Operating Systems

NSWI170 Computer Systems

Jakub Yaghob, Martin Krulis

Operating system — role @

» Abstract machine
* Presented by kernel API

» System calls
» Wrapped in C libraries

» Hide HW complexity/diversity

Operating System ¢ ReSOUI’CG manager
-~ « All HW managed by OS
« Sharing HW among applications
« Allocation (memory)

» Time sharing (CPU)
» Abstraction (disk, network)

Application

4.4.2022 2

CPU modes (@@

« User mode
 Available to all application

* Limited or no access to some resources
« System registers, instructions

» Kernel (system) mode

« More privileged (all registers and instructions are available)
« Used by OS or by only part of OS
 Full access to all resources

* Transition between the modes (especially user -> kernel)
« Syscall (user instruction), jumps to explicit kernel entry point

Architecture — monolithic (@@

o A leerm! mardls
* Monolithic systems .~

* Big mess — no structure
« “Early days”
* Linux
 Collection of procedures
« Each one can call another one

* No information hiding
- Potentially error prone L2 K524 4’”4’%""/” 7 ”%'///3’

- Efficient use of resources, efficient code ~ - gl /’W”/”’% 2 pasiia’
. . — oo g ﬁ/&xzfz
 Originally no extensibility
* Now able to load modules dynamlcally (flexible, but even more error-prone)
(W'WV & ”lééé/ﬂ/lv/// %&7 /4% hr/m/z — WW/ /{7 A b/;ah,{é/

Architecture — layered

 Evolution of monolithic system
« Organized into hierarchy of layers -

©®),

>

P 7; e Zyb%f //&W}d/ o ysminesh

» Layer n+1 uses exclusively services supported by layer n

» Easier to extend and evolve

Memory

Kernel
management

Input/output | File system User interface

. .)\
Architecture — microkernel (Q/@

« Microkernel architecture
* Move as much as possible from the kernel space to the user space

» Communication between user modules — = 7o e pablihy b1l vte,
 Message passing \ w AhL

« Secure oy /”g/m;;{' Svcl Sve?2 e
- Reliable
/@“/7’ 25 V’é’ /W/M/ o
ligi. Ohsi’” somssn i o e yhod b pi jig it 0o o v« B g

o s Sl
442022 /77}'/%1;//7//7; /L a//ﬂé/// Fohse /} 7 /ym,;éf/ “wr g Wonumbinee (W’ vdows ¥ M M’é/

Linux kernel architecture

Linux kernel map

functions q human
layers MWSVStem h&rocesslng - memory . storage . .‘rlnetworkmg interface
interf: -] memory access files & directories sockets access HI char devices

linuxisyscallsh system files.
asm-i3B6uaccessh Jproc fdev 2 i SR
user space . 0 = sysmmep2 g sys_socket

interfaces - Iprocssatimaps do_path Jookup
e e

virtual

memory disk controllers network controllers user peripherals

4.4.2022

Windows kernel architecture

4.4.2022

POSIX 0S/2
n il Application |l Application

station| | Server
service| [Service

Security| _| Win32 | | POSIX 0S/2

Integral subsystems

—~—
Environment subsystems

User mode

Executive Services

| /O Security

Reference

Manager| | monitor | [Manager TGRIEIR/T)T Manager| [Manager{ [Manager

Virtual Window
IPC |[Memory| process{| PnP |[Power

|GDl|

Object Manager

Executive

Kernel mode drivers

Hardware Abstraction Layer (HAL)

Kernel mode

Hardware

}4; W Ay 0 i o Wi

Um” 7% W% 4%,,7 W

Devices

* Terminology
 Device - “a thing made for a particular purpose”

* Device controller
» Handles connected devices electrically (signals “on wires”, A/D converters)
» Devices connected in a topology
» Device driver
« SW component (piece of code), part of OS (module, dynamically loaded)
» Abstract interface to the upper layer in OS
» Specific for a controller or a class/group of controllers

» BIOS/UEFI

« Basic HW interfaces that allow to enumerate and initialize devices on boot

Devices topology

_ ? Chindy agentor /i

Bus DC

| | |
| Dev1 | | Dev2 | | Dev3 |

- me é»/;w,,é it) Zt/mm
jve 745/% /M/n dereg

Dev2

Star DC

Beva]
- fobl redl /ﬂ/mﬁ Shirwee
- Fadif +d) ﬁy’/ %h/ﬁ?/
442002 it follk Vy’mcl{f

Ring

— éam Ve ws g

Tree
7

-

DC

//gus /IR
2 wtbls, pute mt
W/S P?’!Déﬂa Jotet—

(fs/p | Devl]| [Dev2| [Hubi]

| Dev3| |Dev4 |

10

Device handling

o &~ LD~

10.

Application issues an 1/O request

Language library makes a system call

Kernel decides, which device is involved

Kernel starts an I/O operation using device driver

Device driver initiates an 1/0 operation on a device
controller

Device does something

Device driver checks for a status of the device
controller

When data are ready, transfer data from device to
the memory

Return to any kernel layer and make other |/O
operation fulfilling the user request

Return to the application

User I/O libraries

User

Device independent

1/O

Device Device
driver driver

Kernel

Y

Device Device

controller | | controller

.

