NPFL138, Lecture 4 Us

Convolutional Neural Networks

Milan Straka

m March 11, 2024

Charles University in Prague @ @ O)
EUROPEAN UNION Faculty of Mathematics and Physics T

oot oo hecern ™1 Institute of Formal and Applied Linguistics _
A LANGTECH chemetma st PP & unless otherwise stated

Going Deeper

NPFL138, Lecture 4 Convolution

CNNs

Going Deeper

AlexNet

Deep Prior

VGG

Inception

BatchNorm

ResNet

U=

2/56

Convolutional Networks Uz

Consider data with some structure (temporal data, speech, images, ...).

Unlike densely connected layers, we might want:

® |ocal interactions only; /Vl% %) Cﬁlﬂm’&/i&/ /?m %A
® shift invariance (equal response everywhere). W{/f&/ 9//&{76&4 W\]'L ’A
')

Cé (12 ﬂm\/% d b/éz. WA/@ 91/55
5

U\ ML\B IMw“/ MSW"'/ ffmlwvc ap,lem Wi VS’flJ’l [)ixe/w}’?

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 3/56

1D Convolution UL

—\
COMW/MM/ QQM " WEX pau’g’wﬂ)'./ %‘(rmt/ vﬂ'rﬁ?

- . . Ve -
\ 730%5‘4 Fﬂw Déqéwa%w/ /wfj’ﬂwm /)1//,5;/0/44'4
NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 4/56

i

2D Convolution UL

—3
{ 0| —
Source pixel /1 0
0 /‘/
= 1
f 4. _~ ((1x3)+(0x0)+(1x1)+
L= 2 (-2x2)+(0x6)+(2x2)+
3 | 7 (-1x2)+(0x4)+(1x1) =-3
// //
L= — =
0 = =
1 | //
L=
// //
. ' = L —
Convolution filter L= // L=
L=
(Sobel Gx) L= // //
Destination pixel L= — =
|~ ////
////
//

https://i.stack.imgur.com/YDusp.png

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 5/56

2D Convolution UL
Input i
a b

Kernel
J|L
w T

|
_>
aw + br + bw 4+ cx + cw + dr +
ey + [z fv + gz gy + hz

ew + fzr + fw + gx + gw + hxr +
o+ jz Jjy 4+ kz ky + |z

Figure 9.1 of "Deep Learning" book, https://www.deeplearningbook.org

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 6/56

Convolution Operation

For a functions £ and w, convolution w * x is defined as

Time Signal x

(w * 2)(t) = / 2(t — a)w(a) da.

Window Function w

sl

NPFL138, Lecture 4 Convolutlon

IR

Applied Window Function

— [\

An/ xﬁmwb& M quzlwv ol

CNNs

AlexNet Deep Prior Inception

BatchNorm

ResNet

il

U=

7/56

Convolution Operation

For a functions £ and w, convolution w * x is defined as

NPFL138, Lecture 4

! I | T T T I I I
1| SSEERERRERRE freeunsunes e S— [] Acea under f(xat-o |
k| SR P AR I—— N R f(x)
(1] T el Y R P at-0)

: : : : (foa)0)
04_. \ e -
2k, Y R S A o

ol]] i]]]
-2 -15 -1 -0.5 0 0.5 1 15 2
v &t
https: //commons.wikimedia.org/wiki/File: Convolution_of _box_signal_with__itself2.gif
T T T T T T T I T I
1-.: :lkeaunderf(r.)g@-t)'

5 : : : : ; (o)

: : : : : D ——atw
05k “an (f‘gn)

0 I]]]
15 1 0.5 0 0.5 1 15 2 25 3
v &t
https: //commons.wikimedia.org/wiki/File: Convolution_of _spiky__function_with_box2.gif
Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

8,/56

Convolution Operation UL

For a functions £ and w, convolution w * x is defined as

(w* x)(t) = /a:(t — a)w(a) da.
For vectors, we have /4 /75 /%5;/% /77}4/&// / /L- 7_

(w * w)t — . Ly_;W;. I/L

Convolution operation can be generalized to two dimensions by

(K+Dij=), TimjnKmn. [S l

Wy e ol
Closely related is cross-correlation, where K is fIippeo&/, /s;q WT

(KxD)ij=23 TiimjinKm,
T >

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 9/56

Convolution Layer UL

The K is usually called a kernel or a filter.

Note that usually we have a whole vector of values for a single pixel, the so-called channels.

