
Reinforcement Learning

Dr Stephen James
Autumn Term 2025

Imperial College London

1

Reinforcement Learning
Lecture 1: Markov Decision Processes

Dr Stephen James
Autumn Term 2025

Imperial College London

2

Outline

1. Introduction

2. Markov Decision Processes

3. Policies and Returns

4. Value Functions

5. Bellman Equations

6. Optimal Policies and Bellman Optimality

3

Introduction

1. Introduction

2. Markov Decision Processes

3. Policies and Returns

4. Value Functions

5. Bellman Equations

6. Optimal Policies and Bellman Optimality

4

How does reinforcement learning actually work?

Intro: Why RL is amazing and will change the world

⬇️

Lecture 1: How does RL actually work?

Prerequisites
• Linear algebra, probability theory, calculus

Learning Outcomes
• Understand what makes RL different from other ML
• Master the mathematical framework: MDPs
• Learn the core concepts: policies, value functions, Bellman equations

5

What mathematical tools do we need for RL?

Probability Essentials

• Conditional probability: P(A|B) = P(A\B)
P(B)

• Chain rule: P(A \ B) = P(A|B)P(B)

Expectation
• Definition: E[X] = P

x x · P(X = x)
• Linearity: E[aX + bY] = aE[X] + bE[Y]
• Conditional: E[X|Y] = P

x x · P(X = x|Y)
• Law of total expectation: E[X] = E[E[X|Y]]

6

How does RL fit with other types of machine learning?

Paradigm Learning Signal Goal Examples
Supervised Labeled examples Predict labels Image classification

(x, y) pairs y = f (x) Language translation
Unsupervised Unlabeled data Find patterns Clustering

x only Density, structure Dimensionality reduction
Reinforcement Rewards Maximize return Game playing

(s, a, R, s0) Optimal actions Robot control

7

What makes RL uniquely challenging?

Key RL Challenges
• Delayed consequences: Actions have long-term effects
• Exploration vs exploitation: Try new things vs use what works
• Credit assignment: Which actions led to rewards?
• Non-stationary: Your actions change the data distribution

Why These Don’t Exist in Supervised Learning
• Immediate feedback: Each (x, y) pair gives direct feedback
• Fixed dataset: No exploration needed, all data available
• Clear attribution: Each input directly maps to output
• Stationary: Data distribution doesn’t change during training

8

Markov Decision Processes

1. Introduction

2. Markov Decision Processes

3. Policies and Returns

4. Value Functions

5. Bellman Equations

6. Optimal Policies and Bellman Optimality

9

How do we formalize sequential decision making problems?

Definition (Markov Decision Process (MDP))
A model for sequential decision making when outcomes are uncertain.

Formally defined by the tuple (S,A, P,R):

• S : Set of states - all possible situations
• A: Set of actions - all possible decisions
• P(s0|s, a): Transition probabilities - how actions change states
• R(s, a, s0): Reward function - immediate feedback for transitions

If you can specify (S,A, P,R), you can apply RL!

10

What does the agent-environment interaction look like?

The RL Loop:

1. Agent observes state st
2. Agent takes action at
3. Environment gives reward rt+1

4. Environment transitions to new state st+1

5. Repeat...

Goal: Learn to maximize cumulative reward

11

Do tasks have natural start and end points?

Definition (Episode)
A complete sequence of interaction from start to terminal state:

S0, A0,R1, S1, A1,R2, S2, . . . , ST

where ST is a terminal state.

Types of MDPs
• Episodic: Has clear start/end states (games, tasks)

• Chess game, robot reaching goal, Atari game
• Continuing: No terminal states (ongoing processes)

• Stock trading, server management, autonomous driving

Why this matters: Affects how we define returns and value functions

12

What do states, actions, and rewards look like in practice?

Atari Breakout
• States: ?
• Actions: ?
• Rewards: ?

Autonomous Driving
• States: ?
• Actions: ?
• Rewards: ?

Robot Manipulation
• States: ?
• Actions: ?
• Rewards: ?

Recommendation Systems
• States: ?
• Actions: ?
• Rewards: ?