(povis) peees

HW

Device intercommunication (@

T2kl it poshidly CPU —
* Polling —
« CPU actively checks devige status c/hangg |
* Interrupt ///744% LW d# co 0/4&/ wn” (oo % Mé/:f«/ﬁv‘*’

* Device notifies CPU that it needs attention il e / /é Y
* CPU interrupts current execution flow 7pe

* IRQ handling — WM&V/I/-W'M//K 09 g;éz/gﬂn)/ﬂm (V/%A//w“/%/m/ﬁ

« CPU has at least one pin for requesting interrupt

 DMA (Direct Memory Access)

* Transfer data to/from a device without CPU attention
 DMA controller
« Scatter/gather

Interrupt types (@@

W'/W%é /7//%& yymiie wsbort

e External P P /MM'G@» g&//%é,zq/y:/,;m}”/
« HW source using an IRQ pin /

» Masking — olins clhusk, oy & 15 W/m/’f H s, ormshigs”
* (Hardware) Exception _ Ybeo /Eﬁ}w/mf: it /m}/t;w s jsprlens

« Unexpectedly triggered by an instruction (when the instruction is .
completed) - fsur < /Jl Joisal fieshic o Wjslon. oS dueis abesy Wy 5 hnbljor Mé o

» Trap (trigger exception after) or fault (instruction rollbacks, trigger

Nico e 92/77 before) ™ prllthyy To. widd G \— Y a5 aHE presic il mite, bk AR
 Predefined set by CPU architecture Vi, ol o dhi 4 %ML y shgt e
e Software

« Special instruction
« Can be used for system call mechanism

x86 Exceptions

» Xx86 Architecture
« 256 interrupts

 First 32 reserved for
exceptions

* Remaining are IRQ or
SW interrupts

4.4.2022

m Exception description

0x00
0x01
0x02

0x03

0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
O0xOF
0x10
0x11

0x12
0x13
0x14
0x15

Division by zero
Single-step interrupt (see trap flag)
NMI

Breakpoint (which benefits from the shorter 0OxCC encoding of
INT 3)

Overflow

Bound Range Exceeded

Invalid Opcode

Coprocessor not available

Double Fault

Coprocessor Segment Overrun (386 or earlier only)
Invalid Task State Segment

Segment not present

Stack Segment Fault

General Protection Fault

Page Fault
reserved

x87 Floating Point Exception
Alignment Check

Machine Check

SIMD Floating-Point Exception
Virtualization Exception

Control Protection Exception (only available with CET)

©

14

https://en.wikipedia.org/wiki/Division_by_zero#Computer_arithmetic
https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/Non-maskable_interrupt
https://en.wikipedia.org/wiki/Double_fault
https://en.wikipedia.org/wiki/General_protection_fault
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Control-flow_enforcement_technology

Interrupt request handling ON

« What happens, when an interrupt occurs? - Hl““

» CPU decides the source of the interrupt /mépz #04 o
* Predefined , o) -
- IRQ controller Ve ‘*?j,ﬁ’;ﬁ?‘,ﬁ,’}f}f 4 drien) je 1 controller

« CPU gets an address of interrupt handler #INT INT
» Fixed (defined by ISA) | o | CPU
* Interrupt table (array of pointers of handlers for individual interrupts)

e Current stream of instructions is interrupted, . b

CPU begins execution of interrupt handler’s instructions Jp oo

« Usually between instructions (current instruction must complete or rollback) IMpV?ﬂ“"’ﬂL

* Privilege switch usually happens, interrupt handler is p?rt of a kernel
Interrupt handler saves the CPU state o
Interrupt handler do something useful \c}gz% gf’uéﬁp’»f/ﬁ/tf/f’ it
Interrupt handler restores the CPU state
CPU continues with original instruction stream

7))
- (©
P rO Ce SS I n g P /qi/y/ /wz’/! w5’ //7%/6/ /aa/lf (/AZ&J ﬂqﬁ/&/v ///%@

Lozl i) / A bl £\
. Program .~ * Thread loel o (705 Code
» A passive set of * One activity in a process T1
instruction and data « Stream of instructions 12
* Created by a executed by CPU
compiler/linker y « Unit of kernel scheduling
« Process -~ 7 4% « Fiber
« An ir%s’éagceocg a program « Liahter unit of Static data
created by schedulin
* Program code and data . Cooperati%e scheduling Stack for thread 1
Tr; Process add-ress space . R'ulrgjning fiber exp”Ciﬂy/ v
* The program is ylelds
“enli\F/)en%d” by an activity Uosdy bty — | Stack for thread 2
* |nstructions are executed v v’ 1
by CPU oot '

« Owns other resources Heap

A\
Process vs. Thread O
s P i //54/4///79 olhoit

* Process Thread
« Code (loaded in memory) » Position in code (program
« Memory space counter)
« Other system resources * Own stack (rest is shared)
7« File handles » Access to some system
7 - Network sockets resources may require
J"” ,é”' st . Synchronization primitives synchronization
/m//aﬂ?/ . .. - CPU state

