
Chapter 3

Classical Computing

In this lecture, we will introduce useful concepts from computer science
and discuss the classical circuit computational model of classical comput-
ers, which we will generalise in the next lecture to define what quantum
computers are.

3.1 Motivating Examples

Computers, classical or quantum, solve computational problems. By
this we mean the problem of computing a certain function from n to m
bits. Practically, all problems you can think about fit this pattern, after
appropriate discretisation. The general idea is that we can always specify a
problem using an integral approximation of its inputs, and giving an integer
x is the same as giving its bitwise decomposition: x =

∑n→1
i=0 xi2i, where xi →

{0, 1}. Some examples of computational problems we shall be discussing in
this course are:

• Integer factoring: find the prime factors of the integer x. For example,
if x = 15, return 3, 5. Here n is the number of bits of x, and m that of
its prime factors. Integer factoring is an important problem since its
hardness for classical computers underlies security of public-key cryp-
tography which is behind internet transaction. Shor’s algorithm is a
quantum algorithm that can solve this problem e!ciently, compromis-
ing in principle security of these cryptographic schemes.

• 3SAT problem: find whether there exists a p-bit string z that satisfies
all clauses Ci(z)

f(x) = C1(z) ↑ C2(z) ↑ · · · ↑ Cq(z)

11

Ci is the logical OR of 3 variables or their negation. For example,
p = 4, q = 2: C1(z) = z1 ↓ z2 ↓ z3, C2(z) = ¬z2 ↓ ¬z3 ↓ z4, whose so-
lution is for example z1 = 1, z2 = z3 = z4 = 0. Each Ci is represented
by specifying which variables occur in it and whether they are negated
or not, so it can be specified by three p+1-bit strings (the +1 for the
negation). So 3SAT amounts to evaluate the Boolean function which
takes as input the n-bit string describing the clauses and returns 1 if
there is a satisfying assignment and 0 otherwise. 3SAT is a central
problem in computer science, in particular in computational complex-
ity, where it is known as one of the hardest problems. We will see that
quantum computers are not believed to solve this e!ciently either.

• Matrix function evaluation: given a 2p↔2p matrix A, compute a matrix
element of a given function of it, for example (A→1)ij or (exp(A))ij ,
where

exp(A) = 1+A+
1

2
A2 + . . .

The problem of inverting a matrix allows one to solve linear systems
Ax = b, which are ubiquitous in optimisation and machine learn-
ing for example, and the problem of computing the matrix exponen-
tial amounts to being able to solve di”erential equations of the form
d
dtx(t) = Ax(t). In this case, we assume that the matrix A can be
specified by giving a number of bits that is a polynomial of n, for
example by giving the coe!cients of the matrix in a given expansion,
A =

∑n
i=1 aiEi, where Ei are fixed matrices and ai can be discretised

with q bits say. The input will also include which matrix element to
compute. The output of the function computed in this case is a dis-
crete approximation to the matrix element of the matrix function to
evaluate. Classical computers can solve these problems in time (2n)3,
which becomes prohibitive after moderate values of n of the order of
n = 10. Instead, we will see that under certain assumptions on the
matrix, quantum computers can solve this in time polynomial in n,
allowing in principle much bigger sizes to be studied.

3.2 E!ciency of Algorithms

We have seen that computational problems can then be thought of as com-
puting certain functions that take as input an n bit-string and return another

12

bit-string of length m. To solve a computational problem, we then want to
find an algorithm, that computes this function in an e!cient way.

Defining what we mean by an e!cient algorithm depends on two aspects:
the computational model we are using – for example, whether we run it on
a classical or a quantum computer – and what resource we use to determine
e!ciency, and for definiteness you can think about the runtime. We also
consider the worst-case scenario, namely the worst runtime over the possible
inputs. Note that there are other resources, such as memory or energy, that
are also useful. We call the runtime of an algorithm its time complexity.

In the theory of computational complexity, it is useful to consider how
the runtime grows with the input size n rather than the specific time it
takes to solve a single instance. The runtime is the sum of the time of
each operation required by the algorithm. The exact time it takes to run a
single operation on a computer depends on the specificity of the hardware
manufacture process and we do not want to consider that: if the runtime is
of the form Cnk, the constant C in front is a”ected by the exact time of each
operation, and so we do not care about it. The big-O notation helps with
this: we say that a function f is O(g(n)) if there exists an integer n0 and a
positive constant C such that for n ↗ n0, |f(n)| ↘ C|g(n)|. This situation
is illustrated in figure 3.1.