13

What do states, actions, and rewards look like in practice?

Atari Breakout
• States: Pixel observations
• Actions: Left, Right, Fire
• Rewards: +1 for brick hit

Autonomous Driving
• States: ?
• Actions: ?
• Rewards: ?

Robot Manipulation
• States: ?
• Actions: ?
• Rewards: ?

Recommendation Systems
• States: ?
• Actions: ?
• Rewards: ?

13

What do states, actions, and rewards look like in practice?

Atari Breakout
• States: Pixel observations
• Actions: Left, Right, Fire
• Rewards: +1 for brick hit

Autonomous Driving
• States: Camera, lidar, GPS
• Actions: Steering, throttle, brake
• Rewards: Safe, efficient driving

Robot Manipulation
• States: ?
• Actions: ?
• Rewards: ?

Recommendation Systems
• States: ?
• Actions: ?
• Rewards: ?

13

What do states, actions, and rewards look like in practice?

Atari Breakout
• States: Pixel observations
• Actions: Left, Right, Fire
• Rewards: +1 for brick hit

Autonomous Driving
• States: Camera, lidar, GPS
• Actions: Steering, throttle, brake
• Rewards: Safe, efficient driving

Robot Manipulation
• States: Joint angles, object poses
• Actions: Joint torques/velocities
• Rewards: Task completion

Recommendation Systems
• States: ?
• Actions: ?
• Rewards: ?

13

What do states, actions, and rewards look like in practice?

Atari Breakout
• States: Pixel observations
• Actions: Left, Right, Fire
• Rewards: +1 for brick hit

Autonomous Driving
• States: Camera, lidar, GPS
• Actions: Steering, throttle, brake
• Rewards: Safe, efficient driving

Robot Manipulation
• States: Joint angles, object poses
• Actions: Joint torques/velocities
• Rewards: Task completion

Recommendation Systems
• States: User history, context
• Actions: Recommend items
• Rewards: Clicks, purchases,
ratings

13

Why start with finite state and action spaces?

Definition (Finite MDP)
An MDP where both state and action sets are finite:

• |S| = n < 1 (finite number of states)
• |A| = m < 1 (finite number of actions)

Why Start With Finite MDPs?
• Mathematical tractability: Can represent everything as matrices/tables
• Exact solutions: Can find optimal policies exactly
• Clear intuition: Easy to visualize and understand
• Foundation for continuous: Continuous methods often discretize or
generalize these ideas

14

How do we model uncertainty in state transitions?

Definition (Dynamics/Transition Function)
P(s0|s, a) = Pr[St+1 = s0|St = s, At = a]

The probability of transitioning to state s0 given current state s and action a.

Key Properties
• Probability distribution: Ps02S P(s0|s, a) = 1 for all s, a
• Stationary: Transition probabilities don’t change over time
• Markovian: Next state depends only on current state and action

Deterministic Example:
• GridWorld: P(s0|s,Right) = 1

if s0 is right of s

Stochastic Example:
• Sticky GridWorld: P(s0|s,Right) = 0.9

if s0 is right, P(s|s,Right) = 0.1

15

Why is the Markov property so important?

Definition (Markov Property)
The future is independent of the past given the present:

P(st+1|st, at, st�1, at�1, . . . , s0, a0) = P(st+1|st, at)

What This Means
• The current state contains all information needed to predict the future
• We don’t need to remember the entire history
• Makes the problem mathematically tractable

Markovian vs Non-Markovian Examples
• Markovian: Chess position, robot joint angles + velocities
• Non-Markovian: Single Atari frame (no velocity), stock prices, poker
(hidden cards)

16

How can we visualize MDP structure?

S1

S2

S3

p = 1.0, r = +5

p = 0.3, r = �1

p = 0.5, r = +3

p = 0.4, r = 0

p = 0.5, r = +1

p = 0.2, r = +4

p = 0.1, r = �2

State Transition Diagram:

• Nodes = states, Arrows = transitions
• Labels show probability (p) and reward (r)
• Self-loops = staying in same state

17

How do we represent MDPs mathematically?

