
Introduction to
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Statistical learning
Let us now focus on learning probabilistic models, which itself can be done by probabilistic inference.

Example:
Consider candy coming in two flavors – cherry and lime – that the manufacturer wraps in the same
opaque wrapper. The candy is sold in very large bags of five kinds:

h1: 100% cherry
h2: 75% cherry + 25% lime
h3: 50% cherry + 50% lime
h4: 25% cherry + 75% lime
h5: 100% lime

The random variable H (for hypothesis) denotes the type of the bag (H is not directly observable).
As the pieces of candy are opened and inspected, data are revealed D1,…,DN, where each Di is a random
variable with possible values cherry and lime.
The basic task is to predict the flavor of the next piece of candy.

Bayesian learning:
The predictions are made by using all the hypothesis, weighted by their probabilities, rather than by
using just a single “best” hypothesis.
Formally P(hi|d) = 𝛼 P(d|hi) P(hi), where d are the observed values
A prediction about an unknown quantity X is made using:

P(X|d) = Σi P(X|d,hi). P(hi|d) = Σi P(X|hi). P(hi|d)
Predictions are weighted averages over the predictions of the individual hypothesis.

Back to example:
Let the prior distribution over the hypotheses space is given
〈0.1; 0.2; 0.4; 0.2; 0.1〉
Under the assumption of independent and identically
distributed samples (big bags): P(d|hi) = Πj P(dj |hi)
After 10 lime candies in a row we get P(d|h3) = 0.510.

Introduction to Artificial Intelligence, Roman Barták 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Po
st

er
io

r p
ro

ba
bi

lit
y

of
 h

yp
ot

he
si

s

Number of observations in d

P(h1 | d)
P(h2 | d)
P(h3 | d)
P(h4 | d)
P(h5 | d)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

Pr
ob

ab
ili

ty
 th

at
 n

ex
t c

an
dy

 is
 li

m
e

Number of observations in d

Bayesian networks: parameter learning
Assume a Bayesian network with a given structure. We are interested in learning the conditional probabilities
– parameter learning.
Example:

Suppose we buy a bag of lime and cherry candy from a new manufacturer whose lime-cherry proportions
are completely unknown.
• This can be represented using the Bayesian network with a single node.
• Hypothesis to learn is h𝜃.

Maximum-likelihood parameter learning
• write down an expression for the likelihood of the data as a function of the parameter(s)
• write down the derivative of the log likelihood with respect to each parameter
• find the parameter values such that the derivatives are zero

Back to example:
After unwrapping N candies, of which c are cherries and l (= N-c) are limes, the likelihood of this data is:

P(d|h𝜃) = Πj P(dj |h𝜃) = 𝜃c (1- 𝜃)l

– maximizing P(d|h𝜃) is the same as maximizing L(d|h𝜃) = log P(d|h𝜃) = Σj log P(dj |h𝜃) = c log 𝜃 + l log(1- 𝜃)
– we differentiate L with respect to 𝜃 and set the resulting expression to zero:

𝜕 L(d|h𝜃) / 𝜕 𝜃 = c/ 𝜃 - l/(1- 𝜃) = 0 ⇒ 𝜃 = c / (c+l) = c / N

Extended example:
Suppose the candy manufacturer wants to give a little hint to the consumer and uses candy wrappers
colored red and green (the wrapper for each candy is selected probabilistically).
We unwrap N candies (c cherries, l limes, rc cherries with red wrappers, gc cherries with green wrappers, rl
lime with red wrappers, gl lime with green wrappers)

P(d | h𝜃,𝜃1,𝜃2) = 𝜃c(1- 𝜃)l 𝜃1rc (1- 𝜃1)gc 𝜃2rl (1- 𝜃2)gl
L = c.log 𝜃 + l.log(1- 𝜃) + rc.log 𝜃1 + gc.log(1- 𝜃1) + rl.log 𝜃2 + gl.log(1- 𝜃2)
𝜕 L / 𝜕 𝜃 = c / 𝜃 - l / (1- 𝜃) = 0 ⇒ 𝜃 = c / (c+l)
𝜕 L / 𝜕 𝜃1 = rc / 𝜃1 - gc / (1- 𝜃1) = 0 ⇒ 𝜃1 = rc / (rc + gc)
𝜕 L / 𝜕 𝜃2 = rl / 𝜃2 - gl / (1- 𝜃2) = 0 ⇒ 𝜃2 = rl / (rl + gl)