These single pixel channel values have no longer any spacial structure, so the kernel contains a

different set of weights for every input dimension, obtaining /
a/

(K * I Z Iz—l—m,]—i—n c"™\m n,@ éama/

M ol ek 2o

Furthermore, we usually want to be able to specify the output dimensionality similarly to for
example a fully connected layer — the number of output channels for every pixel. Each output
channel is then the output of an independent convolution operation, so we can consider K to be

a four-dimensional tensor and the convolution if computed as

P = iiu 8 é/(22 /4//4424 é%%'
[0%9 ¢h Vm/ 4%/ /X (K * 1) ZJO: Z |z+m,anc K n.c,o- qlz/fie 2 doho

g jlem ks i i g 1
(/}MWZ e A A’ P vscoma %Mﬁf? N Q\m IM%{ -/o Clé/f;:w 1VZ4/§‘J’ Z_s le/ u7947 o ui ?

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet /qj‘/[/" bewo 10/56

7

To arrive at the complete convolution layer, we need to specify: 7L/7L/ l /
® the width W and height H of the kernel;
® the number of output channels F’;

® the stride denoting that every output pixel is computed for every stride-th input pixel (e.g.,
the output is half the size if stride is 2).

Considering an input image with C channels, the convolution layer is then parametrized by a
kernel K of total size W x H x C x F' and is computed as

(K*IZJO_ § IzS+m,jS+ncKmnco

m,n,c

Note that while only local interactions are performed in the image spacial dimensions (width
and height), we combine input channels in a fully connected manner.

CNNs 11/56

[05#&04 J I'ZIJA' V.’edao[w 01XMM
U‘”—(° ibzoh,/ e it v, ‘,}f W i o
A+ f Infocns /i’ﬂfh/ N, o ads
/

=

—otiwl/«l* : %Z

ves Ustyhny Notiee Jp 7 | o, | sdiin
U

Convolution Layer

There are multiple padding schemes, most common are:

® valid: Only use valid pixels, which causes the result to be smaller than the input.
® same: Pad original image with zero pixels so that the result is exactly the size of the input.

lllustration of the paddmg schemes and different strides for a 3 X 3 kernel:
L oochy I oz

® valid padding, stride=1: stride=2:

https: //github.com/vdumoulin /conv_arithmetic

(ul ¢ W”)" 7’@06 Vﬁ/w W https://github.com/vdumoulin/conv_arithmetic
hh J {w‘wﬁn/m ai”ch M(&erﬂtl
mic o

® same padding, stride=1: stride=2:

https://github.com/vdumoulin /conv_arithmetic

https://github.com/vdumoulin /conv__arithmetic

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 12/56

There are two prevalent image formats (called data_format in Keras):

® channels_last: The dimensions of the 4-dimensional image tensor are batch, height,
width, and channels.
The original TensorFlow and Keras format, faster on CPU.

® channels_first: The dimensions of the 4-dimensional image tensor are batch, channel,
height, and width.

Originally faster on GPUs, nowadays channels_last is faster on newer GPUs; used by
PyTorch format.

In TensorFlow, data is represented using the channels_last approach and the runtime will
automatically convert it to channels_first if it is more suitable for available hardware
(especially for a GPU).

In PyTorch, you can decide which memory representation you want, with the shape formally
being always channels_first.

Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 13/56

Pooling Ut

Pooling is an operation similar to convolution, but we perform a fixed operation instead of
multiplying by a kernel.

® Max pooling (minor translation invariance)

é\c/é\o/é

Figure 9.10 of "Deep Learning" book, https://www.deeplearningbook.org
01‘/6

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 14/56

High-level CNN Architecture

We repeatedly use the following block:

1. Convolution operation
2. Non-linear activation (usually RelLU)
3. Pooling

Input layer Convolutional layers

/ ﬁ)aﬁ\iwg o Cinde < 2

U=

40 3

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior

FX
-, W o L(]‘ a L 1114
QW&MM}M oA veyions e e)
A Fflﬂcjg& Wy {%JM/ ftw’ W{xel/)'quo ?ﬂ;
M@”A“/ 04,4/55/%/ W%'Vi//wf l//mg%ho)%
Fully connected layers Output layer
malignant
flatten
A - benign
Num of nodes in hidden layers:
512 256
https: //cdn-images-1. medium.com/max/1200/0*QyXSpgpmlwc_Dt6V.
VGG Inception BatchNorm ResNet 15/56

o 3\\\\
3 3 T 3 1 3 >
5| AV : 3 \ |}
’ 04¢ oae \d
48 192 192 128 2048 2048 \dense
7 128 - T
SN T 13 \ 13
5\ 3 AN
5| i % a ENRR 3| 5 R
4 >7 3ot ‘ - 5| U3 13 dense’| [dense
55 - 1000
2% 192 192 128 Max] L
: 2048 2048
Stride Max 128 Max pooling
Hof 4 pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896-64,896—43,264—
4096—4096—1000.