Transition Matrix P
Pij = P(St+1 = j|St = i)

P =

S1 S2 S3
S1 0.0 1.0 0.0

S2 0.3 0.2 0.5

S3 0.4 0.5 0.1
Each row sums to 1.0

Reward Matrix R
Rij = E[Rt+1|St = i, St+1 = j]

R =

S1 S2 S3
S1 0 +5 0

S2 �1 +4 +3

S3 0 +1 �2
Expected reward per transition

18

This can be ofe made only for
discrete andfinitespace

Policies and Returns

1. Introduction

2. Markov Decision Processes

3. Policies and Returns

4. Value Functions

5. Bellman Equations

6. Optimal Policies and Bellman Optimality

19

How do agents choose actions?

Definition (Policy)
A policy ⇡ is a mapping from states to actions:

• Deterministic: a = ⇡(s)
• Stochastic: a ⇠ ⇡(a|s)

Example Policies:

• Random: Choose actions uniformly
• Greedy: Always go toward goal
• Safe: Avoid traps at all costs
• Optimal: Maximize cumulative reward

The goal of RL is to find the optimal policy ⇡⇤!

20

How do we measure total reward over time?

The Problem
How do we measure ”total reward” when actions have long-term
consequences?

Simple Example: Saving Money

• Today: Save $100 (reward = -$100)
• Tomorrow: Earn $5 interest (reward = +$5)
• Next day: Earn $5 more interest (reward = +$5)
• …

Question: Was saving worth it? We need to sum ALL future rewards.

21

Why do we discount future rewards?

Definition (Discounted Return)
The return Gt is the cumulative discounted reward from time t:

Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1

Why Discounting? (� < 1)
• Mathematical convenience: Ensures finite returns
• Uncertainty: Future rewards are less certain
• Preference: We prefer immediate rewards
• Computational: Avoids infinite planning horizons

Examples: � = 0 (myopic), � = 0.9 (balanced), � = 1 (far-sighted)

22

C what Iexpectto getin future
withrespect
withwy

forgetting

Value Functions

1. Introduction

2. Markov Decision Processes

3. Policies and Returns

4. Value Functions

5. Bellman Equations

6. Optimal Policies and Bellman Optimality

23

How do we predict future success?

Definition (State Value Function)
The value of state s under policy ⇡ is the expected return:

V⇡(s) = E[Gt|st = s,⇡]

Definition (Action Value Function (Q-function))
The value of taking action a in state s under policy ⇡:

Q⇡(s, a) = E[Gt|st = s, at = a,⇡]

Intuition
• V⇡(s): ”How good is it to be in state s?”
• Q⇡(s, a): ”How good is it to take action a in state s?”
• Both measure expected future reward, not immediate reward!

24

What is the equivalent of Q in continuous span likecardriving

What do value functions look like visually?

Simple 5⇥ 5 GridWorld

MDP Components:
• S : Grid positions (i, j)
• A: {Up, Down, Left, Right}
• P: Deterministic movement
• R: Goal=+1, Trap=-1, Step=-0.01
• � = 0.9

25

How do values spread through the state space?

State values V⇡(s) for a specific policy

What We See:
• Goal state: High value (close to
+1)

• Trap state: Low value (close to -1)
• Gradient: Values decrease with
distance from goal

Key Insight: Value functions tell us
which states are ”good” to be in!

26

🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

In the GridWorld example, if � = 0 (no discounting), what happens?

• A) The agent becomes more patient
• B) Only immediate rewards matter
• C) The Bellman equation becomes invalid
• D) All states have the same value
• E) The policy becomes deterministic

27

Bellman Equations

1. Introduction

2. Markov Decision Processes

3. Policies and Returns

4. Value Functions

5. Bellman Equations

6. Optimal Policies and Bellman Optimality

28

What is the fundamental relationship in value functions?

Value functions satisfy a recursive relationship - we can define the value of
a state in terms of the values of its successor states.

Theorem (Bellman Equation)

V⇡(s) = E[Gt|St = s,⇡]
= E[Rt+1 + �Gt+1|St = s,⇡]
= E[Rt+1 + �E[Gt+1|St+1 = s0,⇡]|St,⇡]
= E[Rt+1 + �V⇡(St+1)|St = s,⇡]

=
X

a
⇡(a|s)

X

s0,r
P(s0, r|s, a)[r + �V⇡(s0)]

29

What is the fundamental relationship in value functions?

