
Introduction to
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Wumpus agent: reasoning on time

So far, we expressed static information only. How can we
represent information changing with time, for example location
of agent?
Using time-annotated propositional variables (fluents):

Ltx,y agent is at cell (x,y) at time t.

Observation model:
Connects observation, for example about breeze, with information in the
world model.
Ltx,yÞ (BreezetÛ Bx,y)

As we are going to ask queries whether a square is OK to move into, that
is, the square contains no pit nor live Wumpus, we can introduce special
propositional variables:
OKt

x,y Û (¬ Px,y Ù ¬(Wx,yÙ WumpusAlifet)
Transition model:

Describes evolution of world after applying actions, for example using
effect axioms:
Ltx,y Ù FacingEastt Ù ForwardtÞ (Lt+1x+1,y Ù ¬ Lt+1x,y)

Introduction to Artificial Intelligence, Roman Barták 2

Frame problem

Effect axioms do not say what is not changed by the action
(frame problem)

For example, one cannot deduce anything about validity of HaveArrow1

after performing action Forward0.

We can use frame axioms explicitly asserting all the propositions
that remain the same:

ForwardtÞ (HaveArrowtÛ HaveArrowt+1)
This gives many frame axioms, which makes reasoning inefficient.

Instead, we can write axioms about fluents rather than about
actions, for example, successor-state axiom defining the truth
value of fluent at time (t+1) in terms of fluents and actions at
time t.

Ft+1Û ActionCausesFt Ú (Ft Ù ¬ ActionCausesNotFt)
HaveArrowt+1Û (HaveArrowt Ù ¬ Shoott)

Introduction to Artificial Intelligence, Roman Barták 3

Hybrid Wumpus agent

Introduction to Artificial Intelligence, Roman Barták 4

Hybrid agent combines various approaches
to problem solving.

Logic is used to deduce state of the world
based on percepts.

Condition-action rules are used to prioritize
goals.

A* search is used for route planning. The
path from the current cell to some goal cell
through allowed cells is looked for.

Plan-Shot uses Plan-Route to plan a
sequence of actions that will line up with
this shot.

Making plans by inference

Hybrid planner uses propositional inference to determine
properties of states (safe squares), but uses A* search to make
plans.
Can we use logical inference to find a plan completely?
Idea:

1. Construct a propositional sentence that includes
• Init0: assertions describing the initial state
• Transition1,...,Transitiont: successor-state axioms for all possible

actions
• Goalt: assertions that the goal is achieved at time t

example: (HaveGoldt Ù ClimbedOutt)
2. Present the sentence to a SAT solver

• If a model is found (formula is satisfiable), then the goal is achievable.
• If the sentence is unsatisfiable, then no plan (of length t) exists to

achieve the goal.
3. Assuming a model is found, extract the plan from the model

• Plan consists of actions for which the corresponding variables are
assigned true.

Introduction to Artificial Intelligence, Roman Barták 5

SATPlan

How do we know the number of steps to achieve the goal?
We can try to find plans with incrementally increased length.

SATPlan always finds the shortest plan, if one exists

Note: we need to know completely the initial state (the values
of all propositional variables for the initial state are set).
For example, L0

1,1 is set to true to describe the initial location
of agent, but we also need to set L0

1,2 etc. to false to say
where the agent is not present at time 0.

Introduction to Artificial Intelligence, Roman Barták 6

Planning: propositional model

We have effect (and frame) axioms or successor-state axioms to
describe how the state changes.
But we also need to describe when an action is applicable, for
example shooting is not possible, if agent has no arrow.

Preconditions axioms describe when action is applicable
Shoott Þ HaveArrowt

Can the plan obtained from the model contain multiple simultaneous
actions?

Yes, for example action variables Forward0 and Shoot0 can be both true.

To eliminate parallel actions, we introduce action exclusion axioms:
"t "i≠j: (¬ At

i Ú ¬ At
j)

We may allow multiple simultaneous actions that do no interfere with
each other (such pairs of actions are not part of action exclusion axioms)
Interference means that actions have no conflicting effects and do not
destroy (or set) preconditions of each other.

