
Introduction to
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Introduction

Recall, that a rational agent is an agent that can
make rational decisions based on what it believes
and what it wants.
Probability theory gives a formal tool to reason
about uncertainty of the world.
Now, how can we make decisions there?
– we need to measure outcome quality
– we will do simple decisions (episodic environments)
– we will do a sequence of decisions (sequential

environments)

Introduction to Artificial Intelligence, Roman Barták 2

Decisions under uncertainty

Decision theory (simplest form) is about choosing among
actions based on desirability of immediate outcomes
(environment is episodic).

Previously, Result(s,a) denotes the state that is the
deterministic outcome of taking action a in state s.

Assume now nondeterministic partially observable
environment – we do not know the current state and we
do not know the outcome of action.

Formal model:
Result(a), random variable with values describing possible
outcome state
P(Result(a)=s | a, e), probability of outcome s of action a,
given evidence observation e

Introduction to Artificial Intelligence, Roman Barták 3

Maximum expected utility

Agent’s preferences are captured by a utility
function U(s) – number expressing desirability of
a state s.

Expected utility (EU) of an action a given the
evidence e

EU(a|e) = Ss P(Result(a)=s | a,e)U(s)

Maximum expected utility (MEU) principle:
action = argmaxa EU(a|e)
A rational agent should choose the action that
maximizes the agent’s expected utility.

Introduction to Artificial Intelligence, Roman Barták 4

Utility theory

Frequently, it is easier for an agent to express preferences between states
rather than to give a number describing the utility value:

– A > B: the agent prefers A over B
– A ~ B: the agent is indifferent between A and B

We can describe outcome of each action as an lottery L = [p1,S1; …; pn,Sn]
(possible outcomes S1, …, Sn that occur with probabilities p1, …, pn)

Example: choice of chicken in airplane: [0.8, juicy; 0.2, overcooked]

Expected utility of a lottery: U([p1,S1; …; pn,Sn]) = ∑i pi U(Si)
How to go from preferences to the utility function such that:

U(A) < U(B) ⇔ A < B
U(A) = U(B) ⇔ A ~ B

We can look for a normalized utility function (values between 0 and 1):
– We fix the utility of a “best possible prize” Smax to 1, U(Smax) = 1.
– Similarly, a “worst possible catastrophe” Smin is mapped to 0, U(Smin) = 0.
– Now, to assess the utility of any particular prize S we ask the agent to choose

between S and a standard lottery [p, Smax; 1-p, Smin]
– The probability p is adjusted until the agent is indifferent between S and the

standard lottery.
– Then the utility of S is given by, U(S) = p.

Introduction to Artificial Intelligence, Roman Barták 5

Decision networks

Decision networks (influence diagrams) combine Bayesian networks
with additional node types for actions and utilities.

Evaluating decision networks:
1. set the evidence variables for the current state
2. for each possible value of the decision node

a) set the decision node to that value
b) calculate the posterior probabilities for the parent nodes of the utility node,

using a standard probabilistic inference
c) calculate the resulting utility for the action

3. return the action with the highest utility

Introduction to Artificial Intelligence, Roman Barták

U

Airport Site

Deaths

Noise

Cost

Litigation

Construction

Air Traffic
Chance nodes represent
random variables like in
Bayesian networks

Decision node represent points
where the decision maker has a
choice of actions

Utility nodes represent the
agent’s utility function

6

Decision-theoretic expert systems

Create a causal model
determine the possible symptoms, disorders, treatments, and outcomes and then
draw arcs between them

Simplify to a qualitative decision model
we can simplify by removing variables that are not involved in treatment decisions;
sometime variables will have to be split or joined to match the expert’s intuitions

Assign probabilities
fill CPTs in the Bayesian networks
(from patient databases, literature studies
or expert’s subjective assessments)

Assign utilities
a small number of possible outcomes can
be enumerated (can be done by the expert ,
but better if the patient is involved)

Verify and refine the model
compare outputs with a so-called gold
standard (a team of best doctors)