Figure 3.1: f(n) being O(g(n)) means that after some n0, f(n) is upper
bounded by Cg(n).

With these notions, we say that an algorithm is e!cient for computing
a function f : {0, 1}n ≃ {0, 1}m if the runtime is O(p(n)) where p(n) is a
polynomial of n. In this case, we say that the problem under consideration
is easy or tractable. If there does exist any polynomial time algorithm to
solve a problem, we instead say that the problem is hard or intractable.
To appreciate how fast exponential functions grow, you can think that if
n > 265, then 2n is greater than the number of atoms in the universe. If

13

a quantum computer has an exponential speedup with respect to the best
classical algorithms, it will be able to run computations which will never be
practical for classical computers.

The choice of polynomial seems arbitrary. After all, if the runtime is
O(n) or O(n100), it does make a big di”erence. However, this choice is
justified by two reasons. First, polynomials compose nicely: if you have a
polynomial algorithm as a subroutine of another polynomial algorithm, the
overall runtime is polynomial. And second, in practice, the majority of the
algorithms we have discovered are polynomial with a small exponent. Prov-
ing that there is no polynomial time algorithm to solve a problem is hard,
and in practice we have a lot of conjectures, which almost everyone believes
are true, pointing to the existence of such hard problems. We have already
discussed briefly some of the expectations with respect to the existence of
e!cient classical or quantum algorithms for the examples illustrated above.

3.2.1 Some complexity classes

In complexity theory, we say that a function is in the class P if there is
a classical algorithm that computes the output in time polynomial in n
for every binary string x of length n and for every n. This is the class
of e!ciently solvable problems. Some trivial examples are the sum of two
integers, and less trivial examples are determining whether a graph has a
pairing of all its vertices such that every pair is an edge of the graph (perfect
matching) and determining whether an integer is prime (primality testing).

Many useful classical algorithms use randomness. For example, in ma-
chine learning, data is assumed to be drawn from a probability distribution
randomly, and in Markov Chain Monte Carlo you toss a coin to decide the
next state of the Markov Chain. We call these algorithms probabilistic, as
often we get the right result only with a certain probability, but that is
enough for many applications. A function is in the class BPP (bounded-
error, probabilistic, polynomial time) if there exists a classical probabilistic
polynomial-time algorithm A such that on every input x (independently of
its size), we have that the probability of A(x) ⇐= f(x) at most 1/3. Running
this algorithm k times can make the probability of order e→k – the argument
is standard and uses a result called the Cherno” bound, but I omit it here
due to space.

Another important class is the class NP. It is defined for Boolean func-
tions, namely problems where the answer is either 0 or 1. These problems are
called classification or decision problems, since the task is to decide whether
f(x) = 1, in which case we say it is in class C, or f(x) = 0, when x is not in

14

C. For example, we can consider the class C of composite numbers, those
that are not prime. If we do not have an e!cient algorithm for computing
whether a number has this property, we can however check it if we are given
a proof for it, namely a decomposition of a number into its factors. This
check is e!cient, since we can simply take the multiplication of its factors
(which is e!cient since multiplication is in P) and see whether the outcome
equals the number. NP is the class of such classification problems, where
verifying membership x → C can be done by a polynomial time verification
algorithm that uses a polynomial-size witness. The witness in the example
of the composites class is the set of factors. A famous problem in NP is
SAT, where the class is that of clauses with a satisfying assignment and the
witness is a string satisfying the clauses. SAT is in fact an NP-complete
problem, namely all the problems in NP can be e!ciently reduced to it, and
is in this sense the hardest problem in NP . Another example we have en-
countered is factoring integers, if we formulate the input as a triple (x, a, b)
and the class is that of integers x which have a prime factor in the interval
[a, b]. Decision problems in P are also in NP since we can simply take the
verifier to be the e!cient algorithm for computing membership in the class.
Whether P = NP is one of the most important open problems in computer
science and beyond and is widely conjectured to be false. This conjecture
implies that no e!cient algorithm exists for NP-complete problems.

Finally, we also define the class PSPACE of functions computable with a
polynomial amount of memory but possibly exponential time, and is believed
to be strictly larger than NP . This class will be relevant to understand the
relationship between classical and quantum algorithms.