Value functions satisfy a recursive relationship - we can define the value of
a state in terms of the values of its successor states.

Theorem (Bellman Equation)

V⇡(s) = E[Gt|St = s,⇡]
= E[Rt+1 + �Gt+1|St = s,⇡]
= E[Rt+1 + �E[Gt+1|St+1 = s0,⇡]|St,⇡]
= E[Rt+1 + �V⇡(St+1)|St = s,⇡]

=
X

a
⇡(a|s)

X

s0,r
P(s0, r|s, a)[r + �V⇡(s0)]

29

What is the fundamental relationship in value functions?

Value functions satisfy a recursive relationship - we can define the value of
a state in terms of the values of its successor states.

Theorem (Bellman Equation)

V⇡(s) = E[Gt|St = s,⇡]
= E[Rt+1 + �Gt+1|St = s,⇡]
= E[Rt+1 + �E[Gt+1|St+1 = s0,⇡]|St,⇡]
= E[Rt+1 + �V⇡(St+1)|St = s,⇡]

=
X

a
⇡(a|s)

X

s0,r
P(s0, r|s, a)[r + �V⇡(s0)]

29

What is the fundamental relationship in value functions?

Value functions satisfy a recursive relationship - we can define the value of
a state in terms of the values of its successor states.

Theorem (Bellman Equation)

V⇡(s) = E[Gt|St = s,⇡]
= E[Rt+1 + �Gt+1|St = s,⇡]
= E[Rt+1 + �E[Gt+1|St+1 = s0,⇡]|St,⇡]
= E[Rt+1 + �V⇡(St+1)|St = s,⇡]

=
X

a
⇡(a|s)

X

s0,r
P(s0, r|s, a)[r + �V⇡(s0)]

29

What is the fundamental relationship in value functions?

Value functions satisfy a recursive relationship - we can define the value of
a state in terms of the values of its successor states.

Theorem (Bellman Equation)

V⇡(s) = E[Gt|St = s,⇡]
= E[Rt+1 + �Gt+1|St = s,⇡]
= E[Rt+1 + �E[Gt+1|St+1 = s0,⇡]|St,⇡]
= E[Rt+1 + �V⇡(St+1)|St = s,⇡]

=
X

a
⇡(a|s)

X

s0,r
P(s0, r|s, a)[r + �V⇡(s0)]

29

What is the fundamental relationship in value functions?

Value functions satisfy a recursive relationship - we can define the value of
a state in terms of the values of its successor states.

Theorem (Bellman Equation)

V⇡(s) = E[Gt|St = s,⇡]
= E[Rt+1 + �Gt+1|St = s,⇡]
= E[Rt+1 + �E[Gt+1|St+1 = s0,⇡]|St,⇡]
= E[Rt+1 + �V⇡(St+1)|St = s,⇡]

=
X

a
⇡(a|s)

X

s0,r
P(s0, r|s, a)[r + �V⇡(s0)]

This equation is the foundation of ALL reinforcement learning algorithms!

29

How can we visualize the Bellman equation?

Backup Diagram for V⇡(s):

s

a1 a2

s1 s2 s3 s4

⇡(a1|s) ⇡(a2|s)

P(s1|s, a1) P(s2|s, a1) P(s3|s, a2) P(s4|s, a2)

Key: States (circles), Actions (squares), Values flow backwards through tree

30

🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

The Bellman equation expresses:

• A) How to compute immediate rewards
• B) The relationship between current and future values
• C) How to choose optimal actions
• D) The transition probabilities
• E) The discount factor

31

🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

Which of these is NOT a correct step in deriving the Bellman
equation?