AlexNet 16/56

Training details:

® 61M parameters, 2 GPUs for 5-6 days

® SGD with batch size 128, momentum 0.9, L? regularization strength (weight decay) 0.0005
°c v+ 09-v—a 200005 a6
© 00—+

® jnitial learning rate 0.01, manually divided by 10 when validation error rate stopped
improving

® RelLU nonlinearities

® dropout with rate 0.5 on the fully-connected layers (except for the output layer)

® data augmentation using translations and horizontal reflections (choosing random 224 X

224 patches from 256 x 256 images)
O during inference, 10 patches are used (four corner patches and a center patch, as well as
their reflections)

AlexNet 17/56

AlexNet — ReLU vs tanh Uz

0.75
Q 0.5 1
I \
S >
o -~ _
= -~
£ - -~
@ 025 : .
|_
O T T T T T T T
0 5 10 15 20 25 30 35 40
Epochs

Figure 1 of "ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al.

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 18/56

LeNet — 1998 UL

AlexNet built on already existing CNN architectures, mostly on LeNet, which achieved 0.8% test
error on MNIST.

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 s 16@

32x32 S2: f. maps C5: layer F6 layer OUTPUT

REEN

‘ FuII conr#ec’uon Gau38|an connections

Convolutions Subsampling Convolutions Subsamplmg Full connectlon
Figure 2 of "Gradient-Based Learning Applied to Document Recognition", http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 19/56

Similarities in Primary Visual Cortex (V1) and CNNs

dddEEERER
ddd=ESESRER
AAd=ESRERNR
[l [0 ZNKN NN
(0 W NN S 22 2
NNNSEZvw
NSNSSEE2P W
SNSNSSEEEPP

Figure 9.18 of "Deep Learning" book, https://www.deeplearningbook.org

The primary visual cortex recognizes Gabor functions.

NPFL138, Lecture 4 Convolution

CNNs

AlexNet

Deep Prior VGG Inception

BatchNorm

ResNet

U=

L

20/56

Figure 9.19 of "Deep Learning" book, https://www.deeplearningbook.org

Similar functions are recognized in the first layer of a CNN.

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

CNNs as Regularizers — Deep Prior

NPFL138, Lecture 4 Convolution

=N~ N

(c) Bicubic, Not trained (d) Deep prior, Not trained
Figure 1 of "Deep Image Prior", https://arxiv.org/abs/1711.10925

CNNs

AlexNet

Deep Prior VGG Inception BatchNorm

ResNet

U=

22/56

CNNs as Regularizers — Deep Prior UrL

di
Ml o) V. Si_ .
: : | —)
! - e N : |uu uuu B 00 R
nput i P '
' kq[d D ‘
" ky[i] ati] ! AR L L R
S, s, snll . Ui
: n,[i] ny[i] :
' :
Output D L — E !
W | o T A ; :
1 1 ky[d) !

Figure 1 of "Deep Image Prior" supplementary matena/s https: //arxiv.org/abs/1711.10925

Figure 2 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 23/56

Random noise from U |0 used on input; in

) 101
large inpainting, meshgrid is used instead and
the skip-connections are not used.

CNNs as Regularizers — Deep Prior

E MV [brogll e der

1
il
"

(a) Original i 1mage (b) Corrupted image (c) Shepard networks [26] (d) Deep Image Prior

»ID II l_

(e) Ongmal 1mage (f) Corrupted i 1mage (2) [’4] PSNR = 28.1 (h) Deep Img. Pnr PSNR = 30.9
Figure 7 of "Deep Image Prior", https://arxiv.org/abs/1711.10925v2

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 24/56

3 <
(m S
=)
=
—
= A
s
~ - i
= ¥
I > s Z
b 4/ RS
= :
S \ 5 Jo
s o
HEN N
1>] J
3 W — — 5
N) _ i .
X
SN | -
~J |
il | <)
= |\ BB iw
fY=») .
3 L—" - = =
= d =< = 3
S = J g S
3 = s
.Ww ﬁ.U =
_ @ = ., .2
& e =
~ S I
“ > ﬂ.W/ ,.hl\ﬂ
|.W N | r|m|| . 5
-5 J S 2]
= -
O / N\ T e
J/ = RN 0 ~
= 4 < =
> / NV = .ﬁYv S
\,.nm, 4 = = ==
. -
R = S =
. I - —= <
/W\\,u s MV R
—.M —