Introduction to Artificial Intelligence, Roman Barták 7

Automated planning

Planning is about finding actions to achieve agent’s goal.
We can find plans by search (problem solving).

But it deals with atomic representation of states and thus
needs good domain-specific heuristics.

We can do planning by propositional inference.
Using domain-independent heuristics based on the logical
structure of the problem.
However, it may be swamped when there are many actions
and states.
For example,
in the Wumpus world, action Forward has to
be repeated for all four agent orientations,
T time steps and n2 locations.

Introduction to Artificial Intelligence, Roman Barták 8

Situation calculus

Can we get rid of writing the same axioms repeatedly for different times and for
similar actions?
Can we do planning using logical inference only (no wrapper)?
Using first-order logic helps there.

Situation calculus:
• uses special terms to describe situations (give names to states)

s0: name of initial situation
Results(s,a): name of situation after applying action a to situation s

• states are described using relations among objects,
Example: at(robot, location)

if the validity of relation changes in states, then we add extra argument describing at which
situation the relation holds (fluents): at(robot,location,s)
if the validity does not change, then no extra argument is needed (rigid/eternal predicates):
connected(loc1,loc2)

• action’s preconditions are described using a possibility axiom
Phi(s) Þ Poss(a,s), where Phi(s) is a formula describing the preconditions
Example: at(a,l,s) Ù connected(l,l’) Þ Poss(go(a,l,l’), s)

• properties of next state are described using successor-state axioms for each fluent
Poss(a,s) Þ (F(Result(s,a)) Û F is made true by a Ú (F(s) Ù F is not made false by a)

• planning is then realized by asking whether there exists a situation such that the
goal condition is true there
$ s: HaveGold(a,s) Ù ClimbedOut(a,s)

Introduction to Artificial Intelligence, Roman Barták 9

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0

Forward

Result(S0, Forward)

Result(Result(S0, Forward),
 Turn(Right))

Turn(Right)

Classical planning

Uses factored representation of states (state is
represented using a vector of variables) and actions
schemata (operators) to describe capabilities of
agent (how to change the world).
Planning is then realized via search (in the state
space) with domain-independent heuristics.
Example (size of state space):

5 locations, 3 piles per location, 100 containers,
3 robots

Ä10277 states
This is 10190 times more than
the largest estimate of the number of particles in the
whole universe!

Introduction to Artificial Intelligence, Roman Barták 10

State s is a set of instantiated atoms (no variables). There is a
finite number of states!

The truth value of some atoms is
changing in states:

• fluents
• example: at(r1,loc2)

The truth value of some state is the
same in all states:

• rigid atoms
• example: adjacent(loc1,loc2)

We will use a classical closed world assumption (an atom that is not
included in the state does not hold at that state).

Goal g is a set of instantiated literals:
state s satisfies the goal condition g if and only if
g+ Í s Ù g–Ç s = Æ

Classical planning: states and goals

11

Action schema (operator) describes the action without specifying
the particular objects to which the action applies.

Lifted representation (lifts from propositional logic to a restricted subset of
first-order logic).

Operator o is a triple (name(o), precond(o), effects(o))
– name(o): name of the operator in the form n(x1,…,xk)

• n: a symbol of the operator (a unique name for each operator)
• x1,…,xk: symbols for variables (operator parameters)

– Must contain all variables appearing in the operator definition!

– precond(o):
• literals that must hold in the state so the operator is applicable on it

– effects(o):
• literals that will become true after operator application (only fluents can be there!)

Classical planning: operators

12

An action is a fully instantiated operator
– substitute constants to variables

action

operator

Classical planning: actions

13

Notation (let S be a set of literals):
• S+ = {positive atoms in S}
• S– = {atoms, whose negation is in S}

Action a is applicable to state s if and only if
precond+(a) Í s Ù precond–(a) Ç s = Æ

The result of application of action a to s is
g(s,a) = (s – effects–(a)) È effects+(a)

Action a is relevant for a goal g if and only if :
action contributes to g: g Ç effects(a) ¹ Æ
action effects are not in conflict with g:
• g-Ç effects+(a) = Æ
• g+ Ç effects-(a) = Æ

Regression set for a goal g for a (relevant) action a:
g-1(g,a) = (g - effects(a)) È precond(a)

