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How does reinforcement learning actually work?

Intro: Why RL is amazing and will change the world

⬇️

Lecture 1: How does RL actually work?

Prerequisites
• Linear algebra, probability theory, calculus

Learning Outcomes
• Understand what makes RL different from other ML
• Master the mathematical framework: MDPs
• Learn the core concepts: policies, value functions, Bellman equations
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What mathematical tools do we need for RL?

Probability Essentials

• Conditional probability: P(A|B) = P(A\B)
P(B)

• Chain rule: P(A \ B) = P(A|B)P(B)

Expectation
• Definition: E[X] = P

x x · P(X = x)
• Linearity: E[aX + bY] = aE[X] + bE[Y]
• Conditional: E[X|Y] = P

x x · P(X = x|Y)
• Law of total expectation: E[X] = E[E[X|Y]]
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How does RL fit with other types of machine learning?

Paradigm Learning Signal Goal Examples
Supervised Labeled examples Predict labels Image classification

(x, y) pairs y = f (x) Language translation
Unsupervised Unlabeled data Find patterns Clustering

x only Density, structure Dimensionality reduction
Reinforcement Rewards Maximize return Game playing

(s, a, R, s0) Optimal actions Robot control
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What makes RL uniquely challenging?

Key RL Challenges
• Delayed consequences: Actions have long-term effects
• Exploration vs exploitation: Try new things vs use what works
• Credit assignment: Which actions led to rewards?
• Non-stationary: Your actions change the data distribution

Why These Don’t Exist in Supervised Learning
• Immediate feedback: Each (x, y) pair gives direct feedback
• Fixed dataset: No exploration needed, all data available
• Clear attribution: Each input directly maps to output
• Stationary: Data distribution doesn’t change during training
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How do we formalize sequential decision making problems?

Definition (Markov Decision Process (MDP))
A model for sequential decision making when outcomes are uncertain.

Formally defined by the tuple (S,A, P,R):

• S : Set of states - all possible situations
• A: Set of actions - all possible decisions
• P(s0|s, a): Transition probabilities - how actions change states
• R(s, a, s0): Reward function - immediate feedback for transitions

If you can specify (S,A, P,R), you can apply RL!
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What does the agent-environment interaction look like?

The RL Loop:

1. Agent observes state st
2. Agent takes action at
3. Environment gives reward rt+1

4. Environment transitions to new state st+1

5. Repeat...

Goal: Learn to maximize cumulative reward
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Do tasks have natural start and end points?

Definition (Episode)
A complete sequence of interaction from start to terminal state:

S0, A0,R1, S1, A1,R2, S2, . . . , ST

where ST is a terminal state.

Types of MDPs
• Episodic: Has clear start/end states (games, tasks)

• Chess game, robot reaching goal, Atari game
• Continuing: No terminal states (ongoing processes)

• Stock trading, server management, autonomous driving

Why this matters: Affects how we define returns and value functions

12



What do states, actions, and rewards look like in practice?

Atari Breakout
• States: ?
• Actions: ?
• Rewards: ?

Autonomous Driving
• States: ?
• Actions: ?
• Rewards: ?

Robot Manipulation
• States: ?
• Actions: ?
• Rewards: ?

Recommendation Systems
• States: ?
• Actions: ?
• Rewards: ?
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What do states, actions, and rewards look like in practice?

Atari Breakout
• States: Pixel observations
• Actions: Left, Right, Fire
• Rewards: +1 for brick hit

Autonomous Driving
• States: Camera, lidar, GPS
• Actions: Steering, throttle, brake
• Rewards: Safe, efficient driving

Robot Manipulation
• States: Joint angles, object poses
• Actions: Joint torques/velocities
• Rewards: Task completion

Recommendation Systems
• States: User history, context
• Actions: Recommend items
• Rewards: Clicks, purchases,
ratings
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Why start with finite state and action spaces?

Definition (Finite MDP)
An MDP where both state and action sets are finite:

• |S| = n < 1 (finite number of states)
• |A| = m < 1 (finite number of actions)

Why Start With Finite MDPs?
• Mathematical tractability: Can represent everything as matrices/tables
• Exact solutions: Can find optimal policies exactly
• Clear intuition: Easy to visualize and understand
• Foundation for continuous: Continuous methods often discretize or
generalize these ideas
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How do we model uncertainty in state transitions?

Definition (Dynamics/Transition Function)
P(s0|s, a) = Pr[St+1 = s0|St = s, At = a]

The probability of transitioning to state s0 given current state s and action a.

Key Properties
• Probability distribution: Ps02S P(s0|s, a) = 1 for all s, a
• Stationary: Transition probabilities don’t change over time
• Markovian: Next state depends only on current state and action

Deterministic Example:
• GridWorld: P(s0|s,Right) = 1

if s0 is right of s

Stochastic Example:
• Sticky GridWorld: P(s0|s,Right) = 0.9

if s0 is right, P(s|s,Right) = 0.1
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Why is the Markov property so important?