3.3 Classical Circuits

To develop a theory of computation, it is useful to model the components
of a computer as mathematical functions, abstracting away the details of
the implementation. We are going to discuss here a mathematical model of
a classical computer, which will help us contrasting it with the model of a
quantum computer we will introduce in the next lecture. It turns out that
many equivalent models of classical computers exist. The most famous one
is the Turing machine, but for our purposes, the most useful one is that of
classical circuits. A classical circuit is made up of wires and gates. Wires
carry classical information, namely bits. Gates transform that information.
An example of a classical circuit is in figure 3.2. Computation time flows
from left to right. Wires are represented as lines where the bit is carried

15

Figure 3.2: A classical circuit with n = 4 input bits x0, x1, x2, x3 and m = 4
outputs. Note that we label the bits from 0 to n ⇒ 1 and from bottom to
top.

through unchanged. Boxes represent gates that act non-trivially only on bits
associated to the input wires. A gate with k input wires and k output wires
is a function g : {0, 1}k ≃ {0, 1}k and is called reversible if there exists
an inverse gate g→1 such that g(g→1(x)) = x for all inputs x. Reversible
transformation will play an important role in quantum computing, as they
can be used directly as quantum gates as we shall see. Note that we can
always embed a gate with a di”erent number of inputs and outputs, such as
the AND gate, which takes in two bits and returns one bit equal to 1 if and
only if both inputs are 1, into a gate with the same number of inputs and
inputs. Moreover, we can always make that embedding reversible. Indeed
let f : {0, 1}k ≃ {0, 1}ω be an arbitrary function and consider the following
function Rf : {0, 1}k+ω

≃ {0, 1}k+ω:

Rf : (x, y) ⇑≃ (x, y ⇓ f(x)) .

Here x has k bits and y has ω bits and ⇓ is the bitwise XOR:

xn→1 · · ·x1x0 ⇓ yn→1 · · · y1y0 = zn→1 · · · z1z0 , zi = xi ⇓ yi

0⇓ 0 = 1⇓ 1 = 0 , 0⇓ 1 = 1⇓ 0 = 1 .

Rf is reversible since x⇓ x = 0 for any x, so:

(Rf)
2 : (x, y) ⇑≃ ((x, y ⇓ f(x)⇓ f(x)) = (x, y) ,

and allows us to compute f by simply acting on (x, 0). This discussion shows
that we can indeed restrict ourselves to reversible circuits to implement
any (non-reversible) function, and the overhead in using Rf instead of f is
polynomial, and it does not matter from the algorithmic e!ciency point of
view we introduced.

16

In fact, in the circuit model of classical computers, the number of steps
is the number of elementary gates that are used by the algorithm. By
elementary gates we mean a fixed set of gates that we can use – we will see
many examples of those below – and importantly, we require that the number
of inputs and outputs of every gates in this elementary set is constant as
the size of the problem n grows. Thus an algorithm is e!cient when run
on the classical circuit model if the number of elementary gates grows only
polynomially with the size of the input n. It turns out that many choices of
elementary gate sets are equivalent in the sense that we can implement gates
in one set in terms of gates in another set using only a number of operations
that is constant in the problem input size n. In this sense, which elementary
gate set used is irrelevant if we care about the asymptotic complexity. We
call this set of elementary gates universal if any function can be implemented
out of compositions of it – for example, AND and XOR gates form a universal
set.

3.4 Matrix Representation of Classical Gates

3.4.1 Single Bit Gates

Recall that a bit is a variable with two possible values: x → {0, 1}. We can
represent it as a two-dimensional one-hot vector:

0 ⇑≃ |0⇔ =

(
1
0

)
, 1 ⇑≃ |1⇔ =

(
0
1

)

|v⇔ is called “ket” and the notation used here and below is called Dirac nota-
tion, from Paul Dirac, the quantum physicist who introduced it. This nota-
tion is standard in quantum computing, so we are going to use it throughout
the course. The ket notation should be thought to be analogous to the arrow
notation of vectors εv. Di”erently from conventions with the arrow notation
however, we simply write |x⇔ instead of εex to denote the one-hot vectors
above.

The reason for the name ket comes from the notion of scalar product or
bracket. In fact, we define bras associated with kets by

↖0| =
(
1 0

)
, ↖1| =

(
0 1

)

17

and their scalar products denoted as ↖x|y⇔

↖0|0⇔ =
(
1 0

)(1
0

)
= 1

↖0|1⇔ =
(
1 0

)(0
1

)
= 0

↖1|0⇔ =
(
0 1

)(1
0

)
= 0

↖1|1⇔ =
(
0 1

)(0
1

)
= 1 .