A) V⇡(s) = E[Gt|st = s,⇡]
B) V⇡(s) = E[Rt+1 + �Gt+1|st = s,⇡]

C) V⇡(s) =
X

a
⇡(a|s)

X

s0
P(s0|s, a)[r + �V⇡(s0)]

D) V⇡(s) =
X

a
⇡(a|s)

X

s0,r

P(s0, r|s, a)�[r + V⇡(s0)]

E) V⇡(s) =
X

a
⇡(a|s)

X

s0,r

P(s0, r|s, a)[r + �V⇡(s0)]

32

What about Bellman equations for action values?

Theorem (Bellman Equation for Action Values)
The action value function Q⇡(s, a) satisfies:

Q⇡(s, a) =
X

s0,r
P(s0, r|s, a)[r + �

X

a0
⇡(a0|s0)Q⇡(s0, a0)]

Backup Diagram for Q⇡(s, a):

s, a

s1 s2 s3

⇡(s1) ⇡(s2) ⇡(s3)

P(s1|s, a) P(s2|s, a) P(s3|s, a)

33

Optimal Policies and Bellman Optimality

1. Introduction

2. Markov Decision Processes

3. Policies and Returns

4. Value Functions

5. Bellman Equations

6. Optimal Policies and Bellman Optimality

34

What defines the best possible policy?

Definition (Optimal Value Functions)

V⇤(s) = max
⇡

V⇡(s) (1)

Q⇤(s, a) = max
⇡

Q⇡(s, a) (2)

Relationship Between Optimal Functions
Q⇤(s, a) = E[Rt+1 + �V⇤(s0)|st = s, at = a]

V⇤(s) = max
a
Q⇤(s, a)

Definition (Optimal Policy)
An optimal policy ⇡⇤ satisfies:

⇡⇤(s) = argmaxaQ
⇤(s, a)

35

pweget
this by exploring the environment

expectation of
what Iget
what comesinfuture

How do we find the optimal value function?

We want the optimal policy ⇡⇤ that maximizes value, not just evaluate a
given policy.

Key insight: If we act optimally, we choose the action with highest Q-value:

⇡⇤(s) = argmaxaQ
⇤(s, a)

This means: V⇤(s) = maxa Q⇤(s, a)

Can we write a recursive equation for V⇤(s) like we did for V⇡(s)?

36

TI
Thisevaluates

thisperform theaction

What are the Bellman optimality equations?

The Bellman Optimality Equation expresses the optimal value function
recursively:

Theorem (Bellman Optimality Equation for V⇤)

V⇤(s) = max
a
Q⇤(s, a) (choose best action)

= max
a

E[Gt|St = s, At = a,⇡⇤] (expected return under optimal policy)

= max
a

E[Rt+1 + �Gt+1|St = s, At = a,⇡⇤] (break into immediate + future)

= max
a

E[Rt+1 + �V⇤(St+1)|St = s, At = a] (future return is optimal)

= max
a

X

s0,r
P(s0, r|s, a)[r + �V⇤(s0)] (expand expectation)

37

What are the Bellman optimality equations?

The Bellman Optimality Equation expresses the optimal value function
recursively:

Theorem (Bellman Optimality Equation for V⇤)

V⇤(s) = max
a
Q⇤(s, a) (choose best action)

= max
a

E[Gt|St = s, At = a,⇡⇤] (expected return under optimal policy)

= max
a

E[Rt+1 + �Gt+1|St = s, At = a,⇡⇤] (break into immediate + future)

= max
a

E[Rt+1 + �V⇤(St+1)|St = s, At = a] (future return is optimal)

= max
a

X

s0,r
P(s0, r|s, a)[r + �V⇤(s0)] (expand expectation)

37

What are the Bellman optimality equations?

The Bellman Optimality Equation expresses the optimal value function
recursively:

Theorem (Bellman Optimality Equation for V⇤)

V⇤(s) = max
a
Q⇤(s, a) (choose best action)

= max
a

E[Gt|St = s, At = a,⇡⇤] (expected return under optimal policy)

= max
a

E[Rt+1 + �Gt+1|St = s, At = a,⇡⇤] (break into immediate + future)

= max
a

E[Rt+1 + �V⇤(St+1)|St = s, At = a] (future return is optimal)

= max
a

X

s0,r
P(s0, r|s, a)[r + �V⇤(s0)] (expand expectation)

37

What are the Bellman optimality equations?