CNNs as Regularizers — Deep Prior

—72 %({3 QI)V W{ﬁ) C‘upﬂm} OOWI'V - n d")/MIIA Samna 0 305{2/ r)'y'mnf 7L/ co /'gm,,l M/j/é

Figure 5: Inpainting diversity. Left: original image (black pixels indicate holes). The remaining four images show results

obtained using deep prior corresponding to different input vector z.
Figure 5 of "Deep Image Prior" supplementary materials, https://arxiv.org/abs/1711.10925

Deep Prior paper website with supplementary material

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 25/56

https://dmitryulyanov.github.io/deep_image_prior

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Figure 1 of "Very Deep Convolutional Networks For Large-Scale Image Recognition”,

NPFL138, Lecture 4 Convolution

CNNs

AlexNet

https: //arxiv.org/abs/1409. 1556

Deep Prior

VGG - 2014 (6.8% ILSVRC top-5 error)

[/

/

Figure 1 of "Rethinking the Inception Architecture for Computer Vision",

https: //arxiv.org/abs/1512.00567

Table 2: Number of parameters (in millions).

Network

A,A-LRN

B

C D E

Number of parameters

133

133

134 | 138 | 144

Figure 2 of "Very Deep Convolutional Networks For Large-Scale Image Recognition”,

VGG

Inception

BatchNorm

https://arxiv.org/abs/1409.1556

ResNet

26,56

= / | y |
SEI L A (\)aévea 219, A Wl e, et
wi Qw10 Menhy gwim e H mcf;wm o i

mye ;L ohga&,i W /”7Wu

£
w, [L . 1 |
[U] 7 Faén Uit L je) b |giestaie
/ I / @ Tl
' H R R

Training detail similar to AlexNet:

SGD with batch size 28 256, momentum 0.9, weight decay 0.0005

initial learning rate 0.01, manually divided by 10 when validation error rate stopped
improving

ReLU nonlinearities
dropout with rate 0.5 on the fully-connected layers (except for the output layer)

data augmentation using translations and horizontal reflections (choosing random 224 X
224 patches from 256 x 256 images)

O additionally, a multi-scale training and evaluation was performed. During training, each
image was resized so that its smaller size was equal to .S, which was sampled uniformly

from [256, 512] — (el iyl el i vk b, i . ook ohihy bl oyt
O during test time, the image was rescaled three times so that the smaller size was
256, 384, 512, respectively, and the results on the three images were averaged

VGG 27/56

NPFL138, Lecture 4 Convolution CNNs

VGG - 2014 (6.8% ILSVRC top-5 error)

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1) smallest image side | top-1 val. error (%) | top-5 val. error (%)
train (S) | test (Q)
A 256 256 29.6 10.4
A-LRN 256 256 29.7 10.5
B 256 256 28.7 9.9
256 256 28.1 9.4
C 384 384 28.1 9.3
[256;512] 384 27.3 8.8
256 256 27.0 8.8
D 384 384 26.8 8.7
[256;512] 384 25.6 8.1
256 256 27.3 9.0
E 384 384 26.9 8.7
[256;512] 384 25.5 8.0

Table 3 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556

Table 4: ConvNet performance at multiple test scales.

ConvNet config. (Table 1) smallest image side top-1 val. error (%) | top-5 val. error (%)
train (S) test (Q))
B 256 224,256,288 28.2 9.6
256 224,256,288 27.7 9.2
C 384 352,384,416 27.8 9.2
[256; 512] | 256,384,512 26.3 8.2
256 224,256,288 26.6 8.6
D 384 352,384,416 26.5 8.6
[256; 512] | 256,384,512 24.8 7.5
256 224,256,288 26.9 8.7
E 384 352,384,416 26.7 8.6
[256; 512] | 256,384,512 24.8 7.5

Table 4 of "Very Deep Convolutional Networks For Large-Scale Image Recognition", https://arxiv.org/abs/1409.1556

AlexNet

Deep Prior

VGG Inception

BatchNorm ResNet

28/56

Method top-1 val. error (%) |top-5 val. error (%) | top-35 test error (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3
GoogleNet (Szegedy et al., 2014) (1 net) - 7.9
GoogleNet (Szegedy et al., 2014) (7 nets) - 6.7
MSRA (He et al., 2014) (11 nets) - - 8.1
MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al., 2014) (multiple nets) - - 11.7
Clarifai (Russakovsky et al., 2014) (1 net) - - 12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al., 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al., 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -
VGG