* Must be saved when thread is
removed from CPU core and
reloaded when the thread
resumes

Creating a process

* Windows

STARTUPINFO si;
PROCESS_INFORMATION pi; _
ZeroMemory(&si, sizeof si));
si.cb = sizeof(Si);

ﬁroMemory(&pl 8|zeof(p|)),

bool ok = CreateProcess(NULL,
cmdline,
NULL, NULL, FALSE, 0, NULL, NULL,

/ /&si, &pi);

WaitForSingleObj ect&\l
pi.hProcess, INFINITE);

4.4.2022

5>
* Linux
pid_t p = fork();
if (p ==-1){

// handle error
} else if (p == 0) {

// new process
execv(pathToExecutable, args);

} else {
// original process

int status;
waitpid(p, &status, 0);

18

Creating a thread

« C++ example (but C#/Java are similar)

thread_code(/* params */) {

}

Th|s will translate in some low-level system calls

|n//ma|n() {

std:thread t(thread code, /* params *));
//_here main thread and t run concurrently

join();

}

4.4.2022

Y

4

19

- 2
Processing ©)8
» Scheduler

 Part of OS

» Uses scheduling algorithms to assign computing resources to
scheduling units (CPU cores)
, Sonicve

» Multitasking =744 gy v jasy o 1o gpedie 3¢ %5,
« Concurrent executions of multiple processes o
« Multiprocessing — = 44 2 vl wiiym i (wie j 0 aced

« Multiple CPUs (cores) in one system
« More challenging for the scheduler
« Affinity

~
Processing (@\@

* Context

« CPU (and possibly other) state of a scheduling unit
» Registers (including PC, specialized vector registers)
 Additional units (x87 coprocessor)

 Virtual memory and address-space related context
» Page tables, TLB (will be covered later)
« Memory caches are transparent (not part of the context, but may affect performance)

. Context switch o &b miblhing, sutbys w contody preesi

* Process of storing the context of a scheduling unit (on suspend)
and restoring the context of another scheduling unit (on resume)

 Quite costly (hundreds-thousands of instructions)

Real-time scheduling (@@

» Real-time scheduling
« RT process has a start time (release time) and a stop time (deadline)

* Release time — time at which the process must start after some event
occurred

» Deadline — time by which the task must complete
« Hard — no value to continue computation after the deadline
« Soft — the value of late result diminishes with time after the deadline

=

4.4.2022 22

Unit of scheduling state (@@

* Created
 Awaits admission

 Terminated @ i
 Until parent process waits for result /7%0;;// %jp%y;

* Ready

« Wait for scheduling

* Running
« CPU assigned @dy/
* Blocked Wma/z% ;éw

« Wait for resources the S satey Hhe)b 2 2

Blocked

Multitasking (@@

py /g 5}/
. /44/ & Spmo)
* Cooperative 7 [’ * Preemptive
e Unit of schedulmg must » Each running unit of scheduling
explicitly and voluntarily yield has assigned time-slice
control OS needs some external

source of interrupt (HW timer)

* If the unit of scheduling blocks
or is terminated before the time

 All processes must cooperate
» Special systems

* Scheduling in OS reduced on -slice ends, nothing of interest
starting the process and happens
making context switch after the « If the unit of scheduling
yield consumes the whole time-slice
« OS does not initiate context * interrupted by the external source
J switch « changed to READY state

I e FW o, bodu! (b » OS will make context switch

Scheduling

L Stn 56 b i’y
* Objectives ’ 7

« Maximize/optimize CPU utilization (based on workload)
» Fair allocation of CPU — = 4% = lnsde” oo ol W’%/ n A
« Maximize throughput — = /Mm'/m’/w/wﬁwﬁf
* Number of processes that complete their execution per time unit
- Minimize turnaround time —» '’ chan” Gre hotllo o
» Time taken by a process to finish
« Minimize waiting time
» Time a process waits in READY state

* Minimize response time
» Time to response for interactive applications

Scheduling — priority (@@

* Priority
* A number expressing the importance of the process

 Unit of scheduling with greater priority should be scheduled before (or
more often than) unit of scheduling with lower priority

« The priority of the process is the sum of a static priority and dynamic
priority
« Static priority
» Assigned at the start of the process
« Users hierarchy or impgrt/ance N 5
+ Dynamic priority — fafe jt OMW’/ aby 4w o P
« Adding fairness to the scheduling
* Once in a time the dynamic priority is increased for all READY units of scheduling

« The dynamic priority is initialized to 0 and is reset to 0 after the unit of scheduling is
scheduled for execution

Scheduling algorithms — non- (@\

preemptive

 First Come, First Serve (FCFS)

« Single FIFO queue

* Process enters the queue on the tail, the head process is running on
CPU

 Afterwards, there is removed from the queue

» Shortest Job First

« Maximizes throughput
» Expected job execution time must be known in advance

 Longest Job first

Scheduling algorithms — preemptive @

* Round Robin
 Like FCFS (but preemptive)
 Single queue
« Each unit of scheduling has assigned time-slice

