
Lecture 2: Quantum Circuits

Outline

• State and gates of multiple qubits

• Quantum circuits diagrams

• Entangled states and generalised Born rule

• Universality and e!ciency of quantum algorithms

Intended Learning Outcomes

• Understanding and applying the matrix and quantum circuit representation of
quantum gates.

• Remembering the definition of entanglement and the generalised Born rule for
partial quantum measurement.

• Analysing the e!ciency of quantum algorithms.

Why this matters

• Quantum circuit is the language in which quantum algorithms are described.

• Knowing the foundations of this chapter will allow you to understand the descrip-
tion of any quantum algorithm, including latest research.
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1 Manipulating states of multiple qubits

1.1 States of multiple qubits and their unitary transformations

• State of n qubits

|ω→ =
2n→1∑

x=0

εx |x→n , ↑ω|ω→ =
2n→1∑

x=0

|εx|
2 = 1 .

εx ↓ C and |ω→ ↓ C2n . |εx|
2 = probability of x, and |ω→ ↔ eiω |ω→.

• Since x =
∑n→1

j=0 xj2j,

|ω→ =
1∑

xn→1=0

1∑

xn→2=0

· · ·

1∑

x0=0

εxn→1xn→2···x0 |xn→1→ |xn→2→ · · · |x0→ ,

εx ↔ εxn→1···x1x0 .

• Linear operations preserve norm:

↑ω|U
†
U |ω→ = ↑ω|ω→ = 1 ↗ U

†
U = 1

U : 2n ↘ 2n unitary matrix, reversible.

• Examples

– Reversible classical gates C (permutations) are unitary, act linearly

|ω→ = ε0 |0→2 + ε1 |1→2 + ε2 |2→2 + ε3 |3→2 ,

C |0→2 = |1→2 , C |1→2 = |2→2 , C |2→2 = |3→2 , C |3→2 = |0→2 ,

↗ |ϑ→ = C |ω→ = ε3 |0→2 + ε0 |1→2 + ε1 |2→2 + ε2 |3→2
↗ ↑ϑ|ϑ→ = |ε3|

2 + |ε0|
2 + |ε1|

2 + |ε2|
2 = 1 .

– CNOT C20 on |ω→ of 3 qubits:

C20 |ω→ =
∑

x2,x1,x0

εx2x1x0 |x2→ |x1→ |x0 ≃ x2→ ,

– The tensor product of unitary gates is unitary

U = H ⇐ 12 ⇐X = H2X0 , U |ω→ =
∑

x2,x1,x0

εx2x1x0(H |x2→) |x1→ (X |x0→)
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1.2 Quantum circuits with multiple qubits

• n wires or registers for n qubits, label bottom to top.

• Gates as boxes wires act on

Figure 1

• Controlled-U (write C
U)

Figure 2

• U = X is CNOT and has special notation

|x→X
x
|y→ = |x→ |y ≃ x→

• Note: define action on basis state |x→ |y→, extend on any inputs by linearity.
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1.3 Entangled states

• n qubit state |ω→ is separable if |ω→ = |ωn→1→ ⇐ |ωn→2→ ⇐ · · · ⇐ |ω0→, |ωi→ ↓ C2.
Otherwise, entangled.

• Example: Bell state (a.k.a. EPR pair after Einstein, Podolsky, Rosen)

|ω00→ =
1
⇒
2
(|0→A |0→B + |1→A |1→B)

• Is |ω→ = 1
2(|00→+ |10→ ⇑ |01→ ⇑ |11→) entangled? No:

H |0→ ⇐H |1→ =
1
⇒
2
(|0→+ |1→)⇐

1
⇒
2
(|0→ ⇑ |1→) =

1

2
(|00→+ |10→ ⇑ |01→ ⇑ |11→) .

• This circuit prepares |ω00→

Figure 3

|0→ |0→ ⇓⇔
1
⇒
2
(|0→+ |1→) |0→ ⇓⇔

1
⇒
2
(|00→+ |11→)
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1.4 Generalised Born rule

• Measurement gates are non-reversible.

