Lecture 1: From Classical to Quantum Computing

Outline

e Brief history of quantum computing.
e Computational problems and efficiency of algorithms.
e (lassical circuits and their matrix representation.

e The qubit and its mathematical description.

Intended Learning Outcomes

e Remembering the relationship between physics and computing and what is the
current state of quantum computing.

Analysing the efficiency of algorithms.

Applying the matrix representation of classical gates.

Creating new gates using the tensor product.

Understanding the mathematical description of a qubit.

Why this matters

e Quantum computing allows computations impossible with a classical computer.

— Deepens understanding of nature and of computational complexity.

— Technological applications to healthcare, materials design, finance, etc. Sev-
eral governments and tech companies heavily investing, industry grew by
30% from 2024 to 2025 and expected to continue growing

e Notion of efficiency heart of understanding quantum advantage.

e Mathematical formalism based on linear algebra over complex numbers. Cen-
tral to quantum theory and other branches of natural sciences and engineering,
e.g. machine learning, optimisation.

"https://quantumconsortium.org/publications/stateofthequantumindustry2025/


https://quantumconsortium.org/publications/stateofthequantumindustry2025/

1 A Brief History of Quantum Computing

e Computational devices are physical. Physics determine computational models
and their efficiency.

e (lassical computers follow classical physics, can be simulated by billiard balls:
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Figure 1: A switch gate realised by billiard balls with perfectly elastic collisions. The
presence or absence of a ball corresponds to a bit being 1 or 0. From Fredkin & Toffoli,
“Conservative logic” (1982).

e Quantum computers follow quantum physics.

INTERNATIONAL YEAR OF

/') Quantum Science
and Technology

Figure 2: 2025 is UNESCO Year of Quantum

e 2025: anniversary discovery of quantum mechanics by W. Heisenberg in 1925.

(a) Werner Heisenberg (b) Erwin Schrodinger

Figure 3: The foundation fathers of quantum mechanics.



e QQuantum mechanics explains phenomena that classical mechanics cannot

— Example: Mach-Zender interferometer.
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Figure 4: A source of light (photons) hits a beam-splitter (half silvered mirror). Left:
measure photon at either A or B. Right: add mirrors and another beam-splitter,
measure a photon only at B.

— If photon classical particle, explain left experiment since photon goes through
or turns left. However, cannot explain right experiment.

— Solution: associate one amplitude per path ¢, ¢2. Destructive interference
at A and constructive at B.

e Quantum mechanics most accurate physical theory. The electromagnetic fine-
structure constant a agrees with experiments within part in a billion.

e P.AM. Dirac in 1929: “The fundamental laws [...] completely known, [...] diffi-
culty [...] equations that are too complex to be solved.”

— n quantum particles each with k& configurations described by £™ amplitudes.

e 1980’s: R. Feynman and Y. Main conceived a quantum mechanical computer to
simulate nature

Nature isn’t classical, dammit!

Richard Feynman

(a) Yuri Manin (b) Richard Feynman



e 1985: D. Deutsch proposes to use quantum computers for other problems than
physics simulation.

Peter Shor

e 1994: P. Shor finds an algorithm to fac-
tor integers exponentially faster than
any known classical algorithm. 1995:
P. Shor introduces quantum error cor-
rection

e ... A lot of work on building a quantum computer ...
e 2011: First commercial quantum computer by D-Wave. Not universal.
e Today:

— Gate-based quantum computers with hundreds noisy qubits.

— They can already do computations intractable for classical computers, how-
ever commercial applications not yet demonstrated.

Figure 6: Left: Vacuum chamber housing ion trap chip. Right: Optics preparing visible
lasers that drive transitions between energy levels. Source.

Figure 7: A quantum computer based on superconducting qubits require a fridge to
cool down the system.


https://www.physics.ox.ac.uk/research/group/ion-trap-quantum-computing/research-areas/abaqus

e Current challenges

— Implement quantum error correction
— Discover novel quantum algorithms
— Ethics and regulations

* Quantum computers can discover better drugs to cure disease and more
sustainable materials.

x They can also break RSA cryptosystems, threatening security of com-
munication.