« If the unit of scheduling consumes whole time-slice or is blocked, it will
be assigned to the tail of the queue

’—> uUs || US | -——--- UsS || US CPU

Scheduling algorithms — preemptive @

¢ ﬂﬂfft //Cﬂfw'/& Ad /ﬁ/u Y }J/ V/y /490%
. I\/Iultllevel feedback- queue” i

« Multiple queues

» Time-slice defined by queue
(increasing)

* If the unit of scheduling consumes
the whole time-slice, it will be
assigned to the lower queue

* |f the unit of scheduling blocks
before consuming the whole time-
slice, it will be assigned to the
higher queue

» Schedule head unit of scheduling
from the highest non-empty queue

e

il 5w by 7;[014757 Jom - gond
S it oy, Wbz luPis Sy i, il iy

—z ﬂ?@J 5454/ c:'qs, /Elo I/rg/ /ﬂoJ/Mély'-/g/ /4;7: —5/4'&/

Us || US | --——-—-- us || Us
— US || US | - CPU
e
4 US || US | - us us-T

> (b s Sk il prc-thiee, ok
i inom, prter hya/h:!y‘/ Al Gty

Scheduling algorithms - preemptive @

« Completely fair scheduler

(CFS) « Scheduling algorithm
« Implemented in Linux kernel « The leftmost node in RB tree is
« Currently the default scheduler selected (lowest execution time)
. : * |f the process completes its
SUs are stored !n red'bIaCk_ tree execution, it is removed from
. I_ndexed by th_elr total executlon scheduling
tlme (called V”TU?I I un.t/me) « If the process reaches its maximum
* Maximum execution time execution time or is somehow
« A time-slice calculated for each stopped or interrupted, it is reinserted
unit into the tree with new execution time
. Total waiting time divided by the » Actual time spent on CPU is added to

virtual runtime

current number of processes _ _
» Repeat until the tree is empty

* The longer it waits, the greater

File O\

File Worids Jees w é//m//}iw%ﬂng/ jnbodl Bl Loy Jom

« Data organization unit

 Collection of related information
» Abstract stream of data (bytes)
» Kernel does not understand file formats
» Typically stored on secondary storage, but there are other possibilities

* File identification
» System uses numeric identifiers

» File name and path — a named reference to the file identifier in organized tree
structure
» So that humans can find the files
« Some parts of the file name may have special meaning (leading dot, extension)

File operations

e Std. libin C
#include <stdio.h>

FILE *fp = fopen("file.txt", "r");
if (ifp) {/* error */;

fseek(fp, 42, SEEK_SET);
fgets(buf, 16, fp);

fclose(fp);

4.4.2022

* POSIX

#include <unistd.h>

int fd = open("file.txt", O_RDONLY);
if (fd == -1) {/* error */}

Iseek(fd, 42, SEEK_SET);
read(fd, buf, 16);

close(fd);

32

File operations @

« Additional operations It is no coincidence that stdin,

- Create, truncate, delete, flush, change attriby; ___ Stdout, and stderr file
descriptors have handles 0O, 1, and
* File handle

2.
» Process-specific sequentially assigned, kernel holds translation table

* Buffering

* To increase performance, multiple levels (system, language runtime)
« Sequential vs random access

* Alternatives
« Memory mapping (will become more clear after memory management)

» Async file 1/0

File attributes

$> stat ./smart.py
File: ./smart.py

Size: 11534 Blocks: 24 IO Block: 4096 regular file
Device: fd05h/64773d Inode: 120575467360 Links: 1

Access: (0664/-rw-rw-r--) Uid: (29345/krulm3am)

Access: 2021-05-17 18:25:06.734717566 +0200
Modify: 2021-05-16 15:58:16.000000000 +0200
Change: 2021-08-04 16:11:32.853190394 +0200
Birth: -

Gid: (29345/krulm3am)

File directory (@@

* Directory

 Collection (list) of file entries

« Efficiency — a file can be located more quickly

» Naming — better navigation for users

« Grouping — logical grouping of files
Usually represented as a file of a special type
Store (some of) the file attributes

Hierarchy or structure

* Root Moving file on the same file system
» Operations =

» Create/delete/rename file/subdirectory moving only file entry between

« Search for a name directories

e List members

File directory example

* FAT directory entry
 File name “The quick brown fox”

Second (and last) long entry

|

|

|
0x42 w 0xOF | 0x00 iCheck .
| | | | sum |
0x0000 OxFFFF OxFFFF OxFFFF OxFFFF 0x0000 OxFFFF OxFFFF
- T T T T T
0x01 0x0F [ox00 [Pk g
| | | } sum I
i C k b 0x0000 r o
B T T T T i) :
T H E Q 0] | - 1 F O X |0x20| NT Create time
| | | | |
Last access Last modi- | Last modi- | .. .
Create date date 0x0000 fied time fied date First cluster File size
Short entry