29/56

Inception (GooglLeNet) — 2014 (6.7% ILSVRC top-5 error) UrzL

I ion block:
nception bloc /]‘Ldlﬂ/ﬂ)'9014 I/INZME ()}mby/

Filter
concatenation

==

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Previous layer

Figure 2 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 30/56

Inception (GooglLeNet) — 2014 (6.7% ILSVRC top-5 error)

Inception block with dimensionality reduction:

1x1 convolutions

Otz Vs/?o
Jals! ool

NPFL138, Lecture 4 Convolution

Filter

)

concatenation

v

3x3 convolutions

5x5 convolutions

]

-7 1x1 convolutions

]Tco:volutions

Previous layer

2

4.:5‘3'2_
A

W)ﬁﬁn Ko cdhw{ M&\L W/m/

1x1 convolutions

]

3x3 max pooling

>

A

CNNs AlexNet

Deep Prior

\)H/llt jt \'eu\ dnlee ‘mm(B

A6, —» L

Figure 2 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

VGG Inception

BatchNorm

ResNet

U=

31/56

type pa;:ll;;ize/ mslg):t depth #1x1 fiiiz #3X%X3 fiiii #5X%X5 E::; params ops

convolution TXT/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56 X 56 X 64 0

convolution 3x3/1 56X 56 X192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28X 28256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14Xx14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 7TXT7TxX832 0

inception (5a) 7TXTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TXT7x1024 2 384 192 384 48 128 128 1388K 71M
avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM

softmax 1x1x1000 0

/7 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

32/56

Inception” (GooglLeNet) — 2014 (6.7% ILSVRC top-5 error Uz

DepthConcat

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

MaxPool
3x3+2(S)

DepthConcat

n[\ UL\

%\’517 Z\qll\oll/!/h?/
A MC‘\O \(99\7"\5“
lt inﬂomw’
AW%V/ 1r3tvn

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

Conv
1x1+1(S)

Conv
1X1+1(S)

MaxPool
33+1(5)

DepthConcat

Conv
1x1+1(S)

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Auxiliary

classifiers
w/ weight
0.3.

Conv
1X1+1(5)

MaxPool
3x3+1(S)

Conv
1x1+1(S)

Conv
1X1+1(S)

MaxPool
3x3+2(S)
Conv
141(5)
LocalRespNorm

Conv
3x3+1(S)

Conv
1X1+1(V)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
7x7+2(S)

DepthConcat

Figure 3 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842 Figure 3 of "Going Deeper with Convolutions", https://arxiv.org/abs/1409.4842

NPFL138 cture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 33/56

Training details:

SGD with momentum 0.9
fixed learning rate schedule of decreasing the learning rate by 4% each 8 epochs

during test time, the image was rescaled four times so that the smaller size was

256, 288, 320, 352, respectively.

For each image, the left, center and right square was considered, and from each square six
crops of size 224 X 224 were extracted (4 corners, middle crop and the whole scaled-down

square) together with their horizontal flips, arriving at 4 -3 - 6 - 2 = 144 crops per image

7 independently trained models were ensembled

Inception 34/56

Number of models | Number of Crops | Cost | Top-5 error | compared to base
1 1 1 10.07% base

1 10 10 9.15% -0.92%

1 144 144 | 7.89% -2.18%

7 1 7 8.09% -1.98%

7 10 70 7.62% -2.45%

7 144 1008 | 6.67% -3.45%

Inception 35/56

Batch Normalization UF\RL

Internal covariate shift refers to the change in the distributions of hidden node activations
due to the updates of network parameters during training.

Let & = (21, ...,%q) be d-dimensional input. We would like to normalize each dimension as

mr»a TN, wi Bl

‘m\ou A tinhy MM HEEX] v Urrr(x) Var[!

Furthermore |t may be advantageous to learn suitable scale «; and shift 3; to produce

Yi = Vi + Bi- —~ D 6{;‘3;3: /5;1
- M 1o l/l&“i'/hﬂm]m b (M ake

normalized value

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 36/56

Batch normalization of a mini-batch of m examples (1), ..., (™)) is the following:

Inputs: Mini-batch (21, ..., &™) & € R with default value 0.001
Parameters: 3 initialized to 0, -y initialized to 1; both trained by the optimizer

Outputs: Normalized batch (y(l), .. .,y(m))

* p gt el

e o’ ¢ o XY —)’

¢ & (@) —p)/Vo? +e

o y()+ vz 4@ 2 Sbm mhoy /VZSWW/ é/ég

Batch normalization is added just before a nonlinearity f, and it is useless to add bias before it
(because it will cancel out). Therefore, we replace f(Wa + b) by

f(BN(Wz)).