* Quantum algorithms have dual use and can be used for nefarious pur-
poses, €.g. weapons.

* Quantum computing dev concentrated in a few countries, how can ev-
eryone benefit from quantum technologies?



2 Motivating Examples

e Computational problem: compute function from n to m bits.
n—1
e General: integral approximation and bitwise representation x = Zxﬂz,xi €{0,1}.
i=0
— Integer factoring: find prime factors of the integer x.
* Fxample: x = 15, return y =
% Classical hardness underlies security of public-key cryptography behind
internet transaction.
x Shor’s algorithm can solve this problem efficiently.
— 3SAT problem: is there a p-bit string z that satisfies all clauses C;(z)? C;
is the logical OR of 3 variables or their negation.
« FExample: p=4: C1(2) = 21V 22V 23, Ca(2) = 720V 223V 24
Answer:

x Central problem in computational complexity, one of the hardest prob-
lems.

x We do not believe quantum computers can solve this efficiently.



3 Efficiency of Algorithms

e Efficiency of algorithm to compute function depends on 1) computational model
(classical vs quantum), 2) resource.

e Focus on worst case runtime

Asymptotic complexity: growth with input size n, avoid manufacture hardware
details.

big-O notation: f is O(g(n)) if there exists ny and C' > 0 such that for n > ny,
|f(n)| < Clg(n)|.

N/

Figure 8: f(n) being O(g(n)) means that after some ngy, f(n) is upper bounded by
Cg(n).

e Efficient if runtime is O(p(n)) with p(n) polynomial of n.

e If no polynomial algorithm, problem is hard. Note: if n > 265, then 2" is greater
than atoms in the universe!



4 Classical Circuits

e Mathematical model of classical computer.

e wires (carry bits) and gates (transform bits).

3 — —

r9 — —

1 —
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Figure 9: A classical circuit with n = 4 input bits xg, x1, 29, x3 and m = 4 outputs.
Note that we label the bits from 0 to n — 1 and from bottom to top.

e Gate with k inputs/outputs is function g : {0, 1}* — {0, 1}*.
e Reversible if there exists ¢! such that g(¢g~'(z)) = z for all z.

e We can implement any function f : {0,1}* — {0, 1}* reversibly. R; : {0, 1}F —
{0’1}k+€

Ry (z,y) = (z,y @ f(2)).
by taking y = 0. Bitwise XOR:

Tp—1""T100 D Yn—1"" V1Yo = Zn—1""" 2120, Zi =X DY;
0p0=1¢1=0, 0pl1=1p0=1.

o Inverse of Ry is Ry: check
By s = R (, go (@) = (x, gofd o66) = (xy)

-~
e Reversible gates important in quantum computing. /A 7[3 e 'éy |
e Runtime algorithm is number elementary gates.

— Elementary means acting on constant number of inputs/outputs. Which set
irrelevant for asymptotic complexity.
— Efficient: polynomial gates.

— Universal gates: implement any functions. E.g. AND and XOR.



5 Matrix Representation of Classical Gates

5.1 Single Bit Gates

5.1.1 Dirac notation

o Sus oo whil o fl
Zeio — based

e Bit: x € {0,1}. Represent as a two-dimensional one-hot vector:

o%\()):((l)), 1'—>‘1>:<(1)>

e |v): “ket”, Dirac notation. Analogous to v.

e Name from bracket or inner product or scalar product. Define “bra”
(0= 0), (1[=(0 1)
and their scalar products denoted as (z|y) ( S o E}}‘” Ab/’j

©loy = 4
ol = ©
~ @
apo) = O
(1) =/

e |z) (y| are matrices:

o)1= () (0 1 —( > )W\( >

(5)-(1 )

) (0 = (Wg), ) 04)( )

e Compatible with matrix multiplication.
(x|y): 1 x2by 2x1—1x1 scalar
|z) (y|: 2 x 1 Dby 1x2—2x 2 matrix.

e Also, note:

