Reinforcement Learning

Dr Stephen James Autumn Term 2025

Imperial College London

Reinforcement Learning Lecture 2: Dynamic Programming

Dr Stephen James

Autumn Term 2025

Imperial College London

Outline

- 1. Introduction
- 2. Policy Evaluation
- 3. Policy Improvement
- 4. Policy Iteration
- 5. Value Iteration
- 6. Generalized Policy Iteration

From Theory to Practice

- 1. Introduction
- 2. Policy Evaluation
- 3. Policy Improvement
- 4. Policy Iteration
- 5. Value Iteration
- 6. Generalized Policy Iteration

How do we turn the Bellman equations into working algorithms?

Week 1: The mathematical foundation

Week 2: How do we actually solve MDPs?

Today's Goals

- Transform Bellman equations into practical algorithms
- Master Policy Iteration and Value Iteration
- Understand the computational foundations of all RL

What is Dynamic Programming?

Definition (Dynamic Programming (DP))

A method for solving complex problems by breaking them down into simpler subproblems, solving each subproblem once, and storing the results.

Examples of DP in everyday life

- Fibbonacci numbers: Store previous results to avoid recomputation
- Shortest paths: Dijkstra's and Bellman-Ford algorithms
- Reinforcement Learning: Solving MDPs via Bellman equations

DP gives us exact algorithms for computing optimal policies and value functions

Policy Evaluation

- 1. Introduction
- 2. Policy Evaluation
- 3. Policy Improvement
- 4. Policy Iteration
- 5. Value Iteration
- 6. Generalized Policy Iteration

Given a policy π , how do we compute its value function?

This is called the policy evaluation problem.

Recall the Bellman equation for V^{π} :

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a) [r + \gamma V^{\pi}(s')]$$

The Challenge

This is a system of |S| linear equations in |S| unknowns

Example: 3-state MDP gives us 3 coupled equations:

$$V^{\pi}(s_1) = \sum_{a} \pi(a|s_1) \sum_{s',r} P(s',r|s_1,a)[r + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s_2) = \sum_{a} \pi(a|s_2) \sum_{s',r} P(s',r|s_2,a)[r + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s_3) = \sum_{a} \pi(a|s_3) \sum_{s',r} P(s',r|s_3,a)[r + \gamma V^{\pi}(s')]$$

We could solve it directly, but there's a more elegant iterative approach.

Given a policy π , how do we compute its value function?

This is called the policy evaluation problem.

Recall the Bellman equation for V^{π} :

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a) [r + \gamma V^{\pi}(s')]$$

The Challenge

This is a system of |S| linear equations in |S| unknowns.

Example: 3-state MDP gives us 3 coupled equations:

$$V^{\pi}(s_1) = \sum_{a} \pi(a|s_1) \sum_{s',r} P(s',r|s_1,a)[r + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s_2) = \sum_{a} \pi(a|s_2) \sum_{s',r} P(s',r|s_2,a)[r + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s_3) = \sum_{a} \pi(a|s_3) \sum_{s',r} P(s',r|s_3,a)[r + \gamma V^{\pi}(s')]$$

We could solve it directly, but there's a more elegant iterative approach.

Iterative Policy Evaluation: The Algorithm

Turn the Bellman equation into an update rule:

Iterative Policy Evaluation

- 1. Initialize $V_0(s) = 0$ for all s (or any arbitrary values)
- 2. For k = 1, 2, 3, ...:

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a) [r + \gamma V_k(s')]$$

for all s

3. Stop when $\max_{s} |V_{k+1}(s) - V_k(s)| < \theta$

here we access values from meious itemtion

therefore by the time, we will gather the action!

remove from the

State
On the

As
$$k \to \infty$$
, $V_k \to V^{\pi}$

Should we update all states at once or one at a time?

