagnetic fine-
structure constant ε agrees with experiments within part in a billion.

• P.A.M. Dirac in 1929: “The fundamental laws [...] completely known, [...] di!-
culty [...] equations that are too complex to be solved.”

– n quantum particles each with k configurations described by k
n amplitudes.

• 1980’s: R. Feynman and Y. Main conceived a quantum mechanical computer to
simulate nature

Nature isn’t classical, dammit!

(a) Yuri Manin (b) Richard Feynman
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• 1985: D. Deutsch proposes to use quantum computers for other problems than
physics simulation.

• 1994: P. Shor finds an algorithm to fac-
tor integers exponentially faster than
any known classical algorithm. 1995:
P. Shor introduces quantum error cor-
rection

• . . . A lot of work on building a quantum computer . . .

• 2011: First commercial quantum computer by D-Wave. Not universal.

• Today:

– Gate-based quantum computers with hundreds noisy qubits.

– They can already do computations intractable for classical computers, how-
ever commercial applications not yet demonstrated.

Figure 6: Left: Vacuum chamber housing ion trap chip. Right: Optics preparing visible
lasers that drive transitions between energy levels. Source.

Figure 7: A quantum computer based on superconducting qubits require a fridge to
cool down the system.
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• Current challenges

– Implement quantum error correction

– Discover novel quantum algorithms

– Ethics and regulations

∗ Quantum computers can discover better drugs to cure disease and more
sustainable materials.

∗ They can also break RSA cryptosystems, threatening security of com-
munication.

∗ Quantum algorithms have dual use and can be used for nefarious pur-
poses, e.g. weapons.

∗ Quantum computing dev concentrated in a few countries, how can ev-
eryone benefit from quantum technologies?
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2 Motivating Examples

• Computational problem: compute function from n to m bits.

• General: integral approximation and bitwise representation x=
n→1∑

i=0

xi2
i
,xi→{0, 1}.

– Integer factoring: find prime factors of the integer x.

∗ Example: x = 15, return y = 3, 5.

∗ Classical hardness underlies security of public-key cryptography behind
internet transaction.

∗ Shor’s algorithm can solve this problem e!ciently.

– 3SAT problem: is there a p-bit string z that satisfies all clauses Ci(z)? Ci

is the logical OR of 3 variables or their negation.

∗ Example: p = 4: C1(z) = z1 ↑ z2 ↑ z3, C2(z) = ¬z2 ↑ ¬z3 ↑ z4

Answer: yes, z1 = 1, z2 = z3 = z4 = 0.

∗ Central problem in computational complexity, one of the hardest prob-
lems.

∗ We do not believe quantum computers can solve this e!ciently.
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3 E!ciency of Algorithms

• E!ciency of algorithm to compute function depends on 1) computational model
(classical vs quantum), 2) resource.

• Focus on worst case runtime

• Asymptotic complexity: growth with input size n, avoid manufacture hardware
details.

• big-O notation: f is O(g(n)) if there exists n0 and C ↓ 0 such that for n ↓ n0,
|f(n)| ↔ C|g(n)|.

Figure 8: f(n) being O(g(n)) means that after some n0, f(n) is upper bounded by
Cg(n).

• E!cient if runtime is O(p(n)) with p(n) polynomial of n.

• If no polynomial algorithm, problem is hard. Note: if n > 265, then 2n is greater
than atoms in the universe!
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4 Classical Circuits

• Mathematical model of classical computer.

• wires (carry bits) and gates (transform bits).

Figure 9: A classical circuit with n = 4 input bits x0, x1, x2, x3 and m = 4 outputs.
Note that we label the bits from 0 to n↗ 1 and from bottom to top.

• Gate with k inputs/outputs is function g : {0, 1}k ↘ {0, 1}k.

• Reversible if there exists g→1 such that g(g→1(x)) = x for all x.

• We can implement any function f : {0, 1}k ↘ {0, 1}ω reversibly. Rf : {0, 1}k+ω
↘

{0, 1}k+ω

Rf : (x, y) ≃↘ (x, y ⇐ f(x)) .

by taking y = 0. Bitwise XOR:

xn→1 · · · x1x0 ⇐ yn→1 · · · y1y0 = zn→1 · · · z1z0 , zi = xi ⇐ yi

0⇐ 0 = 1⇐ 1 = 0 , 0⇐ 1 = 1⇐ 0 = 1 .

• Inverse of Rf is Rf : check

(Rf )
2 : (x, y) ≃↘ ((x, y ⇐ f(x)⇐ f(x)) = (x, y) ,

• Reversible gates important in quantum computing.

