7|C++ - parallelization
and synchronization

Jakub Yaghob

| The problem

Race conditions
Separate threads with shared state
Result of computation depends on OS scheduling

Race conditions — simple

demo

7] Linked list

7] Shared state
List Ist;

Thread A
Ist.push_front(A);

Thread B
Ist.push_front(B);

Initial state

|st

Correct state

|st

X Y

B

A

Another correct state

|st

A

B

Incorrect state

|st

=

Race conditions — advanced (@

5
demo
struct Counter { Shared state
_Cc:untler():value(O) { } Counter C:
int value;
void increment() _Thread A .
{ ++value:) c.increment();
void decrement() cout << c'get())
{ --value; } Thread B
int get() c.increment();
{ return value; } cout << c.get();

b Possible outputs
12, 21, 11

C++ features

C++ 11
Atomic operations
Low-level threads
High-level futures
Synchronization
primitives
Thread-local storage

C++14 features

Shared timed mutex

C++17 features

Parallel algorithms
Shared mutex

C++20 features
Stop tokens
Semaphore
Coordination types

Threads

Low-level t
7| Header <t

nreads
nread>

thread c

dsSS

Fork-join paradigm
Namespace this thread

Threads @

Class thread

Constructor

temI:Iate <class F, class ...Args>
explicit thread(F&& f, Args&&... args);

Destructor
If joinable() then terminate()
bool joinable() const noexcept;
void join();
Blocks, until the thread *this has completed
7 void detach();
7 id get_id() const noexcept;
7 static unsigned hardware_concurrency();

Threads

Class jthread

Like thread, autostops+autojoins on destruction

Provides stop token
Internal member of std::stop_source type

Constructor accepts function with
std::stop_token as first argument

Destructor calls request_stop

Interface functions get_stop_source,
get_stop_token, and request_stop

Threads

Namespace this thread
thread::id get_id() noexcept;
Unique ID of the current thread
void yield() noexcept;
Opportunity to reschedule
sleep_for, sleep_until
Blocks the thread for relative/absolute timeout

O}

Threads

7] Demo

#include <iostream>
#include <thread>

void thread_fn() { std::cout << “Hello from thread” <<
std::endl; }

int main(int argc, char **argv) {
std::thread thr(&thread_fn);
std::cout << “Hello from main” << std::endl;
thr.join();
return O;
}

Threads

“Hello from main”

fork

“Hello from thread”

join

Threads

“Hello from main”

blocked on join

fork

Yy thread creation
: overhead
I!

“Hello from thread”

Threads

fork

barrier

Threads

7] Demo

#include <iostream>
#include <thread>
#include <vector>

int main(int argc, char **argv) {
std::vector<std::thread> workers;
for(int i=0;i<10;++i)
workers.push_back(std::thread([i]() {
std::cout << “Hello from thread “ << i << std::endl;

)k

std::cout << “Hello from main” << std::endl;
for(auto &t : workers)
t.join();
return 0;
}

Threads

Passing arguments to threads

By value
Safe, but you MUST make deep copy
By move (rvalue reference)

Safe, as long as strict (deep) adherence to move
semantics

By const reference
Safe, as long as object is guaranteed deep-immutable

By non-const reference
Safe, as long as the object is monitor

Futures

Futures
Header <future>
High-level asynchronous execution
Future
Promise
Async
Error handling

Futures

Shared state

Consist of

Some state information and some (possibly not yet
evaluated) result, which can be a (possibly void) value or
an exception

Asynchronous return object
Object, that reads results from an shared state

Waiting function

Potentially blocks to wait for the shared state to be made
ready

Asynchronous provider
Object that provides a result to a shared state

/>,
?
Futures ok 4o e b i
Heple wlnt dedun o
) Future N ol o jedaon anoli

7 std::future<T> \w/»c/ & s e ke

Future value of type T

Retrieve value via gef()
Waits until the shared state is ready

wait(), wait_for(), wait_until()
valid()

std::shared_future<T>
Value can be read by more then one thread

]]]

]]]

Futures

Async

7 std::async

7| Higher-level convenience utility

7] Launches a function potentially in a new thread
Async usage

int foo(double, char, bool);
<auto fut = std::async(foo, 1.5, 'x', false);

aUto res = _f,t/'_gi();_\ = 7L0/74 //é Wuai@/é I S VO/QZI./..