(lz) (yl) [2) = (yl|2) |z)
& Y/ é °§j ol ﬂwjml,

9

1 shd,

g s W CO1O=LI0>- T

- 2 S,
e |0),|1) for an orthonormal basis of R*. 2z Domly) > = (o> = /l



e Resolution of unity:

A O 09 \ o
!0><0\+|1><1|=<99> *(9/1)’ J A

Moo Mo
M =
(Mm M11)

e Matrix elements:

the matrix element M,, = (x| M |y). For example,

oy = (o) - <M°" “")(2’7

M"a M,m

o

= Mo

‘QF\\ \Aok' \Alﬂnw(“'a W\\/m\ \'\/ﬁ& Vﬂkq\'fol,, > 4,1(

~0m b dy/Mz{tJ fi- "y de;;bn {mslmc{ 04 J/ML g
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Miras,
Mio> = 10>(£ol+<4{§ (o>
Lola> + Llo>

5.1.2 Gates

e Four possible Boolean functions from bit x to bit y:

/1 * o
zly -
0[0 M=) (OI+ap. ) w
L]0 ' ) ' (“\’ 90
0
x|y e (1) 2 O
o1 M= (i) (9).(14) = M)
1)1
rYy
7 (0/) 01 M=pld =X,
(10
IO Cosaateinseol)ies = Qosct o> « (05} o> = (4~
LYy
00 M =Jodlo|+[1>4A] = 12
g-(40) 1 .
! [\7’/’/’/4*9/:7(4
e Interpret M as deterministic dynamical system: |3(,'>'5Jr1 =M |x>t7 eg. M =X
e Yo— e
0) 1) |0)
t 0 1 2
t
[z)" 10) 1) 0)
Figure 10

e Reversible functions: X (NOT gate), 1. Dynamics can be time reversed

M: e——e—e
0) 1) 10)

M i o«
0) 1) l0)

Figure 11

XKL= (IOX/H 4 l/lXO\\'(lOX/Il 4 %o

9, A A 7
= o> o> <Al + WAxoloxt| + [0>Z4> col + |A2> LoW> ol

s Ja>cal t1e>4el

- (5 %)
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5.2 States of two bits

e 4 states of 2: |r1x¢),xo, z1 € {0,1}: ]00),]01),]10),|11), four-dimensional one-
hot vector:

100) = [0), = ,[01) = (1), = ,[10) = [2), = 1) =13), =

o O O
o O = O
O = OO
— o O O

e Label right to left, 1 in the position integer associated with bit string:
1 0. %
|z120) = ‘2 x4+ 2 x0>2

L? 9/4 )’kdwr. 04 /hb ;'wl-,

e Tensor product

0= () 0= ) wew - @9) - e
ol

ns
4’”’ 4 e Check |z1mo) = |71) ® |20) /é’): lau>
» o ’

4 /1~O 0
| N |
estise oy lo) = (3) @ (5) = w wem= (1) o [5)- EQ(;)IDD
gl 0.0 (5 1L)
)(4) |1>®|1>—<4)a(ﬂ)= v o) lw
Nn.Aa

e Summary: with x = 2'x; + 2%z, — sometimes omit ® since no ambiguity
|[T120) = |21) ® |20) = [21) [70) = [2),

e Inner product |11) ® |¢1) with [1ho) @ |d9) (proof, see exercises)

Yty ¥, 4> (Y] @ (@2])([1h1) @ 1)) = (¢althr) <¢2!¢1>7=<0\A> o> =00
e Example 0
Q
(0 & (1)(11) @ [0)) =<owa\ | g) - 0

12



M/% 5.3 Transformations of two bits

home . . . : .
e Functions 2 to 2 bits as 22 x 22 matrices. Example: Dirac and matrix notation.
1 Zo |y wo 5 J00> ool + [\o>col| + 04> ol > 4| =
0O 070 O \
0 1|1 0 M= / o o -
1 0[]0 1 Mios> = 1ao>- L [00D t [19> CAMloo> + fo4D. Lpolew> + /M5 L ]a5>
1 1]1 1
E ﬂ/ﬁg/% goes T &
(/x><9')’2> = Ix> —we o do Iy vt @ heee
e SWAP gate