Two implementation strategies:

Synchronous Updates (Jacobi)

- Use $V_k(s')$ for all next states
- Update all states simultaneously
- Requires two arrays: old and new values

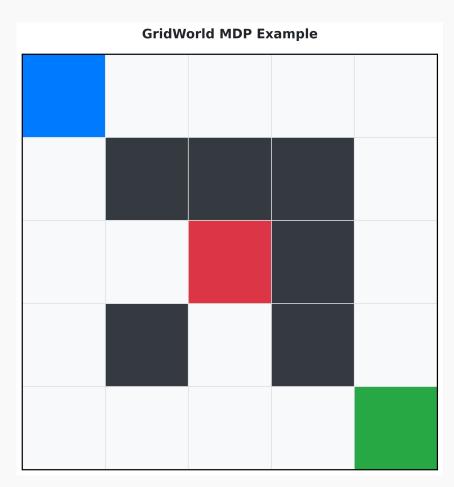
$$V_{\text{new}}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a)[r + \gamma V_{\text{old}}(s')]$$

In-Place Updates (Gauss-Seidel)

- Use most recent values available
- Update states one at a time
- Can use single array, often converges faster

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a) [r + \gamma V(s')]$$

Let's see policy evaluation in action on GridWorld



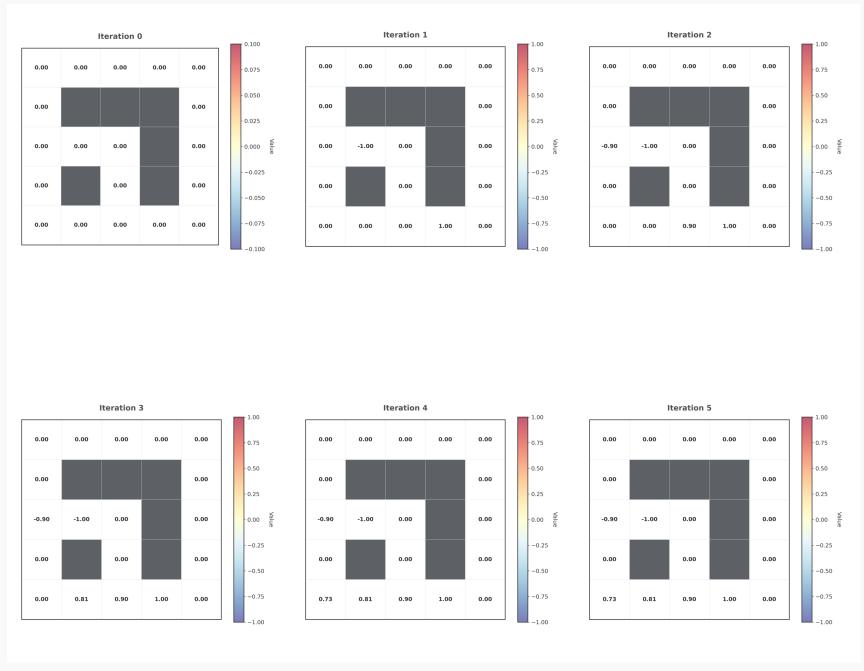
Simple 5×5 GridWorld

MDP Setup:

- S: Grid positions (i, j)
- A: {Up, Down, Left, Right}
- P: Deterministic movement
- R: Goal=+1, Trap=-1, Step=0.0

Policy to Evaluate: Always go right

Policy Evaluation Results: Values Propagate Backwards



Policy: Always go right ($\gamma = 0.9$)

What happens if we initialize $V_0(s) = 1000$ for all states in policy evaluation?

- A) The algorithm won't converge
- B) It will converge to the wrong values
- It will converge to the correct values, just from a different starting point
- D) The Bellman equation becomes invalid
- E) We must always initialize to zero

In-place updates (Gauss-Seidel) often converge faster than synchronous updates (Jacobi) because:

- · A) They use less memory
- (B) They immediately use the most recent value estimates
- · C) They require fewer iterations by definition
- D) They are more mathematically rigorous
- E) They work better with stochastic policies

In the policy evaluation update $V_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} P(s',r|s,a)[r+\gamma V_k(s')],$ what does $V_k(s')$ represent?

- A) The immediate reward from state s'
- Our current estimate of the value of the next state
- C) The optimal value of state s'
- D) The probability of reaching s'
- E) The policy's action probability at s'

Clarity on Policy Evaluation?

- · (A) All clear
- B) Iterative Policy Evaluation unclear
- · C) Synchronous vs in-place updates unclear

Policy Improvement

- 1. Introduction
- 2. Policy Evaluation
- 3. Policy Improvement
- 4. Policy Iteration
- 5. Value Iteration
- 6. Generalized Policy Iteration

Given a value function V^{π} , how do we make the policy better?

This is the policy improvement problem.

