Parallel programming
and synchronization

NSWI170 Computer Systems

Jakub Yaghob, Martin Krulis



Parallel and concurrent computing

+ Parallel computing — > /o je g v it ler” myjdra
 Calculations or executions of processes are carried out simultaneously
 Bit-level, instruction-level, data, and task parallelism
» Parallelism without concurrency — bit-level parallelism
* Problem broken into several similar subtasks, results combined

- Concurrent computing — = 72 je uilhfashz
« Computations are executed simultaneously
« Concurrent without parallelism — multitasking on a single CPU
* Processes do not work on related tasks

* Forces

One (shared) address space
* Threads

Multiprocessing

Scheduling



Race condition

 Race condition

« Multiple threads accessing
(updating) the same data in
shared memory space

« Result of a computation
depends on the sequence or
timing of units of scheduling

9.5.2022

>
class List {
private:
Node *root;
public:

void PushFront(Node *n) {
n->next = root;
root = n;
};



Race condition

 Shared variable |st X Y
List Ist; A

, |st X / A \ X Y
 Thread 1 B \
Ist.PushFront(A); Y
 Thread 2
Ist.PushFront(B): Y

) ) i / 4 ” b
9.5.2022 07@//)/'5 a }’WS)/ //%m//sz / /617 WZéﬂoéM/ 4 Zyns(/ /M a @ Cé”é] KZ%//M/I;(Z:’



. . )
Critical section @/@

* Problem definition

 Concurrent access fto a shared_ resource can lead to the race condition
or even to an undefined behavior

« Solution
 Parts of the program, where the shared resource is accessed, need to

be protected to avoid concurrent access

* Critical section
 Protected section of the program

 Mutual exclusion

* A critical section can be executed simultaneously by at most one unit of
scheduling



Synchronization (@@

* Process synchronization
« Multiple units of scheduling do some form of a handshake at a certain
point to make an agreement to a certain sequence of action
« Data synchronization
« Keeping multiple copies of data in coherence with each other
« Maintain data integrity
« Usually implemented by process synchronization

* Problems with synchronization
« Deadlock, starvation, ...



Synchronization primitives (@

« Synchronization primitives
* Implement process
synchronization
 Active

* Instructions are executed during
waiting for an access
» Busy-waiting (testing a condition
in a loop)
 Passive/blocking

« Unit of scheduling is blocked until
the access is allowed

gﬁ ant ez
2 (/t LI/M7 / é/ﬂ éﬂ//w / ”/m; W,,/a /n/oé/m@%

« Hardware support

« Atomic instructions

* Test-and-set (TSL),
compare-and-swap (CAS)

* |nstruction semantics:

bool cas(T* var, T old, T newVal)
{
if (*var != old) return false;
*var = newVal;
return true;

This is realized as one instruction!



Synchronization primitives ()

» Spin-lock

» Busy-waiting using TSL/CAS

« Short latency, right for short waiting times
« Semaphore

» Protected counter and a queue of waiting US
» Atomic operations UP and DOWN

void down() { void up() {
if (counter>0) --counter; if (counter==0 && !queue.empty()) {
else { US = queue.popany();
queue.push(myUS); US.unblock().

myUS.block();
else ++counter;

} }



Synchronization primitives (@@

* Mutex
* Implements mutual exclusion (semaphore with counter = 1)
« Atomic operations LOCK and UNLOCK (corresponding to UP and

DOWN)

 Barrier
« Multiple units of scheduling meet in the same time on the same barrier

« Specific programming language constructs

* Monitor
» Methods in an object executed with mutual exclusion
- Possibility to wait on a certain conditior m _
« Java/C# Creates a critical section

- Keyword synchronized/ lock



Deadlock

10

9.5.2022



Deadlock

* Deadlock

A state of a group of units of scheduling and resources, where every member
of the group waits for an action, which can be performed by other member in

the group

* Necessary conditions for deadlock (Coffman)
* Mutual exclusion
At least one resource in exclusive mode
* Hold and wait
« US holding a resource requests for another one
* No preemption
* Resources cannot be reclaimed without harm
 Circular wait
» There is a circle in a deadlock modelling graph

R

T1

T2

R



Deadlock — example

Shared mutexes
Mutex m1, m2;

Thread 1
m1.lock();
m2.lock();

m2.unlock();
m1.unlock();

9.5.2022

Thread 2
m2.lock();
m1.lock();

m1.unlock();
m2.unlock();

12



Classic synchronization problems

* Classic synchronization problems
« Set of well-known synchronization problems
 Demonstrate a problem using an allegory
« Avoid deadlock, starvation, and other problems

« Bounded-buffer (producer-consumer)
* Dining philosophers

* Readers and writers

 Sleeping barber



A\
Producer-consumer O

 Problem

* Producer produces a product and he places it to the warehouse with a

limited capacity. If the warehouse is full, producer will stop production
of products.

« Consumer takes a product from the warehouse. If there is no item
available, consumer will wait for an item.

« If the warehouse is empty and producer produces the first product and
there is a waiting consumer, producer will wake up consumer

* |f the warehouse is full and consumer takes the first product and there
Is stoppad.oroducer, consumer will \gke up producer

9.5.2022 14



Dining philosophers (@,

* Problem
* N philosophers sitting around a circular table
« Each philosopher has a plate of Chinese food in front of him

* There is one chopstick between each dish, two chopsticks are needed
to eat

 The life of a philosopher Consist‘thinking and eating

0@0

9.5.2022 15



Readers and writers

* Problem
« Common data structure
« Readers are able only to read data
» Writers change data or a data structure
« Many readers read simultaneously data
* Only one writer can change data/data structure
« Reader must wait, if there is a working writer
« Writer must wait, if there are working readers



Sleeping barber

* Problem
« Barber shop with one barber, one barber chair, and N waiting chairs
 When there is no customer, barber goes to sleep in the barber chair
« Barber must be woken when a customer comes in

* When barber is cutting hair, new incoming customers are waiting in
chairs or leaving the shop, if there is no empty chair

22D




Discussion