BatchNorm 37/56

During inference, pt and o2 are fixed (so that prediction does not depend on other examples in
a batch).

They could be pregomputed after training on the whole training data, but in practice we
estimate [t and &° during training using an exponential moving average.

Additional Inputs: momentum 7 € R with default value of 0.99
Additional Parameters: [1 initialized to O, & initialized to 1: both updated manually

During training, also perform:

* p+Tp+(1—T7)p
e 5’716+ (1—1)0?

Batch normalization is then during inference computed as:

o 3+ (2 — p)/\V/é%: +e

BatchNorm 38/56

Batch Normalization U=

Fxl
When a batch normalization is used on a fully connected layer, each neuron is normalized
individually across the minibatch.
However, for convolutional networks we would like the normalization to honour their properties,
most notably the shift invariance. We therefore normalize each channel across not only the
minibatch, but also across all corresponding spacial /temporal locations. .
(4
/M(/ﬁéfw/?%
s /w/;
/oaiiééé/'/
MZ&4? /?/}é
N 704,4 /91774&!/
g/
L boni for
Adapted from Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494

- < , // -
/Pzézo /mrfz 74/4 ﬂ/ a/ /o// ém@ ;fm, /4
NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

39/56

Inception with BatchNorm (4.8%

0.8
. S # - e ——e-- -
07r - w‘ —————
{4
06
= = =lInception
A BN-Baseline
os5¢4-* e BN-x5
- BN-x30
4+ BN-x5-Sigmoid
- 4 Steps to match Inception
0.4 ' : '

1 1
10M 15M 20M 25M 30M

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

ILSVRC top-5 error)

UEL

Model Steps to 72.2% Max accuracy
Inception 31.0 - 10° 72.2%
BN-Baseline 13.3 - 109 72.7%
BN-x5 2.1-10° 73.0%
BN-x30 2.7-10° 74.8%
BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-

work.

Figures 2 and 3 of "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", https://arxiv.org/abs/1502.03167

The BN-x5 and BN-x30 use 5/30 times larger initial learning rate, faster learning rate decay, no
dropout, weight decay smaller by a factor of 5, and several more minor changes.

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior

VGG Inception BatchNorm ResNet

40/56

Inception v2 and v3 — 2015 (3.6% ILSVRC top-5 error) Urat

N

A JE
e

[
/ N1V
A\ \
47—,
i

O / /
I\ / /

Y e s |
[| [] 7]

Figure 1 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567 Figure 3 of "Rethinking the l ception Archi t cture for Computer
Visi http ://arx g/ bs/1512. 00567

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 41/56

Inception v2 and v3 — 2015 (3.6% ILSVRC top-5 error)

Filter Concat

3x3
i
3x3 3x3 1x1
i i i
1x1 1x1 Pool 1x1

T~

Base

Figure 5. Inception modules where each 5 x 5 convolution is re-
placed by two 3 x 3 convolution, as suggested by principle 3 of

Section 2.

Figure 5 of "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567

NPFL138, Lecture 4 Convolution

CNNs

Filter Concat

1x1

1x1

1x1

Figure 6. Inception modules after the factorization of the n X n
convolutions. In our proposed architecture, we chose n = 7 for

Base

the 17 x 17 grid. (The filter sizes are picked using principle 3)

Figure 6 of ”Rethinkfné the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567

AlexNet

Deep Prior

VGG

Inception

Filter Concat

1 = 1

1x1 1x1 Pool 1x1
Base

Figure 7. Inception modules with expanded the filter bank outputs.
This architecture is used on the coarsest (8 x 8) grids to promote
high dimensional representations, as suggested by principle 2 of
Section 2. We are using this solution only on the coarsest grid,
since that is the place where producing high dimensional sparse
representation is the most critical as the ratio of local processing
(by 1 x 1 convolutions) is increased compared to the spatial ag-
gregation.