Intuitive Idea

If we know how valuable each state is under the current policy, we should choose actions that lead to more valuable states.

The key insight: Greedy Policy Improvement

$$\pi'(s) = \operatorname{argmax}_a Q_{\pi}(s, a)$$

But we need to prove this actually works...

The Policy Improvement Theorem

Theorem (Policy Improvement Theorem)

Let π and π' be deterministic policies such that:

$$Q_\pi(s,\pi'(s)) \geq V_\pi(s) \text{ for all } s$$
 Then π' is at least as good as π :

$$V_{\pi'}(s) \geq V_{\pi}(s)$$
 for all s

What this means: If taking action $\pi'(s)$ and then following π gives at least as much value as just following π , then always following π' is better.

Why does the Policy Improvement Theorem work?

Proof by "unrolling" the future:

$$V^{\pi}(s) \leq Q_{\pi}(s,\pi'(s)) \qquad \text{(assumption)}$$

$$= \mathbb{E}[R_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s, A_t = \pi'(s)] \qquad \text{(Q-function def)}$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s] \qquad \text{(expectation under } \pi')$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma Q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_t = s] \qquad \text{(apply assumption again)}$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma \mathbb{E}[R_{t+2} + \gamma V^{\pi}(S_{t+2}) | S_{t+1}, A_{t+1} = \pi'(S_{t+1})] | S_t = s] \qquad \text{(expand Q)}$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 V^{\pi}(S_{t+2}) | S_t = s] \qquad \text{(combine expectations)}$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 V^{\pi}(S_{t+3}) | S_t = s] \qquad \text{(continue pattern)}$$

$$\vdots$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots | S_t = s]$$

$$= V_{\pi'}(s) \qquad \text{(definition of } V_{\pi'})$$

Why does greedy improvement work?

Let's verify that greedy policy improvement satisfies the theorem:

Recall a few slides ago the greedy policy $\pi'(s) = \operatorname{argmax}_{a} Q_{\pi}(s, a)$:

$$Q_{\pi}(s, \pi'(s)) = Q_{\pi}(s, \operatorname{argmax}_{a} Q_{\pi}(s, a))$$
 (substitute greedy action)
$$= \max_{a} Q_{\pi}(s, a)$$
 (definition of argmax)
$$\geq Q_{\pi}(s, \pi(s))$$
 (max is at least as large as any element)
$$= V^{\pi}(s)$$
 (definition of state value function)

So indeed: $Q_{\pi}(s, \pi'(s)) \geq V^{\pi}(s)$ for all s!

Therefore: $V_{\pi'}(s) \geq V_{\pi}(s)$ by the Policy Improvement Theorem!

In the Policy Improvement Theorem proof, we repeatedly apply the assumption that $Q_{\pi}(s, \pi'(s)) \geq V^{\pi}(s)$. This "unrolling" works because:

- A) The greedy policy is always optimal
- B) We can apply the same logic at each future state
- · C) The Markov property ensures independence
- D) The discount factor is less than 1
- E) We only consider deterministic policies

Clarity on Policy Improvement?

- · (A) All clear
- B) Greedy policy improvement unclear
- · C) Policy Improvement Theorem proof unclear

Policy Iteration

- 1. Introduction
- 2. Policy Evaluation
- 3. Policy Improvement
- 4. Policy Iteration
- 5. Value Iteration
- 6. Generalized Policy Iteration

What if we alternate between evaluation and improvement?

Policy Iteration: Combine evaluation and improvement

Policy Iteration Algorithm

- 1. **Initialize**: Arbitrary policy π_0
- 2. Repeat until convergence:
 - Policy Evaluation: Compute V_k^{π} using iterative evaluation
 - Policy Improvement: Set $\pi_{k+1}(s) = \operatorname{argmax}_a Q_{\pi_k}(s, a)$
- 3. **Stop when**: $\pi_{k+1} = \pi_k$ (policy is stable)

$$\pi_0 \xrightarrow{\text{Eval}} V_0^{\pi_0} \xrightarrow{\text{Improve}} \pi_1 \xrightarrow{\text{Eval}} V_1^{\pi_1} \xrightarrow{\text{Improve}} \cdots \to \pi^*$$

Why does Policy Iteration find the optimal policy?