Sor z) [y) = |y) | =)

Note S(]l = SlO-

e CNOT (Controlled-NOT) C;;. Not symmetric: ¢ control, j target. Target flips if
Cro/12/92 2 1Dy o 1>

control is 1: b w0
Cole)ly) =lz)lyex), Colr)ly) =lzdy)ly) , g

Recall = XOR: 060=0,061=160=1,101=0.

e Dirac and matrix notation:

C10100) = [0 —> o\ oo |00 Coo|
Ciol01) = [0> @ [A@2> =104 oA | 04 = 3
Cioll0) = 1y 9 12@A> =MD AA?\ A/\t) IoA>*<o/l\
Cro[11) = (4> o [ Aer> =\ foutpat > o\ > ¢
| 10> <M

— Oy = foo>Loo] 4 oA >Lotl + [ 4> A2) + (10> )
e Reversible:
0120 |$> |Z/> =

7 “Y

13



|[oe> C oo\ + \od> L0\ 1 \ho> + LoA\ £ \\M> <]

o> =lo0><00) 04> + (04> <10l 0n> + 0> LoMoA> £ \ M>Scaor> = |4o
d 9] A 0
> = (00> Coolgo> + lo1> {Mo[10> + 10> Lotltod> ¢ (M>Lulhod = oA
g A 0 9
MS = [foo>Loo|MD t (0454 M> 4 (1D A US ¢ | N> = M
v © g |
11 ”a‘f - MoT % | = Ol < an ek

S~
(=}
C

— | judtes| comtpl—
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VA

e Reversible transformation 2 bits is A ® B where A, B are reversible 1 bit gates,
ie. A, B e {12, X}

e Tensor product matrices

A® B|lY) ®[¢) = AlY) ® B|g)

o - %;g/ﬂ/ﬁ s
e A® Bis MN x M N matrix: oy %//é’ . /ﬂﬂ?/ //’V%@/l
AO(]B e AO,N*lB
AR B = : : —> . 2, 4L
;ow el dld
Av-10B ... Ay inB J J
e In our case:
Oo qo
o A /| o 0 0 oA
X®1 = /1 o @ o1 ] T\ 16 @ o
» vd © O
LLowX = /
(7%
OO 9| 7 /‘:/}Z(
o | Y, /\> Do 4 0
X®X = 1o B3 Lo = 0-1 o ©
A0 o O
e Note
Cio=10)(0[®@ 1+ 1) (1|® X,
Con =12®10) (0] + X & |1) (1] .
Check:

|0><0|®12+|1><1|®X:<é Z> @(/27> +<L3L4)> @(40:7/)

(57 loeo
h > = i ¢ — [
A 2 ©2 Ao
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5.4 States of n bits

e n bits, 2" bit strings: (7)7{—47/ Veer
|Tpo1 - o) = [Tpe1) @ -+ ® |xo) = |2), x—Z‘z ;
{|z), }2-} orthonormal basis of RV, N = 2",

e n-fold tensor product recursively using (output has length M N)

Yol0)

o ®o
|w>< s ),a»( s ) wels=| "
77Z)N_1 ¢M_1 77Z}]V—1 |¢>

e [ixample: n =3

Q5Io S

A

0
0
[/
i
=10 :|6>3‘
Q
1
0

110) = 1) @ 1) @ [0) = <) (4) > :(A)@
M“”W()aﬁi}v'dh

m«//%//a doing ® st U/ Mn//i//dma it matniacs 6 (24“—56341)

e Notation \
(U7

|='E2> ® |$1> ® |$0> = |$2> |IE1> |5E0> = /X2X4><a>

15



5.5 Transformations of n bits

e Functions of n bits are represented by 2" x 2" matrices. Reversible: permutations.

e SWAP 1-st and 3-rd bits
Ssi|xs) [w2) |21) [20) = [21) |22) [3) |0)
e CNOT C}; (recall: i control, j target
i ( j target) porly! .