—— First long entry

https://social.technet.microsoft.com/wiki/contents/articles/6771.the-fat-file-system.aspx
4.4.2022

File storage

 Traditional storage
* File system in secondary or external storage (persisted)
* File system in RAM (e.g., for temporary files)

* Network storage
 Protocols for performing FS operations remotely over network

* Virtual (system) files
 Using file abstraction to provide additional (system) features
/dev/null

/dev/urandom
/proc/cpuinfo

File links ©N

* Links (hard links)

« Multiple directory entries refer to the same physical file (same file ID)
* Most operations are transparent (no special handling required)

« Saves space (in some situations), creates additional problems
» E.g., file deletion should not always remove the file data

« Symlinks (soft links)
« Special files, text content holds path to another file
* Does not refer to file IDs

« Requires special handling in path processing (“follow symlinks”)
« Often hidden in basic system tools or programming runtime libraries

File system

* File system

« How and where data are stored
« Formats, protocols

* Implementation of an
abstraction for files and
directories

« Responsibility -~

» Name translation (directory
format)
« Data blocks management
 Allocated vs. free blocks
* Bitmap, linked list, B-tree, ...
 File data management
» Sequence of data blocks

§<27] Jow

VM% ’ é/ 3’7'/%/ /l(éq%-/"/"l/.

* Local file system

« Stored on HDD, SSD, removable
media

« FAT, NTFS, ext234, XFS, ...

* Network file system

* Protocol for accessing files and
directories over the network

* NFS, CIFS/SMB, ...

FAT ©N

* File Allocation Table (FAT)
« Simple, old, MS-DOS, many variants used today
« One structure (FAT) for managing free blocks and file data location

* Directory
» Sequence of entries with fixed size and attributes
» Starting cluster, name+ext, size, timestamps, attributes

* Root in fixed position h o W di 40/,;//
Directory FAT swids) rz/”f/f Boot record M W7
o 9m
P~ 2 [0] 3+10] 4 [0] FAT1 /;;qu ywstel
[13] EAT2 74}/@/ Ak b 2510
b.txt

Root directory

5{14]16 [0]17 [0]

Data

7
7~
;”‘7072 /’ /»//J /lw/;; [é/ﬂé;ﬁ, w c{;}h

Ext2

» Second extended file system (ext2)
« Simple, old, Linux
» Ext3 — added journal to improve persistence
« Ext4 — improvement of ext3, larger individual files (16T) and FS (1 EB)

* Inode (index node)
* Represents one file/directory

» Tree-like hierarchy with block references (faster than linked list)
« Smaller files are represented more efficiently
» Holds most of the attributes

« Directory

» Sequence of entries with fixed structure
* Inode number, file name

Ext2

Contains most important
information about the FS
(a copy is in each block

Block group descriptor table

group)
Superblock
Boot record Descriptor
Block group O Data bitmap
Inode bit
Block group 1 NS AN
Inode table
Block group N ﬂData block
/
\{W«/ dﬂl’ﬂ
O o
I /w%/‘fw ndeg

Data
(a copy is in each block block
group) Data
block
Info Data Data
Block 0 b'Of;k /‘ block
Block 1 A7
: Block O Data
Block 11 block
Block 12 (I) /B|OCk 127/
; Block 0
Block 13 (DI) _W*
Block 14 (T1) |, Block 0 o
Block 127
A Moc'é *

Data
block

Telhts wloiin;” yolhf| gy

Hard disc mechanics

spindle — arm track
A

latter
P RW head —

« Additional terminology
* Block — the same sector on all platters
 Cluster — the same track on all platters
 Flying height — distance between head and platter (~5 nm)
» Rotational speed — 5400, 7200, 10k, 15k rpm

4.4.2022

43

Disk scheduling algorithms (@@

* What?
» Scheduling of I/O requests for the disk

« Originally done by OS, now by disk itself / .
* Why? 7 Sech mi 47 gawier c//aa@f/héz‘é % Y non” 1909

» Disk access time = Seek Time + Rotational Latency + Transfer time
« Seek Time — time to locate the arm to a track (~ms)
» Rotational latency — time to rotate a sector to the fixed position of heads
» Transfer time — time to transfer data

» Minimize disk access time for multiple I/O requests

 Examples
 All atlgorithms demonstrated with the same pattern of I/O requests and initial
position
- 1/0 requests - 82, 170, 43, 61, 24, 16, 190

« Initial position - 50

Disk scheduling algorithms

 FCFS (First Come First Served)

* Pros
 Fair chance for all requests

« Simple, good for light load Hodye sgz;éof
7

« Cons
* No optimization — usually not the best /

0 16 24 4350 61 82 170 190 199
I I I I I

Disk scheduling algorithms (@@

/ A %é 2o
« SSTF (Shortest Seek Time First) /7//“4/" 7 “ /e

* Pros
» Average access time decreases

. C(‘)r:gcreased throughp/ut 7 A/Wzvy/ povwy ,}/’%7/// ot il t//aw’/'/ Vzé/ﬂ@/aé;é