Flavor

P(F=cherry)

(a)

θ

P(F=cherry)

Flavor

Wrapper

(b)

θ

F
cherry
lime

P(W=red | F)
θ1
θ2

Flavor

P(F=cherry)

(a)

θ

P(F=cherry)

Flavor

Wrapper

(b)

θ

F
cherry
lime

P(W=red | F)
θ1
θ2

Introduction to Artificial Intelligence, Roman Barták 3

Parameter θ – the proportion
of cherry candies

θ – cherry candy
θ1 – cherry candy has a red wrapper
θ2 – lime candy has a red wrapper

Bayesian networks: learning with hidden variables

Introduction to Artificial Intelligence, Roman Barták 4

Distribution of 1000 samples

Many real-world problems have hidden variables, which are not
observable in the data that are available for learning.

We can construct the Bayesian network without unobserved variables,
but the number of parameters increases significantly.

The expectation-maximization (EM) algorithm
to learn conditional distribution for the hidden variable if the value of that variable is not given in examples
• pretend that we know the parameters of the model
• infer the expected values of hidden variables to ”complete” the data (E-step, expectation)
• update the parameters to maximize likelihood of the model (M-step, maximization)
• iterate until convergence

Example:
Consider that some candies have a hole in the middle and some do not and that there are two bags of
candies that have been mixed together.
We start by initializing the parameters (randomly):
𝜃(0) = 𝜃(0)

F1 = 𝜃(0)
W1 = 𝜃(0)

H1 = 0.6
𝜃(0)

F2 = 𝜃(0)
W2 = 𝜃(0)

H2 = 0.4
Because the bag is a hidden variable, we calculate the expected
counts instead (using any inference algorithm for Bayesian networks):

N(Bag=1) = Σj P(Bag=1 | flavorj, wrapperj, holesj)
We update the parameters (N is the number of examples)

𝜃(1) = N(Bag=1) / N
a general principle of parameter update
• let 𝜃i,j,k be the parameter P(Xi = xij | Ui = uik) for Xi with parents Ui
• 𝜃ijk ← N(Xi = xij, Ui = uik) / N(Ui = uik)

𝜃(1) = 0.6124, 𝜃(1)
F1 = 0.6684, 𝜃(1)

W1 = 0.6483, 𝜃(1)
H1 = 0.6558, 𝜃(1)

F2 = 0.3887, 𝜃(1)
W2 = 0.3817, 𝜃(1)

H2 = 0.6558

(a) (b)

C

XHole

Bag

P(Bag=1)
θ

WrapperFlavor

Bag
1
2

P(F=cherry | B)

θF2

θF1

𝜃 candy comes from Bag 1
𝜃F1, 𝜃F2 the flavor is cherry given the bag 1 or 2
𝜃W1, 𝜃W2 the wrapper is red given the bag 1 or 2
𝜃H1, 𝜃H2 the candy has a hole given the bag 1 or 2

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

2 2 2

54

6 6 6

2 2 2

54 162 486

78 parameters 708 parameters

Reinforcement learning

Consider that an agent is placed in an environment and must
learn to behave successfully therein.
By observing the states (we will assume fully-observable
environment) the agent can learn the transition model for its
own moves.
To learn what is good and what is bad, the agent needs some
feedback, usually, in the form of a reward, or reinforcement.

The reward is part of the input percept, but the agent must be
“hardwired” to recognize that part as a reward, such as pain and
hunger are negative rewards while pleasure and food intake are
positive rewards.

The task of reinforcement learning is to use observed rewards
to learn an optimal (or nearly optimal) policy for the
environment.

The task of passive learning is to learn the utilities of
the states, where the agent’s policy is fixed.
In active learning the agent must also learn what to do.

Introduction to Artificial Intelligence, Roman Barták 5

Passive reinforcement learning

The agent‘s policy is fixed (in state s,
it always executes the action 𝜋(s)).
The agent does not know the transition
model P(s‘|s,a) nor does it know the
reward function R(s).
The goal is to learn how good the
policy is, that is, to learn the utility
function U𝜋(s) = E[Σt=0,…,∞ 𝛾t.R(st)]

A core approach:
– the agent executes a set of trials in the environment using its

policy 𝜋
– its percept supply both the current state and the reward received

at that state
Methods:

– direct utility estimation
– adaptive dynamic programming (ADP)
– temporal difference (TD)

Introduction to Artificial Intelligence, Roman Barták 6

–1

+1

1

2

3

1 2 3 4

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

Known policy 𝜋 for a fully
observable environment.