7L[7L] o/ 6[VIJMV4 Cind > \ 717’6]5 710 @WM ah L’() Uz /WLDM

W/'{t - = /lﬂ/sa

Futures

Packaged task
std::packaged_task
How to implement async with more control

Wraps a function and provides a future for the
function result value, but the object itself is
callable

Futures

Packaged task usage

std::packaged_task<int(double, char, bool)>
tsk(foo);

auto fut = tsk.get_future();

std::thread thr(std::move(tsk), 1.5, 'x', false);

auto res = fut.get();

Futures

Promise
std::promise<T>
Lowest-level
Steps
Calling thread makes a promise

Calling thread obtains a future from the promise

The promise, along with function arguments, are
moved into a separate thread

The new thread executes the function and fulfills the
promise

The original thread retrieves the result

Futures

Promise usage

Thread A
std::promise<int> prm;
auto fut = prm.get_future();
std::thread thr(thr_fnc, std::move(prm));
auto res = fut.get();

Thread B
void thr_fnc(std::promise<int> &&prm) {
prm.set_value(123);

}

Futures

Constraints

A default-constructed promise is inactive
Can die without consequence

A promise becomes active, when a future is obtained via
get_future()

Only one future may be obtained

A promise must either be satisfied via Set_value(), or
have an exception set via set_exception()

A satisfied promise can die without consequence
get() becomes available on the future

A promise with an exception will raise the stored exception upon
call of get() on the future

A promise with neither value nor exception will raise “broken
promise” exception

Futures

Exceptions
All exceptions of type std::future error

Has error code with enum type Std::future errc

inactive promise 7] too many futures
std::promise<int> pr; std::promise<int> pr;
// fine, no problem auto fut1 = pr.get_future();

auto fut2 = pr.get_future();

d/ error “Future already

7l active promise, unuse j
P retrieved”

std::promise<int> pr;
auto fut = pr.get_future();

// fine, no problem
// fut.get() blocks indefinitely

O}

Futures
satisfied promise too much satisfaction
std::promise<int> pr; std::promise<int> pr;
auto fut = pr.get_future(); auto fut = pr.get_future();
{ std::promise<int> { std::promise<int>
pr2(std::move(pr)); pr2(std::move(pr));
pr2.set_value(10); pr2.set_value(10);
} pr2.set_value(11);
auto r = fut.get(); // error “Promise already
// fine, return 10 satisfied”

}
auto r = fut.get();

Futures

exception

std::promise<int> pr;

auto fut = pr.get_future();

{ std::promise<int> pr2(std::move(pr));
pr2.set_exception(

std::make_exception_ptr(
std::runtime_error(“bububu’)));

}

auto r = fut.get();

// throws the runtime_error

Futures

broken promise

std::promise<int> pr;

auto fut = pr.get_future();

{ std::promise<int> pr2(std::move(pr));
// error “Broken promise”

}
auto r = fut.get();

?)Synchronization primitives

Synchronization primitives
Mutual exclusion
Headers <mutex> and <shared mutex>
Condition variables
Header <condition_variable>

Semaphore
Header <semaphore>

Mutex -z

Mutex
A synchronization primitive that can be used to protect

shared data from being simultaneously accessed by
multiple threads

mutex offers exclusive, non-recursive ownership semantics

A calling thread owns a mutex from the time that it successfully
calls either lock or try_lock until it calls unlock

When a thread owns a mutex, all other threads will block (for
calls to lock) or receive a false return value (for try_lock) if
they attempt to claim ownership of the mutex