» Possible starvation for distant requests, when new short seek requests arrive

0 16 24 4350 61 82 170 190 199
I I I I I

Disk scheduling algorithms @

« SCAN (a.k.a . Elevator algorithm) /zd/w“ p Umee, 1 il Wenpomonr.
» Keeps direction (as long as request exists) / ' , /
* Pros Z /¢ /mé/m/ 72 /47 2purs py/éé
* High throughput — good for heavy loads d’/ }Ja cy/ _
* Low variance in access time ‘7/ /AL W’ %/7/
» Cons

» Long waiting times for new request just visited by the arm
Q 1|6 2|4 4|3 5|0 6.1 82 1?0 190 199
I | | | |

Disk scheduling algorithms (@@

- CSCAN o
+ Circular SCAN 7 12 G o, furt jecds o o byin*
* Pros .z

* More uniform time compared to SCAN

0 16 24 4350 61 82 170 190 199
I I I

Disk scheduling algorithms (@@

7 v .) ., '/ P
« LOOK/CLOOK _—7 [//f/W gty %///c’%/ o’ o ?714/ 44 %/7/ /Iéa Wé
» Like SCAN/CSCAN but does not visit ends of the disk
« FSCAN

* Two queues

« Compute algorithm only for 15t queue, new requests are inserted to the 2"

one
0 16 24 4350 61 82 170 190 199
I I I I I

Solid state disk ©

 Solid-state disk (SSD)

« Disk without moving parts (only electric circuits)
 NAND flash, made of floating gate transistors

« Similar to RAM, but slower and the transistors retain the charge without
refreshing

+ Reads/writes damage the transistors over time (writes and erases far more than
reads)

» 1k-100k program-erase (P/E) cycles (MTBF)
 Grid structure organized as block of pages
* Page is ~ 2-16 KiB long, block has ~ 128-256 pages
» 1-4 bits per cell (SLC, MLC, TLC QLC), more bits = cheaper, but less efficient
» Read/write per page, erase per block (!)

« Complex controller that handles the I/O operations
* And data caching in internal RAM

Solid state disk

« SSD data updates

Writing new data is OK
Page update cannot erase
only one page

» Erase is performed on blocks

Update invalidates old page
and writes a new one

Garbage collection
preforms data consolidation

» Copy only valid pages of a
block

* Erase entire block

4.4.2022

> “ free | free < D - <| free | free | free

- =9 54

=3 [~ [~

o o o

2| free | free free o n “ @l free | free free
free | free free n n free | free free
free free | free free free | free free free free

~| free | free | free ~| free | free | free ~| free

= - -

o [~ (=]

S -] S

2| free | free free 2| free free | free = “
free | free free free free | free n

1. Four pages(A-D) are written
to a block (X). Individual pages
can be written at any time if
they are currently free (erased).

2. Four new pages (E-H) and four
replacementpages (A’-D’) are
written to the block (X). The
original A-D pages are now
invalid (stale) data, but cannot
be overwritten until the whole
block s erased.

3. Inorder to write to the pages
with stale data (A-D)all good
pages(E-H & A’-D’) areread and
written to a new block (Y) then
the old block (X)is erased. This
last step is garbage collection.

https://en.wikipedia.org/wiki/File:Garbage_Collection.png

51

Solid state disk

« SSD issues

* Write amplification problem
* A page is re-written many times due to garbage collection
» Each write/erase create cumulative damage to NAND flash

« HW solutions

» Wear leveling — elaborate algorithm that remaps the blocks
» Qver-provisioning — the SSD is larger than it declares

« Operating systems solutions
» Special file systems designed for SSDs
» Flash-friendly FS (F2FS), BtrFS, log-structure file systems (e.g., LFS)

» TRIM operation — special command how OS can render blocks invalid (file is
deleted)

File system(s) on HDD(s) (@@

* HDD Partitioning

« Division of physical drive into multiple logical drives
« Each may have its own file system

« Mounted to paths in root tree (Linux), or presented separately
(Windows)

« Redundant Array of Inexpensive Disks (RAID)
« A way to interconnect multiple HDDs into one
» Typically at hardware level, but OS can implement it as well
« Main objective is to increase reliability (and possibly R/W speed)
* RAID 0 — two disks, per-sector interleaving (better speed, worst reliability)

* RAID 1 — two disks completely mirrored
* RAID 5 — each data block is divided among N disks + 1 checksum is created

3
Virtual memory (@L

« Basic concepts
 All memory accesses from instructions work with virtual address

 Virtual address space
» Even instruction fetch

« Operating memory provides physical memory
» Physical address space
* Always 1-dimensional
* Memory controller uses physical addresses

 Translation mechanism

Implemented in HW (MMU embedded in CPU)

Translates a virtual address to a physical address

The translation (mapping) may not exist -> exception (fault)
Two basic mechanisms — segmentation, paging

Virtual memory

4.4.2022

Code

JUlITowdlIto

Initialized static data

Uninitialized static data

Stack for thread 1

!