In the language of linear algebra, |0⇔ , |1⇔ form an orthonormal basis of R2

since ↖x|y⇔ = ϑxy, with ϑxy the Kronecker delta: 1 if x = y and 0 otherwise.
We also denote by |x⇔ ↖y| the matrices:

|0⇔ ↖1| =

(
1
0

)(
0 1

)
=

(
0 1
0 0

)
, |1⇔ ↖0| =

(
0 0
1 0

)

|0⇔ ↖0| =

(
1 0
0 0

)
, |1⇔ ↖1| =

(
0 0
0 1

)

Note that these formulas are compatible with the standard rules of matrix
multiplication: in ↖x|y⇔ we multiply a 1 ↔ 2 by a 2 ↔ 1 matrix producing a
1 ↔ 1, i.e. a scalar. While in |x⇔ ↖y| we multiply a 2 ↔ 1 by a 1 ↔ 2 matrix
producing a 2 ↔ 2 matrix. Also note that the notation composes as you
would expect: multiplying the matrix |x⇔ ↖y| by the vector |z⇔ produces the
new vector:

(|x⇔ ↖y|) |z⇔ = ↖y|z⇔ |x⇔

We can add kets, bras and matrices as you would do with the arrow notation,
e.g. the following is a representation of the 2↔ 2 identity matrix:

|0⇔ ↖0|+ |1⇔ ↖1| = 12

Finally, if one has a matrix

M =

(
M00 M01

M10 M11

)

18

the matrix elementMxy can be obtained by taking the inner product ↖x|M |y⇔.
For example,

↖0|M |1⇔ =
(
1 0

)(M00 M01

M10 M11

)(
0
1

)
= M01 .

With these preparations, we are now going to discuss single bit gates.
There are four possible Boolean functions from bit x to bit y, represented
as matrices in Dirac notation:

x y
0 0
1 0

M = |0⇔ (↖0|+ ↖1|) ,
x y
0 1
1 1

M = |1⇔ (↖0|+ ↖1|)

x y
0 1
1 0

M = |0⇔ ↖1|+ |1⇔ ↖0| = X ,
x y
0 0
1 1

M = |0⇔ ↖0|+ |1⇔ ↖1| = 12

A useful mental model which connects computation with physics and un-
derlies some of the ideas behind quantum computing, is to think about
the action of the gate M as defining a deterministic dynamical system:
|x⇔t+1 = M |x⇔t. For example if M = X, the evolution can be represented
as in figure 3.3.

Figure 3.3:

Reversible functions are those that can be inverted, X (also called the
NOT gate), 12, while the other two are not invertible. If M is invertible the
dynamics generated by M can be time reversed, as in figure 3.4.

3.4.2 States of two bits

There are 4 possible states of 2 bits which we denote by |x1x0⇔ , x0, x1 →

{0, 1}: |00⇔ , |01⇔ , |10⇔ , |11⇔, and to which we assign a four-dimensional one-

19

Figure 3.4:

hot vector:

|00⇔ ↙ |0⇔2 =





1
0
0
0



 , |01⇔ ↙ |1⇔2 =





0
1
0
0



 , |10⇔ ↙ |2⇔2 =





0
0
1
0



 , |11⇔ ↙ |3⇔2 =





0
0
0
1



 .

Here the notation |x⇔2 means a vector of dimension 22 = 4. The identifica-
tion with four-dimensional vectors can be written compactly as

|x1x0⇔ ↙
∣∣21x1 + 20x0

〉
2

which means that if we label the bits from right to left, the associated
one-hot vectors have a 1 in the position corresponding to the integer value
represented by the bit string.

Now we introduce the tensor product of two vectors by:

|ϖ⇔ =

(
ϖ1

ϖ2

)
, |ϱ⇔ =

(
ϱ1

ϱ2

)
, |ϖ⇔ ∝ |ϱ⇔ =

(
ϖ1 |ϱ⇔
ϖ2 |ϱ⇔

)
=





ϖ1ϱ1

ϖ1ϱ2

ϖ2ϱ1

ϖ2ϱ2





We have that |x1x0⇔ = |x1⇔ ∝ |x0⇔ as we can easily check:

|0⇔ ∝ |0⇔ =

(
1
0

)
∝

(
1
0

)
=





1
0
0
0



 , |0⇔ ∝ |1⇔ =

(
1
0

)
∝

(
0
1

)
=





0
1
0
0



 ,

|1⇔ ∝ |0⇔ =

(
0
1

)
∝

(
1
0

)
=





0
0
1
0



 , |1⇔ ∝ |1⇔ =

(
0
1

)
∝

(
0
1

)
=





0
0
0
1



 .