• Runtime algorithm is number elementary gates.

– Elementary means acting on constant number of inputs/outputs. Which set
irrelevant for asymptotic complexity.

– E!cient: polynomial gates.

– Universal gates: implement any functions. E.g. AND and XOR.
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5 Matrix Representation of Classical Gates

5.1 Single Bit Gates

5.1.1 Dirac notation

• Bit: x → {0, 1}. Represent as a two-dimensional one-hot vector:

0 ≃↘ |0⇒ =

(
1
0

)
, 1 ≃↘ |1⇒ =

(
0
1

)

• |v⇒: “ket”, Dirac notation. Analogous to ϑv.

• Name from bracket or inner product or scalar product. Define “bra”

⇑0| =
(
1 0

)
, ⇑1| =

(
0 1

)

and their scalar products denoted as ⇑x|y⇒

⇑0|0⇒ =
(
1 0

)(1
0

)
= 1

⇑0|1⇒ =
(
1 0

)(0
1

)
= 0

⇑1|0⇒ =
(
0 1

)(1
0

)
= 0

⇑1|1⇒ =
(
0 1

)(0
1

)
= 1 .

• |0⇒ , |1⇒ for an orthonormal basis of R2.

• |x⇒ ⇑y| are matrices:

|0⇒ ⇑1| =

(
1
0

)(
0 1

)
=

(
0 1
0 0

)
, |1⇒ ⇑0| =

(
0 0
1 0

)

|0⇒ ⇑0| =

(
1 0
0 0

)
, |1⇒ ⇑1| =

(
0 0
0 1

)

• Compatible with matrix multiplication.

⇑x|y⇒: 1⇓ 2 by 2⇓ 1 ↘ 1⇓ 1 scalar

|x⇒ ⇑y|: 2⇓ 1 by 1⇓ 2 ↘ 2⇓ 2 matrix.

• Also, note:

(|x⇒ ⇑y|) |z⇒ = ⇑y|z⇒ |x⇒
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• Resolution of unity:

|0⇒ ⇑0|+ |1⇒ ⇑1| = 12

• Matrix elements:

M =

(
M00 M01

M10 M11

)

the matrix element Mxy = ⇑x|M |y⇒. For example,

⇑0|M |1⇒ =
(
1 0

)(M00 M01

M10 M11

)(
0
1

)
= M01 .
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5.1.2 Gates

• Four possible Boolean functions from bit x to bit y:

x y

0 0
1 0

M = |0⇒ (⇑0|+ ⇑1|) ,

x y

0 1
1 1

M = |1⇒ (⇑0|+ ⇑1|)

x y

0 1
1 0

M = |0⇒ ⇑1|+ |1⇒ ⇑0| = X ,

x y

0 0
1 1

M = |0⇒ ⇑0|+ |1⇒ ⇑1| = 12

• Interpret M as deterministic dynamical system: |x⇒t+1 = M |x⇒
t, e.g. M = X

Figure 10

• Reversible functions: X (NOT gate), 12. Dynamics can be time reversed

Figure 11
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5.2 States of two bits

• 4 states of 2: |x1x0⇒ , x0, x1 → {0, 1}: |00⇒ , |01⇒ , |10⇒ , |11⇒, four-dimensional one-
hot vector:

|00⇒ ⇔ |0⇒2 =





1
0
0
0



 , |01⇒ ⇔ |1⇒2 =





0
1
0
0



 , |10⇒ ⇔ |2⇒2 =





0
0
1
0



 , |11⇒ ⇔ |3⇒2 =





0
0
0
1



 .

• Label right to left, 1 in the position integer associated with bit string:

|x1x0⇒ ⇔
∣∣21x1 + 20x0

〉
2

• Tensor product

|ϖ⇒ =

(
ϖ1

ϖ2

)
, |ω⇒ =

(
ω1

ω2

)
, |ϖ⇒ ↖ |ω⇒ =

(
ϖ1 |ω⇒

ϖ2 |ω⇒

)
=





ϖ1ω1

ϖ1ω2

ϖ2ω1

ϖ2ω2





• Check |x1x0⇒ = |x1⇒ ↖ |x0⇒

|0⇒ ↖ |0⇒ =

(
1
0

)
↖

(
1
0

)
=





1
0
0
0



 , |0⇒ ↖ |1⇒ =

(
1
0

)
↖

(
0
1

)
=





0
1
0
0



 ,

|1⇒ ↖ |0⇒ =

(
0
1

)
↖

(
1
0

)
=





0
0
1
0



 , |1⇒ ↖ |1⇒ =

(
0
1

)
↖

(
0
1

)
=





0
0
0
1



 .