Figure 7 of "Rethinking the Inception Architecture for
Computer Vision", https://arxiv.org/abs/1512.00567

BatchNorm ResNet

U=—

42/56

L

patch size/stride

type or remarks input size

conv 3x3/2 299x299x 3
conv 3x3/1 149x149x 32
conv padded 3x3/1 147x147x 32
pool 3x3/2 147x147x64
conv 3x3/1 73X 73x64

conv 3x3/2 T1x71x80

conv 3x3/1 35x35x192
3 xInception As in figure 5 30X 39X 288
5 x Inception As in figure 6 17X 17x768
2 xInception As in figure 7 8x8x1280

pool 8 X 8 8 X 8 x 2048
linear logits 1 x 1 x 2048
softmax classifier 1 x1x1000

BatchNorm

43/56

Inception v2 and v3 — 2015 (3.6% ILSVRC top-5 error)

Training details:

RMSProp with momentum of 8 = 0.9 and € = 1.0

batch size of 32 for 100 epochs

initial learning rate of 0.045, decayed by 6% every two epochs
gradient clipping with threshold 2.0 was used to stabilize the training

label smoothing was first used in this paper, with o = 0.1

input image size enlarged to 299 x 299

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

U=

44 /56

Inception v2 and v3 — 2015 (3.6% ILSVRC top-5 error)

Top-1 | Top-5 | Cost

Network Error | Error | Bn Ops
GoogleNet [20] 29% 9.2% 1.5
BN-GoogleNet 26.8% - 1.5
BN-Inception [7] | 25.2% 7.8 2.0
Inception-v2 23.4% - 3.8
Inception-v2

RMSProp 23.1% 6.3 3.8
Inception-v?2

Label Smoothing | 22.8% 6.1 3.8
Inception-v2

Factorized 7 x 7 | 21.6% 5.8 4.8
‘nceplion-v2 212% | 5.6% | 4.8

BN-auxiliary

Table 3 of "Rethinking the Inception Architecture for Computer Vision", https://arxiv.org/abs/1512.00567

NPFL138, Lecture 4 Convolution CNNs AlexNet

Deep Prior VGG

Inception

BatchNorm

ResNet

U=

45 /56

Crops Top-5 Top-1
Network Evalugted ErEor Erll?or
GoogleNet [20] 10 - 9.15%
Googl.eNet [20] 144 - 7.89%
VGG [18] - 24.4% 6.8%
BN-Inception [7] 144 22% 5.82%
PReLU [6] 10 2427% | 7.38%
PRelL.U [6] - 21.59% | 5.71%
Inception-v3 12 19.47% | 4.48%
Inception-v3 144 18.77% | 4.2%
Crops Top-1 Top-5
Network El\\’/éll(l)l(li;::d Evalu::ted Erfor Erf')or
VGGNet [18] 2 - 23.7% 6.8%
Googl.eNet [20] 7 144 - 6.67%
PReLU [6] - - - 4.94%
BN-Inception [7] 6 144 20.1% 4.9%
Inception-v3 4 144 17.2% | 3.58%"

BatchNorm

46/56

207 20:
<
% g 56-layer
E 10 g 10- 20-layer
%0 56-layer 2
g %
8 N
= 20-layer

% I 2 3 4 5 6 % I 2 3 4 5 6

iter. (1e4) iter. (1e4)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented in Fig. 4.

ResNet 47/56

\ Comin A1/, ik X | bl Lgivg, it g
Vi V%/w? ! \;
weight layer

]—"(X) i relu

weight layer

~

X

identity

F(x) + x

relu

Figure 2. Residual learning: a building block.

Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 48/56

256-d

\ 4

1x1, 64
relu
\ 4

3x3, 64

lrem

1x1, 256

Figure 5. A deeper residual function /& for ImageNet. Left: a
building block (on 56 x56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

ResNet 49/56

ResNet — 2015 (3.6% ILSVRC top-5 error)

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 7x7, 64, stride 2
33 max pool, stride 2
[1x1,64] [1x1,64 [1x1,64
2_ b b b
conv2.x | 56x36 [gig’gj]><2 [i:g’gj]><3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
’ ’ | 1x1,256 | | 1x1,256 | | 1x1,256 |
- - a - [1x1, 128] [1x1, 128] [1x1, 128 |
conv3_Xx 28 %28 ;ig 32 X2 gig 32 x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
- ’ - - ’ . | Ix1,512 | | Ix1,512 | | Ix1,512 |
- - a - 1x1,256 | 1x1, 256 1x1,256 |
convdx | 14x14 gigggg X2 gi?;gg 6 | | 3x3.256 |x6 || 3x3.256 |x23 || 3x3.256 |x36
L ’ - - ’ . | Ix1, 1024 | 1x1,1024 | 1x1,1024 |
- . - . [1x1,512] 1x1,512 1x1,512
covsS.x | Tx7 gz;;; X2 ;iggg <3| 3x3,512 | x3| | 3x3.512 |x3 | | 3x3,512 |x3
L ’ - - ’ . | 1x1,2048 | 1x1, 2048 1x1, 2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° 3.6x107 3.8x10° 7.6x10° 11.3x10°
Table 1 of "Deep Residual Learning for Image Recognition”, https://arxiv.org/abs/1512.03385
NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet

50,56

ResNet — 2015 (3.6% ILSVRC top-5 error) Uzt

VGG19 34-layer plain 34-layer residual

U I T The residual connections cannot be applied
o directly when number of channels increases.