Stack for thread n

I
f

Heap

VAS = process address space

VA

PAS = available memory
o Bl i hie pi¥ipe S i

PA

55

Virtual memory

* Why?
« More address space
* VAS can be larger then PAS (an illusion of having large memory)
* Today, IA-32 can have larger PAS then VAS
» Add a secondary storage as a memory backup/swap
* This is no longer the primary reason today

« Security

* Process address space separation

» “Separation” of logical segments in a process address space (read-only,
executable, ...)

« Specialized (advanced) operations
* Memory mapped I/O (e.g., memory mapped file)
» Controlled memory sharing

Segmentation

« Concepts

* Virtual (process) address space divided into logical segments
« Segments are numbered
« may have different sizes

 Virtual address has two parts
* [segment number; segment offset]
» Offsets 0-based for each segment

« Segment table (translation data structure)
* In memory, for each process
» Stores base physical address, length, and attributes for each segment
* Indexed by the segment number
« Segment fault (if translation or validation of access fails)

2.0 pole
, 0
7

-)
Segmentation O
/é/@/l’ﬂ/@ylz q: - %}Mfml 2lmprne,

« Schema — vilibot pmentn (lihtn” o)
: . [r(/[-v'
Code /ﬂll@/ 7ZD /Vﬂ l/ 0/03'41/1# /% / L/Mqé Le W/ﬂ#&/l 07/// 4//
Constants |°ffS VA Heap
seg|offs
Initialized static data .) Constants VOffS
Uninitialized static data / V. T ———
Stack for thread BPA '\\ ack for threa
i ; / len d;?wg Code
f i olsimy //Z%l il #h>
L b+ Seg table

é o s w gy
ﬁz;//é/j S/ZV;Z P oymer s Z = Husine prtesa mhbirnf PR Aty sy hulhy

) 58
4.4.2022 £ > My A /,,z/g/ ces

Z/7/4[MJ nul WS%M, /4& 'Ww/ v /%J/) SQuaper.
Paging

« Concepts
« VAS divided into equal parts
* Page, 2" size This is very important!
« PAS divided into equal parts
* Frame, equal size with page (i.e., one page fits exactly one frame)
* VA 1-dimensional
« Page table (translation data structure)
* In memory, for each process
 Indexed by a page number
« Each entry contains a frame number and attributes (P)
» Page fault

Paging

« Concepts

4.4.2022

n 4 Offs

2N-n.1

9/7@ wl foy e S 22 ¥

n= XV’ = ﬂ”fb §)'ZL
/1/ = bfﬁ/ﬁ/' /sz'om

/l’mtbvjc g/n%

P-1

Physical address

n-1

0

! yopivialn’
o Wﬂ e
Virtual address (
N-1 n-1'0 |
p offs f
|

/ 7 /WWD/ /5.761()‘(4 g[nié/

f

offs

£ §offs

2P-n-1

60

Page table — 1-level @

VAS pages Page table PAS frames
0 %Jélltma /I{,/y#él %/
y 0
- 1 Sepuant e weliF
| I I I 2 L/o %’gfg,é, %‘fg /7/}
14 456 | : |
| ! | | I I 'y
| | R /‘79 ot " 54
123 17 | | hilte ddeening
i | | : 222
1111 NA &Dage fault | |
3333 222 I I
| | 2P-n_1

IN-n_4 2N-n_1

Page table — problems

7 //45//) 7 /777%%7/ 9mn
« Size h pyiy P
 1-level page table, 32-bit
VA/PA, 4k pages/frames (12
bits)
» Size of the page table entry?
» Size of the page table?
* Do we really need the whole
VA?
« Multilevel page tables

 1stlevel always in memory

* Individual tables on other levels
may be missing (i.e., we are
saving space)

« Speed
« Each memory access from an
instruction means at least one

other memory access to the
page table

e TL
Bu

B (Translation Lookaside
ffer)

Associative memory

« Cache for translating page

number to a frame number

» O-level page tables (MIPS)

Page table — 2-level (@@

Virtual address

P71 o iy 31 21 11 0

PT index 1 PT index 2 offset
n pﬁ‘
J)ﬂ/zf 4 10 PT1 10 PT2
PTAR
offs
e ’
0/747 S
4K
) A Y f
Ohsltn wps /" Z/* m " B o P
1024 entries 1024 entries —2 1y 50 dhk 05 Fru 2

> % & dorio Vs

4.4.2022 63

Page table — real AMD64 example O\

Virtual Address

63 30 29 2120 12 11 0

48 47
Page-Map
Level-4 Offset

PML4

3938

Physical-
Page Offset

Page-Table
Offset

Page-Directory
Offset

Page-Directory-
Pointer Offset

Sign Extend

/9 A9 A9 A9 712
Page-
Page-Map Directory- Page- 4 Kbyte
Level-4 Pointer Directory Page Physical
Table Table Table Table Page
— PTE ,5/2*
521
59* * PDPE e
™ PML4E |4 52+ {1V SIS
Addres
— PDE
| > > — >
*This is an architectural limit. A given processor
51 12 implementation may support fewer bits.

