
Introduction to
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Rational agents – just to recall

An agent is anything that can be viewed as
perceiving its environment through sensors and
acting upon that environment through actuators.

A rational agent should select an action that is
expected to maximize its performance measure.

action = argmaxa E(utility(p,a)))
Percept

Possible actions

Expected utility

Rationality

2Introduction to Artificial Intelligence, Roman Barták

Agents and environments

?

agent

percepts

sensors

actions
environment

actuators

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

f : P∗ → A

The agent program runs on the physical architecture to produce f

Chapter 2 4

Structure of agents

Reflex agent
Selects an action based on current
state of the world (that is obtained via
perception).

Simple reflex agent:
Observation → Action

Model-based reflex agent:
(PastState, PastAction, Observation)

→ State
State → Action
o Works for partially observable

environments (observations are “stored”
in the state).

Introduction to Artificial Intelligence, Roman Barták 3

Goal-based agent
Agents can be more flexible if they
assume goal (desirable states) in
addition to the current state.

(PastState, PastAction, Observation)
→ State

(State, Goal) → Action

o This may involve reasoning about
future (what actions do), if goal is not
reachable immediately (via single
action).

o Search and planning.

Transition
model

Transition
model

Simple reflex agents

Agent

Environm
ent

Sensors

What the world
is like now

What action I
should do nowCondition−action rules

Actuators

Chapter 2 20

Goal-based agents

Agent

Environm
ent

Sensors

What it will be like
 if I do action A

What action I
should do now

State

How the world evolves

What my actions do

Goals

Actuators

What the world
is like now

Chapter 2 24

Representation of states

Atomic
• state is

indivisible (no
internal
structure, black
box)

• used in search

Introduction to Artificial Intelligence, Roman Barták 4

Factored
• state is a vector of

values (properties of
the world)

• used in constraint
satisfaction,
propositional logic,
planning

Structured
• state is a set of

objects (with own
attributes)
connected via
various relations

• used in first-order
logic

B C

(a) Atomic (b) Factored (b) Structured

B C

B C

(a) Atomic (b) Factored (b) Structured

B C

B C

(a) Atomic (b) Factored (b) Structured

B C

Problem solving

Problem solving agent is a type of goal-based agent
– uses atomic representation of states
– goal is represented by a set of goal states
– actions describe transitions between states

The task is to find a sequence of actions that reaches the
goal state (from the initial/current) state.
– realized via search
– agent then executes the actions while ignoring percepts

(an open-loop system)

We will assume environment:
– fully-observable
– discrete
– static
– deterministic

Introduction to Artificial Intelligence, Roman Barták 5

Example: sliding-block puzzle

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Introduction to Artificial Intelligence, Roman Barták 6

8-puzzle (on a 3x3 board) has 9!/2 = 181 440 reachable states
15-puzzle (on a 4x4 board) has around 1013 states
24-puzzle (on a 5x5 board) has around 1025 states

Problem formulation

Process of deciding what actions and states to consider, given a goal.

We need abstraction - removing detail from a representation
– abstraction of world states (which properties of world are important

for problem solving)
– abstraction of actions (to reach the goal and to minimize search effort)

What is the appropriate level of abstraction?
– abstraction should valid (we can expand any abstract solution into a solution

in the more detailed world)
– the abstraction should useful (carrying out each of the actions in the solution

is easier than the original problem)
Intelligent agents would be completely swamped by the real world
without using abstractions!

Well-defined problem:
– initial state
– transition model: (state, action) → state

• state space is defined implicitly (to describe huge state spaces)
– goal test

Introduction to Artificial Intelligence, Roman Barták 7

Problem solving via search

A solution of the problem is a sequence of actions.
Search algorithms consider various possible action
sequences.
Search tree:
– initial state at the root
– branches are actions
– nodes correspond to states

Core structure of a search algorithm:
1. put the root node to a frontier (a.k.a. open list)
2. select a node from frontier using some search strategy
3. expand the node (add successor states to the frontier)
4. repeat until a goal node is found (or the frontier is empty)

Introduction to Artificial Intelligence, Roman Barták 8

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

Tree search

Can explore redundant paths (repeats a state at
different nodes)

Sometimes, this redundancy can be avoided (for
example, in constraint satisfaction).

Introduction to Artificial Intelligence, Roman Barták 9

d+1 states (a) give a search
tree with 2d leaf nodes (b)

Graph search

Augment the tree-search algorithm with a data
structure called an explored set (a closed list),
which remembers every expanded node.

Search tree contains at most one copy of each state.
Frontier separates explored
and unexplored regions.

Introduction to Artificial Intelligence, Roman Barták 10

(c)(b)(a)

Uninformed search strategies

Uninformed search algorithms have no additional
information beyond the problem formulation.

Introduction to Artificial Intelligence, Roman Barták 11

Breadth-first search
• shallowest unexpanded node is

chosen for expansion (FIFO)
Properties:
• Complete (for finite branching

factor)
• Optimal (if path-cost is a non-

decreasing function of the
depth)

• Time and space complexity
O(bd+1), where b is branching
factor, d is depth of the goal
node and goal test is done
during expansion

Memory requirements are a bigger
problem than is the execution time!

