Final words and ^{•••} test questions examples

NSWI170 Computer Systems

Jakub Yaghob, Martin Kruliš

Refreshing course contents

- C++
 - Will not be tested directly, but you may need it to understand some questions
- CPUs
 - Principles of instruction encoding and execution
 - Basic instruction types (arithmetic, conditions, jumps, memory operations, ...)
 - Representing higher-language constructs in assembly
 - Registers, memory operations
 - Hardware architectures fundamentals

Refreshing course contents

• Memory

- Fundamentals (addressing, endianness)
- Representing data structure (alignment)
- Memory allocation (principles, algorithms)
- Hardware details (caches, NUMA)
- Programming languages
 - Compilation, linking, dynamic linking, loading for execution
 - Memory organization (globals, constants, heap, ...), relocations
 - Calling conventions
 - Portability, virtual machines, garbage collector

Refreshing course contents

- Operating systems
 - Fundamentals, architectures
 - Devices (controller, driver, communication), interrupts
 - Process, thread, scheduling (principles, multitasking, algorithms)
 - File systems (files, directories, FS representation)
 - Hardware-related issues of HDD and SSD (request scheduling, wear leveling, RAID)
 - Virtual memory (principles, segmentation, paging)
 - Including page replacement algorithms, file memory mapping, and shared memory
- Parallel processing and synchronization
 - Race condition, deadlock, sync. primitives, basic sync. problems

Consultation

General information

- Dates are in SIS (will become available 18.5., after some reduction)
 - There will be no other dates, unless we detect a major global problem
- The credit is not required for the test
 - Since lectures and labs were separated
- Exam is focusing on understanding, not memorizing low-level details
 - Slides are not a complete reference of knowledge
 - Memorizing the slides/lecture will probably not help you
 - Some questions will require you to apply the knowledge from the lectures
 - E.g., to compute something, apply an algorithm and report the result, ...
 - Prior knowledge from NSWI120 (Principles of computers) may be required!

Test structure

- In the labs using online application (still experimental)
 - Strict rules, no materials, no other applications may be running, ...
- 10 questions, 20 points, 65 minutes (soft deadline)
- Grading
 - 17-20 points = mark 1 (Excellent)
 - 14-16 points = mark 2 (Well done)
 - 11-13 points = mark 3 (OK)
 - < 11 points = fail</pre>

Question types

- Single best answer (radio select)
 - Multiple answers may technically correct, but you need to select the best one
 - The best one is the most precise and the most complete one
- Multi-choice (checkboxes)
 - Multiple answers may be correct, you need to select all of them
 - There may be no correct answers (not checking anything may be correct)
- Fill in number(s)
 - The answer is a number or sequence of numbers (e.g., a result of a calculation)
- New types may be added
 - E.g., put given tokens in the right order

Quiz questions

- 8 questions, 1 point each
- Example (single best answer question) "Instruction set architecture (ISA) defines:"
 - Instructions semantics and registers
 - Instruction op-codes, memory management, and I/O model
 - Registers, ALUs, decoding units, caches, and memory controllers
 - Instruction mapping to micro-instructions and ALU operations
 - Instructions semantics, op-codes, registers, memory management, and I/O model
 - Instructions semantics, op-codes, ALUs, decoding units, registers, memory management, caches, and I/O model

Practical questions

- A scenario, where a problem is given and you need to solve it
 - Calculate something, decode a data structure, understand a piece of code, ...
- 4 questions, 3 points each
- Example (numeric question) "How many page faults (at most) may occur when you copy 2KiB of memory in user space?"
 - Assume 32-bit address space, 4 KiB pages, and 2-level paging
 - There is enough physical memory (each page may fault at most once)
 - OS is "simple", it can allocate only one physical frame at each fault
 - Ignore possible page faults caused by instruction fetching

- Practical questions
 - Example (numeric question)

```
struct S {
    char type;
    double deviation;
    int count;
}
S[20] sa;
```

"What is the offset (in bytes) of **sa[3].count** from the beginning of **sa** array? (**double** is 64bit, **int** is 32bit)?"

Practical questions

- Example (numeric question)
 - FAT16 file system with 2 KiB clusters
 - File **a.txt** directory entry has properties
 - firstCluster = 3
 - size = 7654
 - An user performs
 - Seek to offset 3210
 - Read of 1000 bytes
 - "Write indices of all clusters which will be loaded to satisfy this operation. (assume the FAT table is cached in main memory)."

- Practical questions
 - Example (single best answer)
 "Select a C code that was compiled into the given assembly fragment."

add \$t0, \$a0, \$a2 // addition add \$t1, \$a1, \$a3 sub \$r0, \$t0, \$t1 // subtraction

Discussion