The authors considered several alternatives, and
chose the one where in case of channels
increase a 1 X 1 convolution + BN is used on

the projections to match the required number of
channels. The required spacial resolution is
achieved by using stride 2.

2
pool, /2 (3805272 330w 512,/2 |

[38om52 | 3BowS2 | .-

[36ow52 |
L2
33,512
38, 512
[38om52 |

outy
ot Tcd0% augpool

[c409%] [1000] [1000]

— -
Figure 3 of "Deep Residual Learning for Image Recognition”, https://arxiv.org/abs/1512.03385

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 51/56

ResNet — 2015 (3.6% ILSVRC top-5 error) Uzt
%//442/4 MZ/DW%/./

plain-18 ResNet-18
=—plain-34 =—=ResNet-34 34-layer
20O 10 20 30 40 50 20O 10 20 30 40 50
iter. (1e4) iter. (1e4)

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to

their plain counterparts.
Figure 4 of "Deep Residual Learning for Image Recognition", https://arxiv.org/abs/1512.03385

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 52/56

ResNet — 2015 (3.6% ILSVRC top-5 error) Ut

Figure 1 of "Visualizing the Loss Landscape of Neural Nets", https://arxiv.org/abs/1712.09913

NPFL138, Lecture 4 Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 53/56

Training details:

batch normalizations after each convolution and before activation
SGD with batch size 256 and momentum of 0.9

learning rate starts with 0.1 and “is divided by 10 when the error plateaus”
O 600k training iterations are used (120 epochs, each containing 1.281M images)

O according to one graph (and to their later paper) they decay at 25% and 50% of the
training, so after epochs 30 and 60
® other concurrent papers also use exponential decay or 25%-50%-75%

no dropout, weight decay 0.0001
during training, an image is resized with its shorter side randomly sampled in the range

1256, 480], and a random 224 X 224 crop is used

during testing, 10-crop evaluation strategy is used
O for the best results, the scores across multiple scales are averaged — the images are

resized so that their smaller size is in {224, 256, 384, 480, 640}

ResNet 54/56

method top-1 err. top-5 err.

VGG [41] ILSVRC’14) - 8.431

GoogleNet [44] (ILSVRC’14) - 7.89 method top-5 err. (test)
VGG [41] (v5) 24 .4 7.1 VGG [41] (ILSVRC’ 14) 7.32
PReLU-net [13] 21.59 5.71 GoogleNet [44] (ILSVRC’14) 6.66
BN-inception [16] 21.99 5.81 VGG [41] (v5) 6.8
ResNet-34 B 21.84 5.71 PReLU-net [13] 4.94
ResNet-34 C 21.53 5.60 BN-inception [16] 4.82
ResNet-50 20.74 5.25 ResNet (ILSVRC’15) 3.57
ResNet-101 19.87 4.60 Table 5. Error rates (%) of ensembles. The top-5 error is on the
ResNet-152 19.38 4.49 test set of ImageNet and reported by the test server.

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except | reported on the test set).

The ResNet-34 B uses the 1 X 1 convolution on residual connections with different number of

input and output channels; ResNet-34 C uses this convolution on all residual connections.
Variant B is used for ResNet-50/101/152.

Convolution CNNs AlexNet Deep Prior VGG Inception BatchNorm ResNet 55/56

Convolutions can provide
O local interactions in spacial /temporal dimensions

O shift invariance
© much less parameters than a fully connected layer

Usually repeated 3 X 3 convolutions are enough, no need for larger filter sizes.

When pooling is performed, double the number of channels (i.e., the first convolution
following the pooling layer will have twice as many output channels).

If your network is deep enough (the last hidden neurons have a large receptive fields), final
fully connected layers are not needed, and global average pooling is enough.

Batch normalization is a great regularization method for CNNs, allowing removal /decrease
of dropout and L? regularization.

Small weight decay (i.e., L? regularization) of usually 1le-4 is still useful for regularizing

convolutional kernels.

ResNet

56,/56