Depth-first search
• deepest unexpanded node is

chosen for expansion (LIFO)
Properties:
• Complete for graph-search
• Incomplete for tree-search

(could be made complete with no
extra memory cost by checking new
states against those on the path to
the root)

• Sub-optimal (could be made
optimal via branch-and-bound)

• Time complexity O(bm), where m is
maximum depth of any node (it
could be m >> d)

• Space complexity O(bm)

Backtracking - only one successor is
generated at a time rather than all,
O(m) memory

Uninformed search strategies

A

B C

E F GD

A

B

D E F G

C

A

C

D E F G

BB C

D E F G

A

Introduction to Artificial Intelligence, Roman Barták 12

A

C

F G

M N O

A

C

F G

L M N O

A

C

F G

L M N O

C

F G

L M N O

A

B C

E F G

K L M N O

A

C

E F G

J K L M N O

A

C

E F G

J K L M N O

A

B C

D E F G

I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Breadth-first search
• shallowest unexpanded

node is chosen for
expansion (FIFO)

Depth-first search
• deepest unexpanded node

is chosen for expansion
(LIFO)

• if backtracking is used,
then a single branch is kept
in memory
A – B – D – H
A – B – D – I
…

Uniform-cost search

Extension of breadth-first search to work with any step-cost
function.
Expand the node with the lowest path cost g(n).
• Goal test is applied to a node when selected for expansion

rather than when the node is first generated (otherwise
suboptimal path can be found).

• New test in case a better path is found to a node currently
on the frontier.

Also known as
Dijkstra’s algorithm

Introduction to Artificial Intelligence, Roman Barták 13

Informed (heuristic) search strategies

Using problem-specific knowledge beyond the problem formulation.

Best-first search
– expand the node with the lowest evaluation function f(n)
– identical to uniform-cost search, except for the use of f instead of g

Frequently, a component of f is a heuristic function, denoted h(n)
– h(n) = estimated cost of the cheapest path from the state at node n to

a goal state
– h(n) is an arbitrary non-negative function, such that, if n is a goal node

then h(n)=0
• Heuristics functions are the most common form of additional

knowledge.

Greedy best-first search
– expand the node closest to the goal, f(n) = h(n)
– not optimal
– incomplete (the graph-search version is complete in finite spaces)

Introduction to Artificial Intelligence, Roman Barták 14

A* search algorithm

The most widely known form of best-first search.
Created as part of the Shakey project (for path
planning).

f(n) = g(n) + h(n)
f(n) = estimated cost of the cheapest solution through n

Identical to uniform-cost search except that A* uses
g+h instead of g.
Optimal and complete (provided that the heuristic
function h(n) satisfies certain conditions).

A* usually runs out of space long before
it runs out of time!

Introduction to Artificial Intelligence, Roman Barták 15

A*: conditions for optimality

admissible heuristic h(n)
– h(n) £ ”the cost of the cheapest path from n to goal”
– an optimistic view (the algorithm assumes a better cost than the real cost)
– function f(n) in A* is a lower estimate of the cost of path through n

monotonous (consistent) heuristic h(n)
– let n‘ be a successor of n via action a and c(n,a,n‘) be the transition cost
– h(n) £ c(n,a,n‘) + h(n‘)
– this is a form of triangle inequality

Monotonous heuristic is admissible.
let n1, n2,…, nk be the optimal path from n1 to goal nk, then
h(ni) - h(ni+1) £ c(ni,ai,ni+1), via monotony
h(n1) £ Si=1,..,k-1 c(ni,ai,ni+1), after „sum“

For a monotonous heuristic, the values of f(n) are non-decreasing over any
path.
Let n‘ be a successor of n, i.e. g(n‘) = g(n) + c(n,a,n‘), then
f(n‘) = g(n‘) + h(n‘) = g(n) + c(n,a,n‘) + h(n‘) ³ g(n) + h(n) = f(n)

Introduction to Artificial Intelligence, Roman Barták 16

A* optimality: tree search

If h(n) is an admissible heuristic, then the algorithm
A* in TREE-SEARCH is optimal.
– in other words, the first expanded goal is optimal
– let G2 be sub-optimal goal from the frontier and C* be the

optimal cost
f(G2) = g(G2) + h(G2) = g(G2) > C*, because h(G2) = 0

– let n be a node from the frontier and being on the optimal
path

f(n) = g(n) + h(n) £ C*, via admissibility of h(n)
– together

f(n) £ C* < f(G2),
i.e., the algorithm must expand n
before G2 and this way it finds
the optimal path.

Introduction to Artificial Intelligence, Roman Barták 17

A* optimality: graph search

If h(n) is a monotonous heuristic, then the algorithm
A* in GRAPH-SEARCH is optimal.
– Possible problem: reaching the same state for the second

time using a better path – classical GRAPH-SEARCH ignores
this second path!

– Possible solution: selection of the better of the two paths
leading to the closed node (extra bookkeeping) or using
monotonous heuristic.
• for monotonous heuristics, the values of f(n) are non-decreasing

over any path
• A* selects for expansion the node with the smallest value of f(n),

i.e., the values f(m) of other open nodes m are not smaller,
i.e., among all “open” paths to n there cannot be a shorter path
than the path just selected (no path can shorten)

• hence, the first closed goal node is optimal

Introduction to Artificial Intelligence, Roman Barták 18

Heuristic functions

Example: sliding-block puzzle
Possible (admissible) heuristics:
h1 = „the number of misplaced tiles“

= 8
h2 = „the sum of the distances of the tiles

from the goal positions“
= 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18
a so-called Manhattan heuristic (the optimal solution needs 26
steps)

Which heuristic is better?
notice that "n h2(n) ³ h1(n) – we say that h2 dominates h1

A* with h2 never expands more nodes than A* with h1
• A* expands all nodes such that f(n) < C*, so h(n) < C* - g(n)
• In particular, if the algorithm expands a node using h2, then the same

node must be expanded using h1.

Introduction to Artificial Intelligence, Roman Barták 19

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

hailm

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