• Summary: with x = 21x1 + 20x0 – sometimes omit ↖ since no ambiguity

|x1x0⇒ ⇔ |x1⇒ ↖ |x0⇒ ⇔ |x1⇒ |x0⇒ ⇔ |x⇒2

• Inner product |ϖ1⇒ ↖ |ω1⇒ with |ϖ2⇒ ↖ |ω2⇒ (proof, see exercises)

(⇑ϖ2|↖ ⇑ω2|)(|ϖ1⇒ ↖ |ω1⇒) = ⇑ϖ2|ϖ1⇒ ⇑ω2|ω1⇒

• Example

(⇑0|↖ ⇑1|)(|1⇒ ↖ |0⇒) = 0
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5.3 Transformations of two bits

• Functions 2 to 2 bits as 22 ⇓ 22 matrices. Example: Dirac and matrix notation.

x1 x0 y1 y0

0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

M = |00⇒ ⇑00|+ |10⇒ ⇑01|+ |01⇒ ⇑10|+ |11⇒ ⇑11| =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





• SWAP gate
S01 |x⇒ |y⇒ = |y⇒ |x⇒

Note S01 = S10.

• CNOT (Controlled-NOT) Cij. Not symmetric: i control, j target. Target flips if
control is 1:

C10 |x⇒ |y⇒ = |x⇒ |y ⇐ x⇒ , C01 |x⇒ |y⇒ = |x⇐ y⇒ |y⇒ ,

Recall ⇐ = XOR: 0⇐ 0 = 0, 0⇐ 1 = 1⇐ 0 = 1, 1⇐ 1 = 0.

• Dirac and matrix notation:

C10 |00⇒ =

C10 |01⇒ =

C10 |10⇒ =

C10 |11⇒ =

↙ C10 = |00⇒ ⇑00|+ |01⇒ ⇑01|+ |11⇒ ⇑10|+ |10⇒ ⇑11| =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 .

• Reversible:

C
2
10 |x⇒ |y⇒ = C10 |x⇒ |y ⇐ x⇒ = |x⇒ |y⇒
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• Reversible transformation 2 bits is A ↖ B where A,B are reversible 1 bit gates,
i.e. A,B → {12, X}.

• Tensor product matrices

A↖B |ϖ⇒ ↖ |ω⇒ = A |ϖ⇒ ↖B |ω⇒

• A↖B is MN ⇓MN matrix:

A↖B =




A00B . . . A0,N→1B

...
. . .

...
AN→1,0B . . . AN→1,N→1B





• In our case:

X ↖ 12 =

(
0 1
1 0

)
↖

(
1 0
0 1

)
=





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



 ,

12 ↖X =

(
1 0
0 1

)
↖

(
0 1
1 0

)
=





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





X ↖X =

(
0 1
1 0

)
↖

(
0 1
1 0

)
=





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 .

• Note

C10 = |0⇒ ⇑0|↖ 12 + |1⇒ ⇑1|↖X ,

C01 = 12 ↖ |0⇒ ⇑0|+X ↖ |1⇒ ⇑1| .

Check:

|0⇒ ⇑0|↖ 12 + |1⇒ ⇑1|↖X =

(
1 0
0 0

)
↖

(
1 0
0 1

)
+

(
0 0
0 1

)
↖

(
0 1
1 0

)

=





1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



+





0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0




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5.4 States of n bits

• n bits, 2n bit strings:

|xn→1 · · · x0⇒ = |xn→1⇒ ↖ · · ·↖ |x0⇒ ⇔ |x⇒n , x =
n→1∑

j=0

2jxj ,

{|x⇒n}
N→1
x=0 orthonormal basis of RN , N = 2n.

• n-fold tensor product recursively using (output has length MN)

|ϖ⇒ =




ϖ0
...

ϖN→1



 , |ω⇒ =




ω0
...

ωM→1



 , |ϖ⇒ ↖ |ω⇒ =





ϖ0 |ω⇒

ϖ1 |ω⇒

...
ϖN→1 |ω⇒





• Example: n = 3

|110⇒ = |1⇒ ↖ |1⇒ ↖ |0⇒ =

(
0
1

)
↖

(
0
1

)
↖

(
1
0

)
=





0
0
0
1



↖

(
1
0

)
=





0
0
0
0
0
0
1
0





= |6⇒3 .