• If |ω→ =
∑2n→1

x=0 εx |x→n, measuring all qubits projects onto |x→n and we readout x
with probability |εx|

2.

Figure 4

• Partial measurement, e.g. top one

Figure 5

• We can expose top qubit as

|ω→ =
∑

xn→1

∑

xn→2,··· ,x0

εxn→1xn→2···x0 |xn→1xn→2 · · · x0→

= |0→
∑

xn→2,··· ,x0

ε0xn→2···x0 |xn→2 · · · x0→+ |1→
∑

xn→2,··· ,x0

ε1xn→2···x0 |xn→2 · · · x0→

↔ |0→ |ϑ0→+ |1→ |ϑ1→

• If measure x ↓ {0, 1} state is |x→ |ϑx→. Need to normalise! Generalised Born rule:

|ω→ ⇓⇔

{
|0→ |ε0↑

↓|ε0↑↓ with prob ↖ |ϑ0→ ↖
2

|1→ |ε1↑
↓|ε1↑↓ with prob ↖ |ϑ1→ ↖

2

• ↖ |ϑx→ ↖
2 for probability mass of events compatible with measurement outcome:

↖ |ϑx→ ↖
2 =

∑

xn→2,...,x0

∑

yn→2,...,y0

εxxn→2···x0εxyn→2···y0 ↑xn→2|yn→2→ · · · ↑x0|y0→

=
∑

xn→2,...,x0

|εxxn→2···x0 |
2
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• Example: Bell state of 2 qubits

|ω→ =
1
⇒
2
(|00→+ |11→)

|ϑ0→ =
1
⇒
2
|0→

|ϑ1→ =
1
⇒
2
|1→

Measurement leftmost qubit gives 0 with probability ↖ |ϑ0→ ↖
2 = ↑ϑ0|ϑ0→ =

1
2 , and

state is

|0→
|ϑ0→

↖ |ϑ0→ ↖
=

1
⇒
2

|00→
1↔
2

= |00→

• Note: measuring m qubits same as m sequential 1 qubit measurements (see exer-
cise)

Figure 6
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1.5 Universality and e!cient quantum algorithms

• A quantum computer that can implement approximately any unitary on n qubits
is called universal.

– Elementary gate set G s.t. for each U there is S1, . . . , Sk ↓ G such that
↖U ⇑ S1 · · ·Sk↖ ↙ ϖ

– ↖A↖: operator norm of A, maxϑ ↗=0
↓A|ϑ↑↓
↓|ϑ↑↓ .

• Single qubit gates and CNOT between any pair of qubits is universal (see exercise
on implementing To”oli).

• Quantum algorithms associate to input bits a quantum circuit – sequence of
quantum gates. Measurement computes output

Figure 7: A quantum algorithm has input a bit string describing a computational
problem and outputs a bit string corresponding to the output of the computational
problem after measurement in a quantum circuit.

• Runtime: number of elementary gates. E!cient if O(p(n)), n: input size.

• How to simulate a quantum circuit Uϖ · · ·U2U1 on a classical computer?

↑y|Uϖ · · ·U2U1 |0
n
→ =

∑

x(ω→1)···x(1)

↑y|Uϖ|x
(ϖ→1)

→ · · · ↑x
(1)
|U1 |0

n
→

↑x|Ui |y→ e!cient since Ui acts on 1 or 2 qubits

↑x|Ui |y→ = ↑x2x1|Ui |y2y1→

n∏

k=3

ϱxk,yk .

If ς is poly n, memory poly n but time is exponential in n.

• We believe there is no e!cient classical simulation algorithm of general quantum
circuits.
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Summary

In this chapter, we learnt that:

• States of n qubits are superpositions of classical bit strings and are described by
vectors of length 2n, normalised so that each entry squared is a probability of a
measurement outcome.

• Quantum circuits give a convenient way to describe quantum a sequence of quan-
tum gates.

• The most important unitary gates are the Pauli matrices, the Hadamard gate,
and the CNOT gate.

• Measurement gates are irreversible. The generalised Born rule dictates the out-
come of a measurement.

• Quantum algorithms are sequence of gates, e!cient if polynomial in input size.
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