Coo [3) |22) |21) [0) = |23) [22) |21) [0 D 22)
7.
e Shortcut notation for 2 x 2 matrix A acting on the i-th vector of an n-fold tensor
product:

A=1L0LE VAR - -®1;.
@cam,é?'/ %phﬁ%%

e [ixamplen =3

X1 :’42 eXxX® AL ;o Xixa) |21) [20) Z'{z\""—> XIXa> A \xo> = (> 1 %> 1%0>

e Operators on different bits commute: A;B; = B;A; if i # j. Example, n = 6:

A3Bi =181, AR 1,2 BR 15 = B A;

e Similarly, A;; the 4 x 4 matrix on the ¢ and j bits, e.g. S;; and C;; above.
(e Mty o« Ao /|, @1, @/IC>-(42@ f, o1, @B 9/(¢>

A 2 4

X.\= AL ® X 9 KL
X, [¥a> ¥, > IX2> = (/lz e X 9 Az>-(\xq>\xa> \*:s>5 - &L\m o X1k e \xd
1

s> 1> 1%

R
_————
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Summary

A computational problem is modelled mathematically as computing a function
from n to m bits, e.g. the problem of factoring integers or finding a satisfying
assignment to a Boolean formula.

The efficiency of an algorithm depends on the computational model used to run
it. An algorithm is efficient if its runtime grows as O(p(n)) where p(n) is a
polynomial of the input size of the problem n.

A classical circuit is a model of a classical computer that has wires and gates.

We can associate one-hot vectors to bit strings and matrices to gates. The states
and gates of many bits are described by the tensor product.

Important reversible classical gates are the NOT gate (also called the X gate),
the CNOT gate, and the SWAP gate.

17
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6.1

Manipulating single qubits
Qubit

6.1.1 Complex numbers

Imaginary number i, i> = —1, define complex number ¢ = a + ib, a,b € R. C set
complex numbers, a = Re(c) real part, b = Im(c) imaginary part.

Usual addition, product rules: example:
(1+i)(2—-3i)=8-1
¢ = a — ib complex conjugate, |c|? = c¢¢ = a* + b* modulus squared. example:

T+i= A3
n+i2= 2 o Lk ~> 1512z 2
Polar representation: with p = |¢|, Euler’s formula 6'9 = CREFII4E

¢ = p(cos(f) + isin(0)) :’geie — rites wit 7@3@ Kypereasion,

Pochls 0/#9/&
example
& (S 9 = /1 (f ?
. i —> 6= 4 §
C:1+Z:W'@$9f—/9/ﬁ9) {99/ Eg;‘l"a=/‘ 2 ] 7
Product, division in polar representation
c10a = p1pae™ ) ey foy = pr ) pae @)
Complex vectors:
Cg, /f ri ﬂ =
v\ e T\, )€
[v) = e C?, 2-1i
(B} ‘ 2
¢y (1= &)@
bra is transpose complex conjugate, also use adjoint symbol |1)T = (¢/| -
(| = (¢1 %) /;4,/ 2 i Ly ”;7
Inner product S ’404/»: /5
- - 7% /e, A
(D) = 191 + data . h’i’w'y fre Eoay
o o5 sl

Norm squared

—_— — 2
)P = (Wl = b 9, + o = B/ +//%2 o )
Similar for N-dimensional vectors CV e el %b A %
/¢5//7'I/c WMM/W;

7%/&%% we e S
18 Corplre Ptz s



Qm\oi\ Cown bﬂ Sten o> a Cafw"zl"{) . HOWW#] ve have ana aSS/'amu/lr/s %r < y /5 el

s 6.1.2 Qubit ~
[%‘o(o\=- el e Quantum state of a qubit is superposition of |0) and |1): 7”‘6’-7[ «c
i%lOlD (/l\ = /P/L
«
NS w=al+sn= (). apsec. faPisE=1
e «, 3 called amplitudes. Interpret as probability in 0: | (0[¢)) [* = |a/?, probability
in 1: | (1]¢) |* = |B]?. Note: normalisation
/ / //é/ﬁ /{ —> /él} Méé?
(Ylp) = 1 = A w
X\('Wll"i I /h,s ﬂhbﬁél/%/
/ e Global phase does not change the probability: [¢)) = e |¢). )D< }2 0\_
K->-8¥ e Degrees of freedom: o = pe™, f = ge'¥. "
,-"5 '— D(/ {
fé"f}'a — PP+ =1=p=cos(?),qg=sin(%), 6 € 0,7]. Fe = /
L; — Global phase: a = p, f = ge’l?=7)