Definition (Markov Property)
The future is independent of the past given the present:

P(st+1|st, at, st�1, at�1, . . . , s0, a0) = P(st+1|st, at)

What This Means
• The current state contains all information needed to predict the future
• We don’t need to remember the entire history
• Makes the problem mathematically tractable

Markovian vs Non-Markovian Examples
• Markovian: Chess position, robot joint angles + velocities
• Non-Markovian: Single Atari frame (no velocity), stock prices, poker
(hidden cards)
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How can we visualize MDP structure?

S1

S2

S3

p = 1.0, r = +5

p = 0.3, r = �1

p = 0.5, r = +3

p = 0.4, r = 0

p = 0.5, r = +1

p = 0.2, r = +4

p = 0.1, r = �2

State Transition Diagram:

• Nodes = states, Arrows = transitions
• Labels show probability (p) and reward (r)
• Self-loops = staying in same state
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How do we represent MDPs mathematically?

Transition Matrix P
Pij = P(St+1 = j|St = i)

P =

S1 S2 S3
S1 0.0 1.0 0.0

S2 0.3 0.2 0.5

S3 0.4 0.5 0.1
Each row sums to 1.0

Reward Matrix R
Rij = E[Rt+1|St = i, St+1 = j]

R =

S1 S2 S3
S1 0 +5 0

S2 �1 +4 +3

S3 0 +1 �2
Expected reward per transition
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How do agents choose actions?

Definition (Policy)
A policy ⇡ is a mapping from states to actions:

• Deterministic: a = ⇡(s)
• Stochastic: a ⇠ ⇡(a|s)

Example Policies:

• Random: Choose actions uniformly
• Greedy: Always go toward goal
• Safe: Avoid traps at all costs
• Optimal: Maximize cumulative reward

The goal of RL is to find the optimal policy ⇡⇤!
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How do we measure total reward over time?

The Problem
How do we measure ”total reward” when actions have long-term
consequences?

Simple Example: Saving Money

• Today: Save $100 (reward = -$100)
• Tomorrow: Earn $5 interest (reward = +$5)
• Next day: Earn $5 more interest (reward = +$5)
• …

Question: Was saving worth it? We need to sum ALL future rewards.
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Why do we discount future rewards?

Definition (Discounted Return)
The return Gt is the cumulative discounted reward from time t:

Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1

Why Discounting? (� < 1)
• Mathematical convenience: Ensures finite returns
• Uncertainty: Future rewards are less certain
• Preference: We prefer immediate rewards
• Computational: Avoids infinite planning horizons

Examples: � = 0 (myopic), � = 0.9 (balanced), � = 1 (far-sighted)

22
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How do we predict future success?

Definition (State Value Function)
The value of state s under policy ⇡ is the expected return:

V⇡(s) = E[Gt|st = s,⇡]

Definition (Action Value Function (Q-function))
The value of taking action a in state s under policy ⇡:

Q⇡(s, a) = E[Gt|st = s, at = a,⇡]

Intuition
• V⇡(s): ”How good is it to be in state s?”
• Q⇡(s, a): ”How good is it to take action a in state s?”
• Both measure expected future reward, not immediate reward!
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What do value functions look like visually?

Simple 5⇥ 5 GridWorld

MDP Components:
• S : Grid positions (i, j)
• A: {Up, Down, Left, Right}
• P: Deterministic movement
• R: Goal=+1, Trap=-1, Step=-0.01
• � = 0.9
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How do values spread through the state space?

State values V⇡(s) for a specific policy

What We See:
• Goal state: High value (close to
+1)

• Trap state: Low value (close to -1)
• Gradient: Values decrease with
distance from goal

Key Insight: Value functions tell us
which states are ”good” to be in!
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🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

In the GridWorld example, if � = 0 (no discounting), what happens?

• A) The agent becomes more patient
• B) Only immediate rewards matter
• C) The Bellman equation becomes invalid
• D) All states have the same value
• E) The policy becomes deterministic
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What is the fundamental relationship in value functions?

Value functions satisfy a recursive relationship - we can define the value of
a state in terms of the values of its successor states.

Theorem (Bellman Equation)

V⇡(s) = E[Gt|St = s,⇡]
= E[Rt+1 + �Gt+1|St = s,⇡]
= E[Rt+1 + �E[Gt+1|St+1 = s0,⇡]|St,⇡]
= E[Rt+1 + �V⇡(St+1)|St = s,⇡]

=
X

a
⇡(a|s)

X

s0,r
P(s0, r|s, a)[r + �V⇡(s0)]
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This equation is the foundation of ALL reinforcement learning algorithms!
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How can we visualize the Bellman equation?