• Notation

|x2⇒ ↖ |x1⇒ ↖ |x0⇒ ⇔ |x2⇒ |x1⇒ |x0⇒
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5.5 Transformations of n bits

• Functions of n bits are represented by 2n⇓2n matrices. Reversible: permutations.

• SWAP 1-st and 3-rd bits

S31|x3⇒ |x2⇒ |x1⇒ |x0⇒ = |x1⇒ |x2⇒ |x3⇒ |x0⇒

• CNOT Cij (recall: i control, j target)

C20 |x3⇒ |x2⇒ |x1⇒ |x0⇒ = |x3⇒ |x2⇒ |x1⇒ |x0 ⇐ x2⇒

• Shortcut notation for 2⇓ 2 matrix A acting on the i-th vector of an n-fold tensor
product:

Ai = 12 ↖ 12 ↖ · · ·↖ A↖ · · ·↖ 12 .

• Example:n = 3

X1 = 12 ↖X ↖ 12 , X1 |x2⇒ |x1⇒ |x0⇒ = |x2⇒ |1↗ x1⇒ |x0⇒

• Operators on di”erent bits commute: AiBj = BjAi if i ∝= j. Example, n = 6:

A3B1 = 12 ↖ 12 ↖ A↖ 12 ↖B ↖ 12 = B1A3

• Similarly, Aij the 4⇓ 4 matrix on the i and j bits, e.g. Sij and Cij above.
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Summary

• A computational problem is modelled mathematically as computing a function
from n to m bits, e.g. the problem of factoring integers or finding a satisfying
assignment to a Boolean formula.

• The e!ciency of an algorithm depends on the computational model used to run
it. An algorithm is e!cient if its runtime grows as O(p(n)) where p(n) is a
polynomial of the input size of the problem n.

• A classical circuit is a model of a classical computer that has wires and gates.

• We can associate one-hot vectors to bit strings and matrices to gates. The states
and gates of many bits are described by the tensor product.

• Important reversible classical gates are the NOT gate (also called the X gate),
the CNOT gate, and the SWAP gate.
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6 Manipulating single qubits

6.1 Qubit

6.1.1 Complex numbers

• Imaginary number i, i2 = ↗1, define complex number c = a+ ib, a, b → R. C set
complex numbers, a = Re(c) real part, b = Im(c) imaginary part.

• Usual addition, product rules: example:

(1 + i)(2↗ 3i) = 2↗ 3i+ 2i+ 3 = 5↗ i .

• c = a↗ ib complex conjugate, |c|2 = cc = a
2 + b

2 modulus squared. example:

1 + i = 1↗ i

|1 + i|
2 = 1 + 1 = 2

• Polar representation: with ϱ = |c|, Euler’s formula

c = ϱ(cos(ς) + i sin(ς)) = ϱeiε

example

c = 1 + i =
′
2(

1
′
2
+ i

1
′
2
) =

′
2(cos(φ/4) + i sin(φ/4)) =

′
2eiϑ/4 .

• Product, division in polar representation

c1c2 = ϱ1ϱ2e
i(ε1+ε2) , c1/c2 = ϱ1/ϱ2e

i(ε1→ε2) .

• Complex vectors:

|ϖ⇒ =

(
ϖ1

ϖ2

)
→ C2

,

bra is transpose complex conjugate, also use adjoint symbol |ϖ⇒† = ⇑ϖ|

⇑ϖ| =
(
ϖ1 ϖ2

)

Inner product

⇑ω|ϖ⇒ = ω1ϖ1 + ω2ϖ2 .

Norm squared

∞ |ϖ⇒ ∞
2 = ⇑ϖ|ϖ⇒ = |ϖ1|

2 + |ϖ2|
2

Similar for N -dimensional vectors CN
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6.1.2 Qubit

• Quantum state of a qubit is superposition of |0⇒ and |1⇒:

|ϖ⇒ = ε |0⇒+ ↼ |1⇒ =

(
ε

↼

)
, ε, ↼ → C , |ε|

2 + |↼|
2 = 1 .

• ε, ↼ called amplitudes. Interpret as probability in 0: | ⇑0|ϖ⇒ |2 = |ε|
2, probability

in 1: | ⇑1|ϖ⇒ |2 = |↼|
2. Note: normalisation

⇑ϖ|ϖ⇒ = |ε|
2 + |↼|

2 = 1

• Global phase does not change the probability: |ϖ⇒ ⇔ eiϖ |ϖ⇒.