Two key properties guarantee optimality:

Property 1: Monotonic Improvement

Each iteration either strictly improves the policy or the policy is already optimal:

$$V_{k+1}^{\pi}(s) \geq V_k^{\pi}(s)$$
 for all s

Property 2: Finite Convergence

- Finite number of possible policies: $|\mathcal{A}|^{|\mathcal{S}|}$
- Each improvement is strict (until optimality)
- Must reach optimal policy in finite steps

Result: Policy Iteration always finds π^* in finite time!

Policy Iteration is guaranteed to converge in finite steps because:

- · A) The Bellman equation is linear
- B There are finitely many policies and each improvement is monotonically better
- C) The discount factor is less than 1
- D) We use synchronous updates
- E) The MDP is episodic

Clarity on Policy Iteration?

- · (A) All clear
- B) Why we alternate evaluation and improvement unclear
- · C) Why it finds optimal policy unclear
- D) Difference from policy evaluation unclear

Value Iteration

- 1. Introduction
- 2. Policy Evaluation
- 3. Policy Improvement
- 4. Policy Iteration
- 5. Value Iteration
- 6. Generalized Policy Iteration

Why do full policy evaluation if we're going to change the policy anyway?

The inefficiency in Policy Iteration:

What Policy Iteration Does

- 1. Policy Evaluation: Run iterative evaluation until convergence
- 2. Policy Improvement: Update policy greedily
- 3. **Repeat**: Go back to step 1 with new policy

The key insight: Why wait for full convergence in step 1?

What if we don't wait for full convergence?

The Computational Waste

- Policy evaluation might take 100+ iterations to converge
- We immediately throw away this policy after improvement
- Early iterations of evaluation give us the "general shape" of values
- Perfect accuracy isn't needed if we're changing the policy anyway

The Natural Question

What's the extreme case? What if we do just **one step** of policy evaluation before improving?

This leads us directly to Value Iteration!

From Policy Iteration to Value Iteration

The Spectrum of Truncation

- Policy Iteration: Complete evaluation + improvement
- Truncated Policy Iteration: Partial evaluation + improvement
- · Value Iteration: One-step evaluation + improvement

One-step policy evaluation + greedy improvement gives us:

$$V_{k+1}(s) = \max_{a} \sum_{s',r} P(s',r|s,a)[r + \gamma V_k(s')]$$

for all s

The Value Iteration Algorithm

Value Iteration

- 1. Initialize $V_0(s) = 0$ for all s
- 2. For k = 1, 2, 3, ...:

$$V_{k+1}(s) = \max_{a} \sum_{s',r} P(s',r|s,a)[r + \gamma V_k(s')]$$

for all s

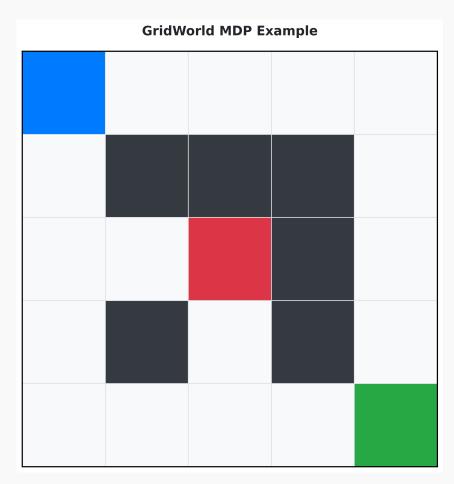
- 3. Stop when $\max_{s} |V_{k+1}(s) V_k(s)| < \theta$
- 4. Extract policy: $\pi^*(s) = \operatorname{argmax}_a \sum_{s',r} P(s',r|s,a)[r + \gamma V^*(s')]$

Key difference from Policy Evaluation: The \max operator instead of weighted sum over policy

The Moment You've Been Waiting For...

Learning our first optimal policy and value function in GridWorld!