20

In summary, we can associate to a bit string of length 2 a basis vector
|x1x0⇔ which corresponds to |x⇔2 with x = 21x1+20x0, and in turns we have
|x1x0⇔ ↙ |x1⇔ ∝ |x0⇔. The inner product of |ϖ1⇔ ∝ |ϱ1⇔ with |ϖ2⇔ ∝ |ϱ2⇔ is
given by

(↖ϖ2|∝ ↖ϱ2|)(|ϖ1⇔ ∝ |ϱ1⇔) = ↖ϖ2|ϖ1⇔ ↖ϱ2|ϱ1⇔

It is a good exercise to verify this by comparing the l.h.s. with the r.h.s., see
also exercise 3.4.9. See Appendix A for more on tensor products.

3.4.3 Transformations of two bits

Functions of 2 bits can be written as 22 ↔ 22 matrices. For example, the
following function swaps the two bits and can be represented equivalently
using truth tables, Dirac notation and matrix notation as follows:

x1 x0 y1 y0
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

M = |00⇔ ↖00|+ |10⇔ ↖01|+ |01⇔ ↖10|+ |11⇔ ↖11| =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





In general, reversible transformations map distinct bit strings to distinct bit
strings, so they coincide with permutation matrices.

As already noticed, M in the example above is the SWAP: S01 |x⇔ |y⇔ =
|y⇔ |x⇔:

S01 = |00⇔ ↖00|+ |10⇔ ↖01|+ |01⇔ ↖10|+ |11⇔ ↖11|

Note S01 = S10.
Another important example of reversible transformation of 2 bits is the

CNOT (Controlled-NOT) Cij . This is not symmetric. i is called control bit,
and j the target bit, and the action of C10 is:

C10 |x⇔ |y⇔ = |x⇔ |y ⇓ x⇔ , C01 |x⇔ |y⇔ = |x⇓ y⇔ |y⇔ ,

where recall that ⇓ = is the XOR: 0 ⇓ 0 = 0, 0 ⇓ 1 = 1 ⇓ 0 = 1, 1 ⇓ 1 = 0.
Recall also that in our notation we label bits from right to left, so the 0-th
bit is the one on the right, and the 1-st bit is the one on the left. The action
of Cij is that the target (j-th) bit is flipped if the control (i-th) bit is 1 and

21

otherwise nothing happens. In Dirac and matrix notation we can write

C10 = |00⇔ ↖00|+ |01⇔ ↖01|+ |11⇔ ↖10|+ |10⇔ ↖11| =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



 .

Another example of reversible transformation of 2 bits is A ∝ B where
A,B are reversible 1 bit transformations, i.e. A,B → {12, X}. The tensor
product of matrices acts on a tensor product of vectors by

A∝B |ϖ⇔ ∝ |ϱ⇔ = A |ϖ⇔ ∝B |ϱ⇔

so that A∝B is associated to the MN ↔MN matrix:

A∝B =




A00B . . . A0,N→1B

...
. . .

...
AN→1,0B . . . AN→1,N→1B





In our case, we have:

X ∝ 12 =

(
0 1
1 0

)
∝

(
1 0
0 1

)
=





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



 ,

12 ∝X =

(
1 0
0 1

)
∝

(
0 1
1 0

)
=





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





X ∝X =

(
0 1
1 0

)
∝

(
0 1
1 0

)
=





0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



 .

You can also verify the following representations:

C10 = |0⇔ ↖0|∝ 12 + |1⇔ ↖1|∝X ,

C01 = 12 ∝ |0⇔ ↖0|+X ∝ |1⇔ ↖1| .

22

3.4.4 States of n bits

For n bits we have 2n possible bit strings:

|xn→1 · · ·x0⇔ = |xn→1⇔ ∝ · · ·∝ |x0⇔ ↙ |x⇔n , x =
n→1∑

j=0

2jxj ,

where {|x⇔n}
N→1
x=0 is a basis of CN , N = 2n. The n-fold tensor product is

defined recursively and using the more general formula:

|ϖ⇔ =




ϖ0
...