Perform sensitivity analysis
check whether the best decision is sensitive
to small changes in the assigned probabilities
and utilities by systematically varying those
parameters and running the evaluation again (small changes leading to significantly
different decisions indicate problems)

Tachypnea

Dyspnea

Heart
FailureAge

Tachycardia
Failure

To Thrive

Intercostal
Recession

Hepato-
megaly

Pulmonary
Crepitations

Cardiomegaly

Treatment Intermediate
Result

Late
Result

Paraplegia

Aortic
Aneurysm

Paradoxical
Hypertension

Postcoarctectomy
Syndrome

Sex

CVA

Aortic
Dissection

Myocardial
Infarction

U

7Introduction to Artificial Intelligence, Roman Barták

Sequential decision problems

What if we need to decide today, tomorrow, and so on and utility
depends on a sequence of decisions?

→ sequential decision problems
Previously, we used search and planning as special cases of sequential
decision problems, but both assume fully observable deterministic
environments.
Let us look at fully observable (agent knows where it is) but non-
deterministic environments.

Example problem:
– an agent is situated in the fully-observable

3 x 4 environment
– actions in every state are Up, Down, Left, Right

but their outcome is stochastic
– each action achieves the intended effect with probability 0.8
– the rest of time, the action moves the agent at right angles

to the intended direction

Plan [Up,Up,Right,Right,Right] reaches the goal
(+1) from START with probability:

0.85 + 0.14 x 0.8= 0.32776.

Introduction to Artificial Intelligence, Roman Barták 8

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

1

2

3

1 2 3 4

START

0.8

0.10.1

(a) (b)

–1

+ 1

Markov Decision Process

Markov Decision Process (MDP) is a sequential decision problem
for a fully observable, stochastic environment with a Markovian
transition model and additive reward.
Transition model P(s’|s,a) – probability of reaching state s‘ if
action a is applied in state s

Markovian property – probability of reaching s‘ from s does not depend
on the history of earlier states

Reward R(s) received by an agent at state s
– can be positive or negative, but must be bounded
– it is a “short term” reward

Utility function U([s0,s1,s2,…])
U([s0,s1,s2,…]) = R(s0) + 𝛾R(s1) + 𝛾2 R(s2) + …
where 𝛾 – a discount factor – is a number between 0 and 1
– discounted rewards mean that future rewards are less significant
– the utility based on discounted rewards is finite even for an infinite

sequence of states (U([s0,s1,s2,…]) ≤ Rmax / (1- 𝛾))
– utility is “long term” total reward

Introduction to Artificial Intelligence, Roman Barták 9

Solution to an MDP

A fixed sequence of actions cannot be used in stochastic environments
– agent might end up in a state other than the goal

A solution must specify what the agent should do for any state that the agent
might reach.
A solution to an MDP is a policy – a function recommending an action for each
state – 𝜋(s)

– an optimal policy is a policy that yields the highest expected utility

Some examples of optimal policies:

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

Reward of states is -0.04
The agent is heading for the goal exit
but is conservative

Reward of states is negative
Life is so painful that the agent heads
straight for the nearest exist

Reward of states is close to 0
The agent is heading the goal exit
but takes no risks at all

Reward of states is positive
Life is positively enjoyable and
the agent avoids both exits

Introduction to Artificial Intelligence, Roman Barták 10

Utilities of states

The expected utility obtained by executing 𝜋 starting in s is given by:
U𝜋(s) = E[Σi=0,…,+∞ 𝛾i R(Si)]
– St is a random variable describing the state that the agent reaches at time t

Optimal policy for the initial state s is defined as:
𝜋s* = argmax𝜋 U𝜋(s)

Does the optimal policy depend on the initial state?
– if two policies 𝜋*a and 𝜋*b reach a third state c, there is no good reason for

them to disagree with each other about what to do next

Let us define the true utility of a state as just U(s) = U𝜋*(s)
– then choose the action that maximizes the expected utility of the

subsequent state
𝜋*(s) = argmaxa Σs‘ P(s‘|s,a) U(s‘)