The Bellman Optimality Equation expresses the optimal value function
recursively:

Theorem (Bellman Optimality Equation for V⇤)

V⇤(s) = max
a
Q⇤(s, a) (choose best action)

= max
a

E[Gt|St = s, At = a,⇡⇤] (expected return under optimal policy)

= max
a

E[Rt+1 + �Gt+1|St = s, At = a,⇡⇤] (break into immediate + future)

= max
a

E[Rt+1 + �V⇤(St+1)|St = s, At = a] (future return is optimal)

= max
a

X

s0,r
P(s0, r|s, a)[r + �V⇤(s0)] (expand expectation)

37

recursion

What are the Bellman optimality equations?

The Bellman Optimality Equation expresses the optimal value function
recursively:

Theorem (Bellman Optimality Equation for V⇤)

V⇤(s) = max
a
Q⇤(s, a) (choose best action)

= max
a

E[Gt|St = s, At = a,⇡⇤] (expected return under optimal policy)

= max
a

E[Rt+1 + �Gt+1|St = s, At = a,⇡⇤] (break into immediate + future)

= max
a

E[Rt+1 + �V⇤(St+1)|St = s, At = a] (future return is optimal)

= max
a

X

s0,r
P(s0, r|s, a)[r + �V⇤(s0)] (expand expectation)

37

What are the Bellman optimality equations?

The Bellman Optimality Equation expresses the optimal value function
recursively:

Theorem (Bellman Optimality Equation for V⇤)

V⇤(s) = max
a
Q⇤(s, a) (choose best action)

= max
a

E[Gt|St = s, At = a,⇡⇤] (expected return under optimal policy)

= max
a

E[Rt+1 + �Gt+1|St = s, At = a,⇡⇤] (break into immediate + future)

= max
a

E[Rt+1 + �V⇤(St+1)|St = s, At = a] (future return is optimal)

= max
a

X

s0,r
P(s0, r|s, a)[r + �V⇤(s0)] (expand expectation)

Theorem (Bellman Optimality Equation for Q⇤)
Q⇤(s, a) = E[Rt+1 + � max

a0
Q⇤(s0, a0)|st = s, at = a]

=
X

s0,r

P(s0, r|s, a)[r + � max
a0

Q⇤(s0, a0)]

The max operator makes these equations nonlinear!
37

🎮 Mentimeter Poll

menti.com - Code: XXXX XXXX

If you got lost today, at what point did you lose track?

• A) Markov property and MDPs
• B) Bellman equations for state values
• C) Bellman equations for action values
• D) Backup diagrams
• E) Optimal value functions and policies
• F) Bellman optimality equations
• G) All concepts are clear

38

How does this connect to modern deep reinforcement learning?

The Bridge from Classical to Modern
• Same math, different representation
• Tables! Neural networks
• Exact solutions! Approximate solutions
• Small problems! Complex problems

Tabular RL:
• V(s) stored in table
• Q(s, a) stored in table
• Exact Bellman updates
• Works for small |S|, |A|

Deep RL:
• V(s) ⇡ V✓(s) neural net
• Q(s, a) ⇡ Q✓(s, a) neural net
• Approximate Bellman updates
• Scales to huge state spaces

39

thetablesareonlypredictedby a network

is becauseofpredictions

What are the key concepts we’ve learned today?

Key Takeaways
• MDPs: Formalize RL problems with states, actions, rewards
• Policies: Define agent’s behavior, can be deterministic or stochastic
• Returns: Measure long-term success using discounted rewards
• Value Functions: Predict future success from states or state-action pairs
• Bellman Equations: Capture recursive relationships in value functions
• Optimal Policies: Achieve maximum expected return, defined by optimal
value functions

Next Week: Dynamic Programming - How to compute optimal policies and
value functions using Bellman equations

40

Reading and Resources

📚 Essential Reading
• Sutton & Barto: Chapters 1 to 3 (MDPs and Bellman Equations)
• Focus especially on: Section 3.3 (Returns), 3.5 (Policies and Value
Functions), 3.6 (Optimal Policies)

41