ϖN→1



 , |ϱ⇔ =




ϱ0
...

ϱM→1



 , |ϖ⇔ ∝ |ϱ⇔ =





ϖ0 |ϱ⇔
ϖ1 |ϱ⇔

...
ϖN→1 |ϱ⇔





Note that the output is a vector of length MN . For example, for n = 3 we
have

|110⇔ = |1⇔ ∝ |1⇔ ∝ |0⇔ =

(
0
1

)
∝

(
0
1

)
∝

(
1
0

)
=





0
0
0
1



∝

(
1
0

)
=





0
0
0
0
0
0
1
0





= |6⇔3 .

To ease notation we will sometimes omit the tensor product symbol, since
there is no ambiguity as there is no other notion of product between kets:

|x2⇔ ∝ |x1⇔ ∝ |x0⇔ ↙ |x2⇔ |x1⇔ |x0⇔

3.4.5 Transformations of n bits

Functions of n bits are represented by 2n ↔ 2n matrices and reversible ones
are the permutations of the 2n bit strings. For example, the SWAP of the
1-st and 3-rd bits is:

S31|x3⇔ |x2⇔ |x1⇔ |x0⇔ = |x1⇔ |x2⇔ |x3⇔ |x0⇔

Another example is the CNOT Cij (recall: i control, j target)

C20 |x3⇔ |x2⇔ |x1⇔ |x0⇔ = |x3⇔ |x2⇔ |x1⇔ |x0 ⇓ x2⇔

23

We will use the following shortcut notation for a 2 ↔ 2 matrix A acting on
the i-th vector of an n-fold tensor product:

Ai = 12 ∝ 12 ∝ · · ·∝A∝ · · ·∝ 12 .

For example for n = 3 we will write

X1 = 12 ∝X ∝ 12 , X1 |x2⇔ |x1⇔ |x0⇔ = |x2⇔ |1⇒ x1⇔ |x0⇔

where we wrote 1 ⇒ x1 as the e”ect of flipping the bit x1 is to map 0 to 1
and 1 to 0, which is equivalent to map x1 to 1 ⇒ x1. Note that operators
acting on di”erent bits commute no matter what they are: AiBj = BjAi if
i ⇐= j. For example for n = 6:

A3B1 = 12 ∝ 12 ∝A∝ 12 ∝B ∝ 12 = B1A3

In a similar way we denote by Aij the 4↔4 matrix that acts non-trivially
only on the i and j terms of an n-fold tensor product. This notation is
consistent with that of Sij and Cij introduced above.

Exercises

Important exercises

Exercise 3.4.1. Compute the matrix corresponding to the CNOT gate C01

and compare against C10.

Exercise 3.4.2. There is nothing special about the control bit in the CNOT
gate to take value one. Consider a control gate that flips the target bit if the
control bit is zero. What is its matrix representation?

Exercise 3.4.3. The To!oli gate is defined as T |x⇔ |y⇔ |z⇔ = |x⇔ |y⇔ |z ⇓ xy⇔,
where xy is the AND of x and y. Compute its truth table and determine its
inverse and whether it is a reversible gate.

Exercise 3.4.4. Verify that S01 = C01C10C01

Exercise 3.4.5. Introduced B = |1⇔ ↖1| , B̃ = 1 ⇒ B = |0⇔ ↖0|, projectors
onto 1 and 0 bit, prove

(i) BX = XB̃

(ii) Sij = BiBj + B̃iB̃j + (XiXj)(BiB̃j + B̃iBj)

(iii) Cij = B̃i +XjBi

24

Additional exercises

Exercise 3.4.6. Compute the number of possible functions f : X ≃ Y

where input and output sets are finite and with dimensions |X | = N and
|Y| = M . What is the number of functions from n bits to n bits?

Exercise 3.4.7. Compute

(i)

(
1
2

)
∝

(
3
4

)

(ii)

(
1 0
1 ⇒1

)
∝

(
1 ⇒1
0 1

)

(iii) H ∝H |0⇔ ∝ |0⇔, with H = 1↑
2

(
1 1
1 ⇒1

)

Exercise 3.4.8. Is |ϖ⇔∝ |ϱ⇔ = |ϱ⇔∝ |ϖ⇔ for generic two-dimensional vectors
|ϖ⇔ , |ϱ⇔? If not, for which choice of vectors are they equal?