A calling thread must not own the mutex prior to calling lock or
try_lock

The behavior of a program is undefined if a mutex is
destroyed while still owned by some thread

Mutex example

Shared state

Ist Ist;
std::mutex mtx;
Thread A
mtx.lock();
Ist.push_front(A);
mtx.unlock();

?] Thread B
mtx.lock();
Ist.push_front(B);
mtx.unlock();

Mutex variants

Other mutex variants

timed_mutex

In addition, timed_mutex provides the ability to attempt to claim ownership
of a timed_mutex with a timeout via the try _lock_for and
try_lock_until

recursive _mutex

exclusive, recursive ownership semantics

[] A calling thread owns a recursive _mutex for a period of time that starts when it
successfully calls either lock or try lock. During this period, the thread may make
additional calls to lock or try lock. The period of ownership ends when the thread
makes a matching number of calls to unlock

)] When a thread owns a recursive_mutex, all other threads will block (for calls to
lock) or receive a false return value (for try_lock) if they attempt to claim
ownership of the recursive_mutex

[] The maximum number of times that a recursive_mutex may be locked is
unspecified, but after that number is reached, calls to lock will throw
std::system_error and calls to try_lock will return false

recursive_timed_mutex
Combination

Mutex variants

Other mutex variants

std::shared_mutex

Additionally multiple threads can make shared lock
using lock shared()

Either exclusive lock or shared lock
std::shared_timed_mutex

Mutex wrappers

std::unique_lock
Lock class with more features
Timed wait, deferred lock

std::lock_guard
Scope based lock (RAII)

Linked list demo, code for one thread
{

std::lock_guard<std::mutex> lk(mtx);

Ist.push_front(X);

}

Mutex wrappers and others

Shared lock wrapper
std::shared_lock
Calls lock shared for the given shared mutex
Variadic wrapper

template <typename ... MutexTypes> class
scoped_lock;
Multiple locks at once, RAIl, deadlock avoidance
(] Interference size

std::size_t - _
hardware_ destructive interference_size;

Size of a cache line

Locking algorithms

7 std::lock

locks specified mutexes, blocks if any are
unavailable, deadlock avoidance

std::try_lock

attempts to obtain ownership of mutexes via

repeated calls to try lock
// don't actually take the locks yet
std::unique_lock<std::mutex> lock1(mtx1, std::defer_lock);
std::unique_lock<std::mutex> lock2(mtx2, std::defer_lock);

// lock both unique_locks without deadlock
std::lock(lock1, lock2);

7] Call once

7 std::once_flag
Helper object for std::call once

std::call once

invokes a function only once even if called from

multiple threads
std::once_flag flag;
void do_once() {
std::call_once(flag, [](){ do something only once }); }
std::thread t1(do_once);
std::thread t2(do_once);

Condition variable

std::condition variable

Can be used to block a thread, or multiple threads
at the same time, until

a notification is received from another thread
a timeout expires, or

a spurious wakeup occurs

Appears to be signaled, although the condition is not valid
Verify the condition after the thread has finished waiting

Works with std::unique_lock

wait atomically manipulates mutex, Notify does
nothing

?]Condition variable example

std::mutex m;

std::condition_variable cond_var;
bool done = false; bool notified = false;

7] Producer
for () {

// produce something

{ std::lock_guard<std::mutex>
lock(m);

queue.push(item);
notified = true; }
cond_var.notify_one();
}
std::lock_guard<std::mutex> lock(m);
notified = true;
done = true;
cond_var.notify_one();

7] Consumer

std::unique_lock<std::mutex> lock(m);
while(!done) {
while (!notified) {
// loop to avoid spurious wakeups
cond_var.wait(lock);

}
while(!queue.empty()) {

queue.pop();
// consume

}

notified = false;
}

’)Semaphore

Counting semaphore
7] std::counting_semaphore
7] Constructor sets the count

7] Manipulation
acquire(), release(count=1)