Reminder of GridWorld Setup

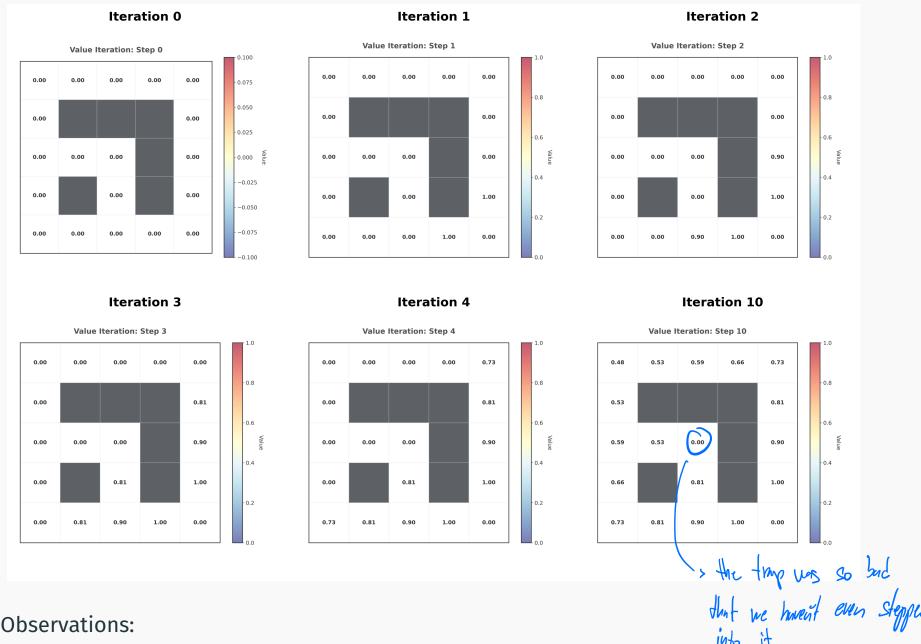


Simple 5×5 GridWorld

MDP Setup:

- S: Grid positions (i, j)
- A: {Up, Down, Left, Right}
- P: Deterministic movement
- R: Goal=+1, Trap=-1, Step=0.0

Value Iteration in Action: GridWorld

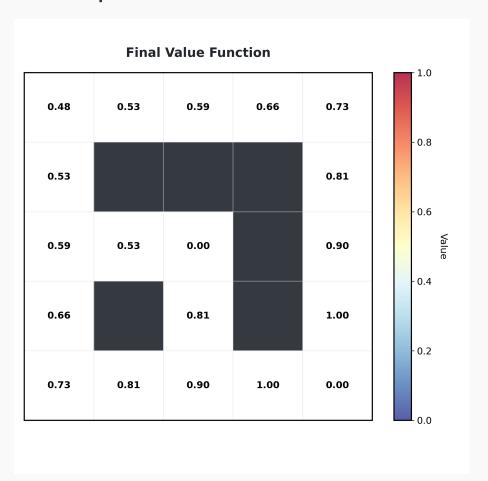


Key Observations:

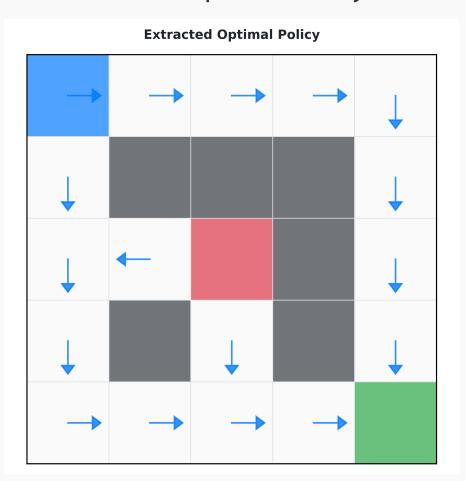
- Values propagate faster than policy evaluation
- Each state chooses its best action at each step

Value Iteration Results: Optimal Values and Policy

Optimal Value Function V*



Extracted Optimal Policy π^*

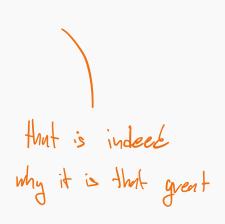


Value iteration finds both V^* and π^* in one algorithm!

menti.com - Code: 3814 1358

The max operator in Value Iteration directly implements:

- A) Policy evaluation
- B) Policy improvement
- © Both evaluation and improvement simultaneously
- D) The Bellman expectation equation
- E) Random action selection



menti.com — Code: **3814 1358**

Clarity on Value Iteration?

- · (A) All clear
- B) Why one-step evaluation works unclear
- · C) Difference from Policy Iteration unclear
- D) How to extract the policy unclear

Generalized Policy Iteration

- 1. Introduction
- 2. Policy Evaluation
- 3. Policy Improvement
- 4. Policy Iteration
- 5. Value Iteration
- 6. Generalized Policy Iteration

What's the big picture pattern behind these algorithms?