There is a direct relationship between the utility
of a state and the utility of its neighbors:
U(s) = R(s) + 𝛾 maxa Σs‘ P(s‘|s,a) U(s‘)

This is called the Bellman equation.
1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

Introduction to Artificial Intelligence, Roman Barták 11

Value iteration

The Bellman equation is the basis of the value iteration algorithm for solving MDPs.
There is one problem: the equations are nonlinear.
We can apply an iterative approach

1. We start with arbitrary initial values for the utilities U(s)
2. We update the utility U(s) of each state from the utilities of its neighbors (a

Bellman update)

Ui+1(s) ← R(s) + 𝛾 maxa Σs‘ P(s‘|s,a) Ui(s‘)

Introduction to Artificial Intelligence, Roman Barták 12

Policy iteration

It is possible to get an optimal policy even when
the utility function estimate is still inaccurate.

policy loss measures the quality distance between
the optimal utility and policy utility

We can iteratively improve the policy until no improvement is
obtained.

Introduction to Artificial Intelligence, Roman Barták

policy evaluation – given a policy 𝜋i, calculate U𝜋 i

U𝜋 i(s) = R(s) + 𝛾 Σs‘ P(s‘|s, 𝜋i(s)) U𝜋 i(s‘)
• for small state spaces, solve Bellman

equations exactly in O(n3)
• for large state spaces, use value iteration

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

M
ax

 e
rr

or
/P

ol
ic

y
lo

ss

Number of iterations

Max error
Policy loss

policy improvement – given a utility U𝜋 i calulate a
new MEU policy 𝜋i+1

𝜋i+1(s) ← argmaxa 𝛴s‘ P(s‘|s,a) U𝜋 i(s‘)

13

Partially observable MDP

Let us go from fully observable to partially observable
environments (this is the real world).

Agent does not necessarily know which state it is in, so it
cannot execute the action 𝜋(s) recommended for that state.

Partially observable MDP (POMDP) is like MDP:
– the transition model P(s’|s,a)
– actions applicable in state A(s)
– reward function R(s)
– sensor model P(s|e)

We can use belief states instead of real states (recall that a
believe state is probability distribution over all possible
states).
Then, we can solve MDP over belief states - this requires
modification of techniques to a continuous case.

Introduction to Artificial Intelligence, Roman Barták 14

Introduction to Artificial Intelligence, Roman Barták 15

Solving POMDP

The transition and sensors models are represented by a dynamic
Bayesian network.
We add decision and utility nodes to get a dynamic decision network.

Decisions are done by projecting
forward possible action sequences
and choosing the best one.
This can be done by search using
approach similar to
ExpectedMiniMax algorithm for
stochastic games.

Xt–1

At–1

Rt–1

At

Rt

At+2

Rt+2

At+1

Rt+1

At–2

Et–1

Xt+1

Et+1

Xt+2

Et+2

Xt+3

Et+3

Ut+3Xt

Et

. . .
...

.........

. . .
.........

.........
. . .

...

. . .
......

. . .

...

. . .

At in P(Xt | E1:t)

At+1 in P(Xt+1 | E1:t+1)

At+2 in P(Xt+2 | E1:t+2)

U(Xt+3)

Et+1

Et+2

Et+3

10 4 6 3

Believe state
(calculated using filtering, we know the path to it)

Applicable actions

Chance nodes
(choices by the environment, what evidence arrives)

How far to enroll?
thanks to discount factor, the future
rewards influence less the utility

Summary

Probability theory describes what agent should believe on
the basis of evidence.
Utility theory describes what agent wants.
Decision theory describes what agent should do.
Rational agent selects an action maximizing expected
utility: action = argmaxa EU(a|e)
Decision networks provide formalism for simple decisions.
Markov Decision Process is a formalism for sequential
decision problems.
– solution of MDP is a policy
– optimal policies can be found by value iteration and policy

iteration algorithms
Partially observable MDP extends MDP to partially
observable environments.

Introduction to Artificial Intelligence, Roman Barták 16

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