Binary semaphore
std::binary_semaphore

Coordination types

Latches
Header <latch>
Thread coordination mechanism
Block threads until an expected number of threads arrive

Single use

Barriers
Header <barrier>

Sequence of phases

Eag?t Il to arrive() decrements expected count, the thread can then
w

When count==0, the completion function is called and all blocked threads are
unblocked

Expected count is reset to the previous value
Constructor _ _
barrier(ptrdiff_t expected, CompletionFunction f)

7| Stop tokens

Asynchronously request to stop execution of an operation

Shared state among associated stop_source, stop_token,
and stop_callback
stop_token

Interface for querying whether a stop request has been made or can
ever been made

bool stop_requested(), bool stop_possible()
stop_source
Implements the semantics of making stop request

Creates stop_tokens
stop_token get_token()

Makes stop request
request_stop()

stop_callback

Invokes callback function when stop request has been made

Thread-local storage

Thread-local storage
Added a new storage-class

Use keyword
Must be present in all declarations of a variable

Only for namespace or block scope variables and to
the names of static data members

For block scope variables IS implied

Storage of a variable lasts for the duration of a
thread in which it is created

Parallel algorithms

Parallelism
?| In headers <algorithm>, <numeric>

7| Parallel algorithms

Execution policy in <execution>
seq — execute sequentially
par — execute in parallel on multiple threads

par_unseq — execute in parallel on multiple threads, interleave individual
iterations within a single thread, no locks

unseq — execute in single thread+vectorized
for_each

reduce, scan, transform_reduce, transform_scan

@ Inclusive scan — like partial_sum, includes i-th input element in the i-th
sum

Exclusive scan — like partial_sum, excludes i-th input element from the i-th
sum

No exceptions should be thrown
Terminate

Parallel algorithms

Parallel algorithms
Not all algorithms have parallel version

adjace_]pt_d|fference,tadjacq(ntrf|nd, ?Il_olf, any_of, cong: 1§

if, copy_n, count, gount_if, equal. exclusive_scan, :
fﬂrzn,flng,ﬁnd_end, in _ﬁrstjo?, flna_,ﬁ, find_if not,
for_each, for_each_n, generate, generate_n, includes,
inclusive_scan, inner_product, inplace_merge, is_heap, .
is_heap_until, is_partitioned, is_sorted, iS_sorted_until,
lexicographical_compare, max_element, merge, min_element,
minmax_element, mismatch, move, none_of, hth_element,
partial_sort, partial_sort_copy, partition, partition_copy,
reduce, remove, remove_copy, remove_copy. if, remove_if, replace,
replace_copy, replace_copy_if, replace_if, reverse,

reverse _copy, rotate, rotaté_copy, search, search_n,
set_difference, set_intersection, set symmetric_difference,
set_union, sort, stable_partition, stablé_sort, swap ranges,
transform, transform_exclusive scan, transform_inclusive_scan,

transform, . redyce, yninitiglized c ninitialized copy n,
unlnﬁlaﬁzecli_?lllf, uninitia Izegl_aﬁllu_n, unique, uniqupezcopy

C++ extension — executors

Executors
Now separate TS, not finished in C++23 timeframe, maybe in C++267?

Executor
Controls how a task (=function) is executed

Direction

One-way execution

Does not return a result

Two-way execution

Returns future

Then

Execution agent begins execution after a given future becomes ready, returns future
Cardinality

Single

One execution agent

Bulk executions
Group of execution agents
[Agents return a factory

Thread pool

Controls where the task is executed

7 C++ extensions —
concurrency

Concurrency
TS published, depends on executors TS

Improvements to future

future<T2> then(F &&f)

Execute asynchronously a function f when the future is
ready

7 C++ extension —
transactional memory

7] TS v1 finished, never used
7] TS v2 in progress

7] Transactional memory

Atomic blocks
Transactional behavior
Exception inside the block leads to undefined behavior

unsigned iIint ()

static unsigned int | = 0;
atomi¢ do {
++I; _
return I;
} }

