Lecture 2: Quantum Circuits

Outline

e State and gates of multiple qubits
e Quantum circuits diagrams
e Entangled states and generalised Born rule

e Universality and efficiency of quantum algorithms

Intended Learning Outcomes

e Understanding and applying the matrix and quantum circuit representation of
quantum gates.

e Remembering the definition of entanglement and the generalised Born rule for
partial quantum measurement.

e Analysing the efficiency of quantum algorithms.

Why this matters

e Quantum circuit is the language in which quantum algorithms are described.

e Knowing the foundations of this chapter will allow you to understand the descrip-
tion of any quantum algorithm, including latest research.



Manipulating states of multiple qubits

1.1 States of multiple qubits and their unitary transformations

e State of n qubits

n—1 on—1
)= alz), . W)= |aP=1.
=0 =0

a, € C and |[¢) € C?". |a,|? = probability of z, and [)) = e |¢)).

. -1 ;
e Since z =" 27,

j=0 Tj
1 1 1
) = Z Z T Z gy ywn—sao [Tn—1) [Tn—2) -+ [T0)
Tp_1=0x,_2=0 xo=0
Ay = Qg a2

e Linear operations preserve norm:
WU ) = () =1 = UTU =1
U: 2™ x 2™ unitary matrix, reversible.
e Examples
— Reversible classical gates C' (permutations) are unitary, act linearly
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— CNOT Cy on |[¢) of 3 qubits:
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— The tensor product of unitary gates is unitary

U=H® 1, ® X = H2X07 U W> = Z Ck22961:B0(I{ |I2>> |JJ1> (X ’$0>)

x2,T1,20



1.2 Quantum circuits with multiple qubits

e n wires or registers for n qubits, label bottom to top.

e Gates as boxes wires act on
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e Controlled-U (write CY)
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e U = X is CNOT and has special notation
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e Note: define action on basis state |z) |y), extend on any inputs by linearity.



1.3 Entangled states

e n qubit state |1)) is separable if [1)) = |1, 1) ® |[thp_2) @ -+ @ |thg), |¢;) € C2.
Otherwise, entangled.

e Example: Bell state (a.k.a. EPR pair after Einstein, Podolsky, Rosen)
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e Is [¢)) = £(|00) + |10) — [01) — |11)) entangled? No:
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1.4 Generalised Born rule

e Measurement gates are non-reversible.

o If [) = 322" T, |z),,, measuring all qubits projects onto |z), and we readout x
with probability |a,|?.
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e Partial measurement, e.g. top one
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e We can expose top qubit as
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e If measure x € {0,1} state is |z)|¢,). Need to normalise! Generalised Born rule:
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e |||¢.) ||* for probability mass of events compatible with measurement outcome:
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e Example: Bell state of 2 qubits
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Measurement leftmost qubit gives 0 with probability | [¢o) [|> = (¢o|¢o) = 3, and
state is
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e Note: measuring m qubits same as m sequential 1 qubit measurements (see exer-
cise)
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1.5 Universality and efficient quantum algorithms

e A quantum computer that can implement approximately any unitary on n qubits
is called universal.

— Elementary gate set G s.t. for each U there is Si,...,5; € G such that
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e Single qubit gates and CNOT between any pair of qubits is universal (see exercise
on implementing Toffoli).

e Quantum algorithms associate to input bits a quantum circuit — sequence of
quantum gates. Measurement computes output
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Figure 7: A quantum algorithm has input a bit string describing a computational
problem and outputs a bit string corresponding to the output of the computational
problem after measurement in a quantum circuit.

e Runtime: number of elementary gates. Efficient if O(p(n)), n: input size.

e How to simulate a quantum circuit Uy - - - UyU; on a classical computer?
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(x| U; |y) efficient since U; acts on 1 or 2 qubits

n
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If ¢ is poly n, memory poly n but time is exponential in n.

e We believe there is no efficient classical simulation algorithm of general quantum
circuits.



Summary

In this chapter, we learnt that:

States of n qubits are superpositions of classical bit strings and are described by
vectors of length 2", normalised so that each entry squared is a probability of a
measurement outcome.

Quantum circuits give a convenient way to describe quantum a sequence of quan-
tum gates.

The most important unitary gates are the Pauli matrices, the Hadamard gate,
and the CNOT gate.

Measurement gates are irreversible. The generalised Born rule dictates the out-
come of a measurement.

Quantum algorithms are sequence of gates, efficient if polynomial in input size.