— Two angles: Bloch sphere ) Lt 1n ont

0 ‘0
]w>—cos—|0)+e“"sm 1), 0€l0,7],p€0,27).

J=0 , cro=4 gho=A

- = -,
- - I~
, = -

-
————

Figure 12: Bloch sphere

HW e V(ﬂ)yesml me)"’ ™ lel'l\a’%
_guwwwlmfw'na civui ¥

— Owe ok \\\nv 0]\4(,5\—10\/»'7 18 3ro &m& phtd%iznl iw‘)'m«m\%w o{ o o{ub»’l’,
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6.2 Transformations of a qubit

Adjoint matrix A as transpose complex conjugate:

— At =AT.
= If |¢) = AlY), (6| = (] AT.
— (AB)" = BTAT.
e General linear transform |¢) = U 1), needs to preserve normalization: _—
— T — — .
(6l6) = (I UTU ) = () = 1, hesfomalion of gt
U'U = 1: unitary. 'z Hoia a gﬂfé

U~! = UT, reversible

V) = |¢) = U l¢)
) = U'[9) « |9)

1 1

Discrete quantum dynamics [¢0)™ = U |¢)". Example: U = \% <1 _1)

A\ 0><.
2

> D(;—ﬁ=J/E—

[évéh/mh/éé'& K< ;4/{5

[(Olw)']* 1 ; 0

Figure 13

e Negative signs: destructive interference, deterministic outcome from randomised
operation. Impossible with classical probabilities!
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’ 6.3’ Single qubit gates
e (lassical reversible gates are unitary

X=ar+moi= (3 5) . t=mo+ma=(y ).

Example
X ) = X(«|0) + B1)) =
e X is called the x Pauli matrix. Other important unitary gates:

— The y and x Pauli matrices
. . : 0 —i
Y =iXZ =—i|0) (1| +i|1) (0] = (z O) ,
1 0
z=mol-nal=(; %)
— Hadamard gate

=gen=(t )

e Relations

- XZ=-7X:
X2 = (10) (1 + 1) 0D (10} (O] = [1) (1) = |1) (O] = 03 (1] ,
ZX = (]0) (O] = 1) (1) (10} (1] + 1) (0]) = [0) (1] = |1) (0]

— H?> =1,
HQ:%(X+Z)(X+Z):%(X2+ZX+ZX+Z2):12.
~ HXH=17
HXH:;X+@XQHJD:gb+ZXNX+@

1
=X+ Z+2+2X2)=27.

— HZH = X. This follows from the previous property and H? = 1,.
e Measurement gate, irreversible: projects and returns readout bit (Born rule)

0) prob |af?
1) prob [B*

Only way to get classical information from a qubit. Samples from binary random
variable p = (po, p1) with

04|0>+5|1>—>|33>={

Po = |04|2a pP1 = |5|2: - |04|2-
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6.4 Circuit diagrams for a single qubit

e wire: qubit, gates: transformations (unitary and measurement)

Wire |)

Unitary gate ) — 7 Ula))

Measurement gate — |q) _| /7< L |z)

Figure 14

e Concatenation

v — U V — VU[Y)

Figure 15

e Compute the probability of measuring z = 0

0)— H H A |=)

i

Figure 16

|0) = H|0) =

probability measuring 0 is

22



Summary

e Qubit superposition of classical bit strings, normalised complex vector.

e Quantum circuits give a convenient way to describe quantum a sequence of quan-
tum gates.

e The most important unitary single qubit gates are the Pauli matrices and the
Hadamard gate.

e Measurement gates are irreversible. Born rule dictates the outcome of a measure-
ment.
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