Utilities of states for the
above policy 𝜋 (R=-0.04
for nonterminal states
and 𝛾=1). This is what we
are looking for.

Direct utility estimation

Assume the following executed trials (and 𝛾=1):
(1,1)-0.04 → (1,2)-0.04 → (1,3)-0.04 → (1,2)-0.04 → (1,3)-0.04 → (2,3)-0.04 → (3,3)-0.04 → (4,3)+1
(1,1)-0.04 → (1,2)-0.04 → (1,3)-0.04 → (2,3)-0.04 → (3,3)-0.04 → (3,2)-0.04 → (3,3)-0.04 → (4,3)+1
(1,1)-0.04 → (2,1)-0.04 → (3,1)-0.04 → (3,2)-0.04 → (4,2)-1

The idea is that the utility of a state is the expected total reward from that state onward
(expected reward-to-go).

– for state (1,1) we get a sample total reward 0.72 in the first trial
– for state (1,2) we have two samples 0.76 and 0.84 in the first trial

The same state may appear in more trials (or even in the same trial) so we keep running
average for each state.

Direct utility estimation is just an instance of supervised learning (input = state, output =
reward-to-go).

Major inefficiency:
– The utilities of states are not independent!
– The utility values obey the Bellman equations for a fixed policy

U𝜋(s) = R(s) + 𝛾 Σs‘ P(s‘|s, 𝜋(s)) U𝜋(s‘)
– Direct utility estimation searches for U in a hypothesis space that is much larger than it needs to

be (it includes many functions that violate the Bellman equations); for this reason, the algorithm
often converges very slowly.

Introduction to Artificial Intelligence, Roman Barták 7

Adaptive dynamic programming

An adaptive dynamic programming (ADP) agent takes advantage of the
Bellman equations.
The agent learns from observations:

– the transition model P(s‘|s, 𝜋(s))
• Using the frequency with which s is

reached when executing a in s.
For example P((2,3)|(1,3), Right) = 2/3.

– rewards R(s)
• directly observed

The utility of states is calculated from
the Bellman equations, for example
using the value iteration algorithm.

Properties:
– ADP adjusts a state to agree with all of the successors
– ADP makes as many adjustments as it needs to restore consistency between

the utility estimates

Introduction to Artificial Intelligence, Roman Barták 8

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)
(1,3)

(3,2)

(3,3)
(4,3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100
R

M
S

er
ro

r i
n

ut
ili

ty
Number of trials

Root-mean-square error in
the estimate for U((1,1))

Agent first time falls into the
-1 terminal state at (4,2)

Temporal-difference learning

We can use the observed transitions to incrementally adjust utilities of the states so
that they agree with the constraint equations:
– consider the transitions from (1,3) to (2,3)
– suppose that, as a result of the first trial, the utility

estimates are U𝜋(1,3) = 0.84 and U𝜋(2,3) = 0.92
– if this transition occurred all the time, we would

expect the utility to obey the equations (if 𝛾 = 1)
U𝜋(1,3) = -0.04 + U𝜋(2,3)

– so the utility would be U𝜋(1,3) = 0.88
– hence the current estimate U𝜋(1,3) might be a little

low and should be increased

In general, we apply the following update
(𝛼 is the learning rate parameter):

U𝜋(s) ← U𝜋(s) + 𝛼.(R(s) + 𝛾.U𝜋(s‘) - U𝜋(s))
The above formula is often called the temporal-difference (TD) equation.
Properties:

– TD does not need a transition model to perform updates
– TD adjusts a state to agree with its observed successor
– a single adjustment per observed transition

Introduction to Artificial Intelligence, Roman Barták 9

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)
(1,3)

(2,1)

(3,3)
(4,3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

R
M

S
er

ro
r i

n
ut

ili
ty

Number of trials

Root-mean-square error in
the estimate for U((1,1))Compare the speed and stability

of convergence with ADP

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

U
til

ity
 e

st
im

at
es

Number of trials

(1,1)
(1,3)

(3,2)

(3,3)
(4,3)

Active reinforcement learning

Introduction to Artificial Intelligence, Roman Barták 10

1 2 3

1

2

3

–1

+1

4

An active agent must decide what actions to take (does not know the policy).