Page-Map Level-4
Base Address

CR3 s

4.4.2022

Paging — address translation ©

» Steps for address translation Go through the page table

» Take page number from VA and « Divide page number into multiple

PT indices
keep offset (separately) . Index 1% level PT

* Check TLB for mapping « If there is no mapping for 2"
- If exists, retrieve frame number, level PT, raise page fault
otherwise continue _ @47 /ow’/’;” ,) exception
), 9o . n

+ Go through the pagetable - 77 777"« Retrieve PAfor 2% level PT and
* Update A(ccessed) and D(irty) + Go through all levels of PTs

bits in page table/TLB * If there is no mapping in any PT
« Assemble PA by “gluing” the level, raise page fault exception

 If all PT levels are mapped,
retrieve frame number

« Save retrieved mapping to TLB

retrieved frame number and the
original offset from VA

Paging — page fault exception (@\

handling

 An instruction raises the page fault
exception

* OS interrupt handler

 Determine the cause of the fault

* Unauthorized access

» Out of allocated virtual space, store to
R/O page, access to kernel memory, ...

» Valid address but not mapped

« Create mapping
* Find a free frame
* Load content to the free frame

» Construct/ffill corresponding page
tables

» Return back from handler and retry
the instruction

 Find a free frame

 Either there is one unoccupied

 Or find a victim (for swapping)
/] + Page replacement algorithms

» Save dirty victim frame
(« Remove mapping from TLB

//% é/w//ﬂ/%w Ly /jw% oypsout ds
Swary, /Wéﬂ? e e Zhon ,/7;%

Page replacement algorithms

« Cache-replacement algorithms
 Any situation, when you need to find a victim from a limited space
* Frames, TLB, cache, ...

« Optimal page algorithm
» Replace the page that will not be used for the longest period of time
» Lowest page-fault rate
» Theoretical, we do not have an oracle for foretelling the future

Page replacement algorithms

* Clock

* Frames organized in a circular manner

>
il

1

» Clock hand points to the next frame to

5
replace A=1
« Each page has A(cessed) bit
 A'is the accessed flag which is set to 1 4
whenever the page is touched (by HW) A=0

e |[f the frame has A 1= 0,setA = 0 and
advance the hand <~ glé)7 s’ whl puil, o8 /

e If the frame has A == 0, select this frame poginy”

1

Page replacement algorithms
Bty 2twittirs géq%/ gt /7///////,; A
* NRU (Not Recently Used) /7

« Each page has A(ccessed) and D(irty) bits

 Clears A bits periodically (e.g., once a minute)
 Bit D is not touched

« Uses A and D bits to classify frames into four classes
» Selects a random frame from the lowest non-empty class

w N -~ O

- O -~ O

Page replacement algorithms (@L

* LRU (Least Recently Used)

« Uses the recent past as a prediction of the near future
« Replaces the page that has not been referenced for the longest time

» Existing HW implementations
« Cache
 Bit matrix

« SW implementation
* Move-to-front algorithm
« Can be implemented by linked list or heap data structure
« Too complicated and space consuming
» Approximation algorithms exist

Page replacement algorithms &

* NFU (Not Frequently Use)

« Rough approximation of LRU
« Each frame has a counter (typically small, several bits)

* Periodically scan page table and increase the counter for a frames with
A==1
» Always clear A
« Select the frame with lowest counter

* Problems
* Newly occupied frames may be swapped before they get used

« Frames that were previously heavy used will never be selected
. Aglng /
 Periodically divide counters by 2 (i.e., shift by 1) £

/9441949/ v MM/I///'IM 2457,744/ 744 Mé wa

Advanced paging

« Shared memory

» Part of a virtual memory space shared amongst processes
» The block is probably placed on different starting virtual address

* Memory-mapped files
 File as a backing store for paging

» Direct access to the file content using CPU instructions
* Problems with file size and with appending data

VAS1

PT1

PAS

PT2

VAS2

VAS

Virtual machine and containers

* VM = Emulation of a computer system

 Full virtualization
« Substitute for a real machine, allows execution of entire OS
* Hypervisor shares real HW, native execution, virtual HW
« Isolation, encapsulation, compatibility
* Process VM
* Runs as an application inside OS
* Provides platform-independent programming environment
» Abstract machine (instructions, memory, registers, ...)
« Java VM, .NET CLR
« Slow execution
« JIT, AOT

» Container = OS-level virtualization
» OS kernel allows existence of multiple isolated user space instances

Physical machine @

* Physical HW

« CPU, RAM, disks, I/O
Application » Underutilized HW
« SW

« Single active OS

* OS controls HW

4.4.2022 74

Virtual machine

4.4.2022

« HW-level abstraction

* Virtual HW: CPU, RAM, disks,
/O

* Virtualization SW
« Decouples HW and OS

* Multiplexes physical HW
across multiple guest VMs

« Strong isolation between VMs

* Manages physical resources,
improves utilization

* Encapsulation — VM
represented as a set of files,
can be easily distributed

75

Discussion