• Degrees of freedom: ε = peiϱ, ↼ = qeiϖ.

– p
2 + q

2 = 1 ↙ p = cos
(
ε
2

)
, q = sin

(
ε
2

)
, ς → [0, φ].

– Global phase: ε = p, ↼ = qei(ϖ→ϱ)

– Two angles: Bloch sphere

|ϖ⇒ = cos
ς

2
|0⇒+ eiϖ sin

ς

2
|1⇒ , ς → [0, φ],↽ → [0, 2φ) .

Figure 12: Bloch sphere
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6.2 Transformations of a qubit

• Adjoint matrix A as transpose complex conjugate:

– A
† = AT .

– If |ω⇒ = A |ϖ⇒, ⇑ω| = ⇑ϖ|A
†.

– (AB)† = B
†
A

†.

• General linear transform |ω⇒ = U |ϖ⇒, needs to preserve normalization:

⇑ω|ω⇒ = ⇑ϖ|U
†
U |ϖ⇒ = ⇑ϖ|ϖ⇒ = 1 ,

U
†
U = 1: unitary.

• U
→1 = U

†, reversible

|ϖ⇒ ↘ |ω⇒ = U |ϖ⇒

|ϖ⇒ = U
†
|ω⇒ ∈ |ω⇒

• Discrete quantum dynamics |ϖ⇒t+1 = U |ϖ⇒
t. Example: U = 1↑

2

(
1 ↗1
1 1

)

Figure 13

• Negative signs: destructive interference, deterministic outcome from randomised
operation. Impossible with classical probabilities!
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6.3 Single qubit gates

• Classical reversible gates are unitary

X = |0⇒ ⇑1|+ |1⇒ ⇑0| =

(
0 1
1 0

)
, 12 = |0⇒ ⇑0|+ |1⇒ ⇑1| =

(
1 0
0 1

)
.

Example

X |ϖ⇒ = X(ε |0⇒+ ↼ |1⇒) = ε |1⇒+ ↼ |0⇒

• X is called the x Pauli matrix. Other important unitary gates:

– The y and x Pauli matrices

Y = iXZ = ↗i |0⇒ ⇑1|+ i |1⇒ ⇑0| =

(
0 ↗i

i 0

)
,

Z = |0⇒ ⇑0|↗ |1⇒ ⇑1| =

(
1 0
0 ↗1

)
.

– Hadamard gate

H =
1
′
2
(X + Z) =

1
′
2

(
1 1
1 ↗1

)

• Relations

– XZ = ↗ZX:

XZ = (|0⇒ ⇑1|+ |1⇒ ⇑0|)(|0⇒ ⇑0|↗ |1⇒ ⇑1|) = |1⇒ ⇑0|↗ |0⇒ ⇑1| ,

ZX = (|0⇒ ⇑0|↗ |1⇒ ⇑1|)(|0⇒ ⇑1|+ |1⇒ ⇑0|) = |0⇒ ⇑1|↗ |1⇒ ⇑0|

– H
2 = 12:

H
2 =

1

2
(X + Z)(X + Z) =

1

2
(X2 + ZX + ZX + Z

2) = 12 .

– HXH = Z

HXH =
1

2
(X + Z)X(X + Z) =

1

2
(12 + ZX)(X + Z)

=
1

2
(X + Z + Z + ZXZ) = Z .

– HZH = X. This follows from the previous property and H
2 = 12.

• Measurement gate, irreversible: projects and returns readout bit (Born rule)

ε |0⇒+ ↼ |1⇒ ↘ |x⇒ =

{
|0⇒ prob |ε|

2

|1⇒ prob |↼|
2
.

Only way to get classical information from a qubit. Samples from binary random
variable p = (p0, p1) with

p0 = |ε|
2
, p1 = |↼|

2 = 1↗ |ε|
2
.
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6.4 Circuit diagrams for a single qubit

• wire: qubit, gates: transformations (unitary and measurement)

Figure 14

• Concatenation

Figure 15

• Compute the probability of measuring x = 0

Figure 16

|0⇒ ≃↘ H |0⇒ =
1
′
2
(|0⇒+ |1⇒)

probability measuring 0 is 1/2
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Summary

• Qubit superposition of classical bit strings, normalised complex vector.

• Quantum circuits give a convenient way to describe quantum a sequence of quan-
tum gates.

• The most important unitary single qubit gates are the Pauli matrices and the
Hadamard gate.

• Measurement gates are irreversible. Born rule dictates the outcome of a measure-
ment.
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