So these are equal if ςϑ = φ↼.

Exercise 3.4.9. Properties of tensor product. Below we use the complex
vector space CN . If you are not familiar with complex numbers – we will
introduce them in the next lecture – you can do the exercise replacing CN

with RN .

(i) Show the bilinearity property:

(ς |v⇔+ς↓ ∣∣v↓
〉
)∝(φ |w⇔+φ↓ ∣∣w↓〉) = ςφ |v⇔∝|w⇔+ςφ↓

|v⇔∝
∣∣w↓〉+ς↓φ

∣∣v↓
〉
∝|w⇔+ς↓φ↓ ∣∣v↓

〉
∝
∣∣w↓〉 ,

where ς,ς↓,φ,φ↓
→ C, |v⇔ , |v↓⇔ → CN , |w⇔ , |w↓

⇔ → CM .

(ii) Denote by |i⇔N the i-th canonical basis vector of CN . Show that |i⇔N ∝

|j⇔M = |iM + j⇔MN .

(iii) Show that for |v⇔ , |v↓⇔ → CN and |w⇔ , |w↓
⇔ → CM we have:

(↖v|∝ ↖w|)(
∣∣v↓

〉
∝

∣∣w↓〉) =
〈
v|v↓

〉 〈
w|w↓〉 .

Exercise 3.4.10. Show that the To!oli gate enables us to compute the logi-
cal AND of two bits and the logical NOT. (This shows that we can build any
Boolean operation using reversible gates since all Boolean operations can be
decomposed in terms of AND and NOT.)

25

Maybe it should allbe done

in the Durne notation Then
a yeY xeX f x y f N Icando it allagain
3 g 2 2 2ⁿᵈ 2nd

If

P
4 Hohlo to

1 11 1h 1030107 flt
HoHo 10 He 100 1

1 1 1 1 loose lost hosthas

in is 3 assets

underthiscondition
x y y

for solutions

5 1 lism 1 of t

iiMilan

c fulocal lison's walnut ua

byLulu's U.vncute un.vnLaw's

ou Gy Lulu's

v v W w thisis thedesired result

ix 197

x1 y x ly Xalys Xuly

Cul Y.ci lv's Ey j
Cw Each Iw's well

V1 cul Iv w

EU il uncal Evils Eu'eles

uiwn ci.nl vii lies

Viktor'sCi hlj l

Further reading

A nice conceptual reference on computational complexity is [3] and you can
see [1] for a more in-depth discussion of classical computing and its relation
to quantum computing. You can refer to [2, Sec. 1.1 - 1.4] and [4, Sec.
2.7] for more on the matrix representation of classical computing and tensor
products.

Summary

In this chapter, we learnt that

• A computational problem is modelled mathematically as computing
a function from n to m bits, e.g. the problem of factoring integers or
finding a satisfying assignment to a Boolean formula.

• The e!ciency of an algorithm depends on the computational model
used to run it. An algorithm is e!cient if its runtime grows as O(p(n))
where p(n) is a polynomial of the input size of the problem n.

• A classical circuit is a model of a classical computer that has wires
and gates.

• We can associate one-hot vectors to bit strings and matrices to gates.
The states and gates of many bits are described by the tensor product.

• Important reversible classical gates are the NOT gate (also called the
X gate), the CNOT gate, and the SWAP gate.

References

[1] A.Y. Kitaev, A. Shen, and M.N. Vyalyi. Classical and Quantum Com-
putation. Graduate studies in mathematics. American Mathematical
Society, 2002. isbn: 9780821832295. url: https://books.google.co.
uk/books?id=qYHTvHPvmG8C.

[2] N David Mermin. Quantum computer science: an introduction. Cam-
bridge University Press, 2007.

[3] A. Wigderson. Mathematics and Computation: A Theory Revolution-
izing Technology and Science. Princeton University Press, 2019. isbn:
9780691189130. url: https://books.google.co.uk/books?id=-
WCqDwAAQBAJ.

26

https://books.google.co.uk/books?id=qYHTvHPvmG8C
https://books.google.co.uk/books?id=qYHTvHPvmG8C
https://books.google.co.uk/books?id=-WCqDwAAQBAJ
https://books.google.co.uk/books?id=-WCqDwAAQBAJ

[4] Noson S Yanofsky and Mirco A Mannucci. Quantum computing for
computer scientists. Cambridge University Press, 2008.

27