Backup Diagram for V⇡(s):

s

a1 a2

s1 s2 s3 s4

⇡(a1|s) ⇡(a2|s)

P(s1|s, a1) P(s2|s, a1) P(s3|s, a2) P(s4|s, a2)

Key: States (circles), Actions (squares), Values flow backwards through tree
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🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

The Bellman equation expresses:

• A) How to compute immediate rewards
• B) The relationship between current and future values
• C) How to choose optimal actions
• D) The transition probabilities
• E) The discount factor
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🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

Which of these is NOT a correct step in deriving the Bellman
equation?

A) V⇡(s) = E[Gt|st = s,⇡]
B) V⇡(s) = E[Rt+1 + �Gt+1|st = s,⇡]

C) V⇡(s) =
X

a
⇡(a|s)

X

s0
P(s0|s, a)[r + �V⇡(s0)]

D) V⇡(s) =
X

a
⇡(a|s)

X

s0,r

P(s0, r|s, a)�[r + V⇡(s0)]

E) V⇡(s) =
X

a
⇡(a|s)

X

s0,r

P(s0, r|s, a)[r + �V⇡(s0)]
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What about Bellman equations for action values?

Theorem (Bellman Equation for Action Values)
The action value function Q⇡(s, a) satisfies:

Q⇡(s, a) =
X

s0,r
P(s0, r|s, a)[r + �

X

a0
⇡(a0|s0)Q⇡(s0, a0)]

Backup Diagram for Q⇡(s, a):

s, a

s1 s2 s3

⇡(s1) ⇡(s2) ⇡(s3)

P(s1|s, a) P(s2|s, a) P(s3|s, a)
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What defines the best possible policy?

Definition (Optimal Value Functions)

V⇤(s) = max
⇡

V⇡(s) (1)

Q⇤(s, a) = max
⇡

Q⇡(s, a) (2)

Relationship Between Optimal Functions
Q⇤(s, a) = E[Rt+1 + �V⇤(s0)|st = s, at = a]

V⇤(s) = max
a
Q⇤(s, a)

Definition (Optimal Policy)
An optimal policy ⇡⇤ satisfies:

⇡⇤(s) = argmaxaQ
⇤(s, a)
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How do we find the optimal value function?

We want the optimal policy ⇡⇤ that maximizes value, not just evaluate a
given policy.

Key insight: If we act optimally, we choose the action with highest Q-value:

⇡⇤(s) = argmaxaQ
⇤(s, a)

This means: V⇤(s) = maxa Q⇤(s, a)

Can we write a recursive equation for V⇤(s) like we did for V⇡(s)?

36
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What are the Bellman optimality equations?

The Bellman Optimality Equation expresses the optimal value function
recursively:

Theorem (Bellman Optimality Equation for V⇤)

V⇤(s) = max
a
Q⇤(s, a) (choose best action)

= max
a

E[Gt|St = s, At = a,⇡⇤] (expected return under optimal policy)

= max
a

E[Rt+1 + �Gt+1|St = s, At = a,⇡⇤] (break into immediate + future)

= max
a

E[Rt+1 + �V⇤(St+1)|St = s, At = a] (future return is optimal)

= max
a

X

s0,r
P(s0, r|s, a)[r + �V⇤(s0)] (expand expectation)
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Theorem (Bellman Optimality Equation for Q⇤)
Q⇤(s, a) = E[Rt+1 + � max

a0
Q⇤(s0, a0)|st = s, at = a]

=
X

s0,r

P(s0, r|s, a)[r + � max
a0

Q⇤(s0, a0)]

The max operator makes these equations nonlinear!
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🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

If you got lost today, at what point did you lose track?

• A) Markov property and MDPs
• B) Bellman equations for state values
• C) Bellman equations for action values
• D) Backup diagrams
• E) Optimal value functions and policies
• F) Bellman optimality equations
• G) All concepts are clear
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How does this connect to modern deep reinforcement learning?

The Bridge from Classical to Modern
• Same math, different representation
• Tables! Neural networks
• Exact solutions! Approximate solutions
• Small problems! Complex problems

Tabular RL:
• V(s) stored in table
• Q(s, a) stored in table
• Exact Bellman updates
• Works for small |S|, |A|

Deep RL:
• V(s) ⇡ V✓(s) neural net
• Q(s, a) ⇡ Q✓(s, a) neural net
• Approximate Bellman updates
• Scales to huge state spaces
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What are the key concepts we’ve learned today?

Key Takeaways
• MDPs: Formalize RL problems with states, actions, rewards
• Policies: Define agent’s behavior, can be deterministic or stochastic
• Returns: Measure long-term success using discounted rewards
• Value Functions: Predict future success from states or state-action pairs
• Bellman Equations: Capture recursive relationships in value functions
• Optimal Policies: Achieve maximum expected return, defined by optimal
value functions

Next Week: Dynamic Programming - How to compute optimal policies and
value functions using Bellman equations
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Reading and Resources

📚 Essential Reading
• Sutton & Barto: Chapters 1 to 3 (MDPs and Bellman Equations)
• Focus especially on: Section 3.3 (Returns), 3.5 (Policies and Value
Functions), 3.6 (Optimal Policies)
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