Action applicability and relevance

14

s

a
+

+

- +

-

g (
s,

a)

+

+
a

+

-

+

g

g-
1 (

g,
a)

Description of operators O is usually called a domain
model (it also implicitly includes description of
predicate symbols in states).
Planning problem P is a triple (O,s0,g), where:
• O is a planning domain model (description of

operators)
• s0 is an initial state (s0 provides the particular constants

– objects – used in actions)
• g is a goal condition (a set of instantiated literals)

Plan is a sequence of actions áa1,a2,…,akñ.
Plan p = áa1,a2,…,akñ is a solution plan for problem P
iff g*(s0,p) satisfies the goal condition g.

Domain model and planning problem

15

Example: Blockworld problem

Constants
– blocks: a,b,c

Predicates:
– ontable(x)

block x is on a table
– on(x,y)

block x is on y
– clear(x)

block x is free to move
– holding(x)

the hand holds block x
– handempty

the hand is empty

Operators
unstack(x,y)

Precond: on(x,y), clear(x), handempty
Effects: ¬on(x,y), ¬clear(x), clear(y),

¬handempty, holding(x),

stack(x,y)
Precond: holding(x), clear(y)
Effects: ¬holding(x), ¬clear(y),

on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ¬ontable(x), ¬clear(x),

¬handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: ¬holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b

c

a b

16

of an operator in O,

Forward (progression) planning

17

Forward (progression) planning goes from the initial state to a
goal state.
Non-determinism is implemented by a search algorithm.

• Uninformed search can only solve small problems.
• We need informed search (A*) with good heuristic to

guide the search algorithm.

Backward (regression) planning starts with the goal and applies the
actions backward until it reaches the initial state.
Only relevant actions are explored

=> smaller branching factor in comparison to forward search.
Uses state sets rather than individual states

=> harder to come up with good heuristics.

Backward (regression) planning

18

Planning heuristics

We need heuristics to guide the search algorithm.
A heuristic function h(s) estimates the distance from a state s to a goal.
Admissible heuristic (one that does not overestimate) allows usage of
A* algorithm to find optimal solutions.
Admissible heuristic can be derived from solving a relaxed problem
(problem, where some constraints are removed, to make the problem
easier to solve).

Ignore action preconditions
– all actions are always applicable
– find a set of actions of minimal size to cover the goal conditions (set-

cover problem)
– note: we also ignore that some actions undo effects of other actions

Ignore negative effects
– actions do not destroy preconditions of other actions so the set of

valid propositions in the state is monotonically enlarging
– we can progressively add all applicable actions until all goal conditions

are covered (smallest set of actions leading to the goal is found then)

Introduction to Artificial Intelligence, Roman Barták 19

Other forms of planning

Plan-space planning (partial order planning)
Planning is realized by refining initial (empty) plan
by adding actions and relations
to fulfill open goals and
to resolve causal threats.

Hierarchical planning
Planning is realized by decomposing tasks to sub-
tasks until primitive tasks (actions) are obtained.

Introduction to Artificial Intelligence, Roman Barták 20

deliver(o1,r1,p2,p4) deliver(o2,r1,p3,p4)

move(r1,p1,p2)

load(o1,r1,p2) unload(o1,r1,p4) go(r1,p1,p2) load(o2,r1,p3) unload(o2,r1,p4) go(r1,p2,p3) go(r1,p3,p4)

goal

move(r1,p2,p4) move(r1,p3,p4) move(r1,p2,p3)

Initial state

Goal condition

Causal link
Open goal

Threat for
causal link

at(r1,l1)

Summary

Automated planning – devising a plan of action to achieve
agent’s goals – is one of critical parts of AI.

– Planning domain model describes planning operators
(capabilities of an agent) via preconditions and effects.

– Planning task is to find a sequence of actions from the
current state to a state satisfying the goal condition.

– Planning is (frequently) realized by state-space search in
forward direction (progression) or backward direction
(regression).

– Domain-independent heuristics can be used thanks to
factored representation of states.

For more information
course Planning and Scheduling

– summer term
– http://ktiml.mff.cuni.cz/~bartak/planovani/

Introduction to Artificial Intelligence, Roman Barták 21

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