Let us design an active adaptive dynamic programming agent:
– the agent learns the transition function P(s‘|s, a) and rewards R(s) like before
– the utilities it needs to learn are defined by the optimal policy; they obey the Bellman equations

U𝜋(s) = R(s) + 𝛾 maxa Σs‘ P(s‘|s, a) U𝜋(s‘)
– these equations can be solved to obtain the utility function (for example via value iteration)
– the agent extracts an optimal action to maximize the expected utility
– then it should simply execute the action the optimal policy recommends
– Or should it?

Example:
Assume that the agent found a route (1,1), (2,1), (3,1), (3,2), (3,3)
to the goal with reward +1.
After experimenting with minor variations, it sticks to that policy.
As it does not learn utilities of the other states, it never finds the
optimal route via (1,2), (1,3), (2,3), (3,3).

We call this agent the greedy agent.

How can it be that choosing the optimal action leads to suboptimal results?
– the learned model is not the same as the true environment; what is optimal in the learned model can

therefore be suboptimal in the true environment
– actions do more than provide rewards; they also contribute to learning the true model by affecting

the percepts that are received
– by improving the model, the agent will receive greater rewards in the future

An agent therefore must made tradeoff between exploitation to maximize
its reward and exploration to maximize its long-term well-being.

Exploration vs. exploitation
What is the right trade-off between exploration and exploitation?
– pure exploration is of no use if one never puts that knowledge in practice
– pure exploitation risks getting stuck in a rut

Basic idea
– at the beginning striking out into the unknown in the hopes of discovering a new

and better life
– with greater understanding less exploration is necessary

Exploration policies:
The agent chooses a random action a fraction O(1/t) of the time and follows the
greedy policy otherwise
– it does eventually converge to an optimal policy, but it can be extremely slow

A more sensible approach would give some weight to actions that the agent has not
tried very often, while tending to avoid actions that are believed to be of low utility.
– assign a higher utility estimate to relatively unexplored state-action pairs
– value iteration may use the following update rule

U+(s) ← R(s) + 𝜸 maxa f(𝚺s‘ P(s‘|s, a) U+(s‘), N(s,a))
• N(s,a) is the number of times action a has been tried in state s
• U+(s) denotes the optimistic estimate of the utility (this brings agent to unexplored regions

even if they are far away)
• f(u,n) is called the exploration function; it determines how greed is traded off against

curiosity (should be increasing in u and decreasing in n)
– for example f(u,n) = R+ if n<Ne, otherwise u

(R+ is an optimistic estimate of the best possible reward obtainable in any state)

Introduction to Artificial Intelligence, Roman Barták 11

Q-learning and SARSA

Let us now consider an active temporal-difference learning agent.
The update rule remains unchanged: U(s) ← U(s) + 𝛼.(R(s) + 𝛾.U(s‘) - U(s))

There is an alternative TD method, called Q-learning
– Q(s,a) denotes the value for doing action a in state s
– the q-values are directly related to utility values as follows:

• U(s) = maxa Q(s,a)
– we can write a constraint equation that must hold at equilibrium:

• Q(s,a) = R(s) + 𝛾 Σs‘ P(s‘|s, a) maxa‘ Q(s‘,a‘)
• This does require that a model P(s‘|s, a) also be learned!

– the TD approach requires no model of state transitions (it is a model-free
method) – all it needs are the Q values

– the update rule for TD Q-learning is:
Q(s,a) ← Q(s,a) + 𝜶.(R(s) + 𝜸 maxa‘ Q(s‘,a‘) - Q(s,a))
it is calculated whenever action a is executed in state s leading to state s’

State-Action-Reward-State-Action (SARSA)
– a close relative to Q-learning with the following update rule

Q(s,a) ← Q(s,a) + 𝜶.(R(s) + 𝜸.Q(s‘,a‘) - Q(s,a))
the rule is applied at the end of each s,a,r,s‘,a‘ quintuplet, i.e. after applying action a’

Introduction to Artificial Intelligence, Roman Barták 12

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