Generalized Policy Iteration (GPI)

Definition (Generalized Policy Iteration)The general idea of letting policy evaluation and policy improvement processes interact, independent of the granularity and other details.

The GPI Pattern

- Evaluation: Make value function consistent with current policy
- Improvement: Make policy greedy with respect to current value function
- These processes work toward the same goal from different directions

Almost all RL algorithms follow the GPI pattern!

Examples of GPI in Action

We've already seen GPI in different forms:

GPI Spectrum

- Policy Iteration: Complete evaluation, then improvement
- · Value Iteration: One-step evaluation, then improvement
- Asynchronous DP: Update states individually, any order

Future algorithms also follow GPI:

- Q-Learning: Implicit evaluation via Q-updates, ϵ -greedy improvement
- Actor-Critic: Continuous evaluation and improvement
- · Policy Gradient: Direct policy improvement with value estimation

Can we be more flexible about which states to update?

Asynchronous Dynamic Programming

Key Insight

We don't need to update all states in each iteration - we can focus computation where it matters most.

Asynchronous Strategies:

- Random: Pick states uniformly at random
- Prioritized: Update states with largest value changes first
- Real-time: Update states along simulated trajectories

Convergence guarantee: Still works if all states updated infinitely often

Why can't we just use Dynamic Programming for everything?

Three Fundamental Limitations

- 1. **Perfect Model Required**: Need exact P(s'|s,a) and R(s,a,s')
- 2. Computational Complexity: Must iterate over all states and actions
- 3. **Curse of Dimensionality**: State space grows exponentially as |S| and |A| increases

Real-world challenges:

- Robotics: Need perfect physics simulation
- Finance: Need perfect market model
- · Games: Environment rules might be unknown

The Curse of Dimensionality: Why DP Doesn't Scale

State space explosion:

Examples

- Backgammon: $\approx 10^{20}$ states
- **Go**: $\approx 10^{170}$ states
- Robot (10 joints): $\approx 10^{30}$ states
- Atari games: $256^{210 \times 160} \approx 10^{1,000,000}$ states

We need methods that don't require storing values for every state!

How do modern RL methods overcome these limitations?

The path forward:

Model-Free Methods

Learn directly from experience without knowing P or R

- Monte Carlo methods
- Temporal Difference learning (Q-learning)

Function Approximation

Use neural networks instead of tables

The math stays the same - only the representation changes!

menti.com - Code: 3814 1358

What is the key relationship in Generalized Policy Iteration?

- · A) Evaluation and improvement compete against each other
- B Evaluation and improvement work toward the same goal from different directions
- · C) Evaluation must complete before improvement begins
- D) Improvement is always faster than evaluation
- E) Both processes must be synchronous

menti.com — Code: **3814 1358**

Clarity on GPI and limitations of DP?

- · All clear
- B) GPI concept unclear
- C) Why DP doesn't scale unclear
- D) Curse of dimensionality unclear

What have we learned today?

Key Takeaways

- **Dynamic Programming**: Exact algorithms for solving MDPs
- Policy Evaluation: Compute value functions for given policies
- Policy Improvement: Make policies better using value functions
- Policy Iteration: Alternates evaluation and improvement
- · Value Iteration: Finds optimal values directly using one-step updates
- **GPI**: Unifies the evaluation-improvement pattern

Next week: Model-Free Methods How to learn optimal policies without knowing the environment model

Reading and Resources

Essential Reading

- · Sutton & Barto Chapter 4: Dynamic Programming
- Focus on: Policy Evaluation (4.1), Policy Improvement (4.2)
- Core algorithms: Policy Iteration (4.3), Value Iteration (4.4)
- Extensions: Asynchronous DP (4.5), GPI (4.6)

menti.com - Code: 3814 1358

Q1: If you got lost today, at what point did you lose track?

- A) Policy Evaluation
- B) Policy Improvement
- · C) Policy Iteration
- D) Value Iteration
- E) Generalized Policy Iteration
- (F) None of the above, I followed everything

Q2: Generic feedback - what worked well, what could be improved?

- e.g. "I found the section on policies particularly helpful."
- · e.g. "Pace was too fast."
- e.g. "Not enough examples."