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Reinforcement Learning

Reinforcement learning is a machine learning paradigm, different from supervised and

unsupervised learning.

The essence of reinforcement learning is to learn from interactions with the environment to
maximize a numeric reward signal. The learner is not told which actions to take, and the actions

may affect not just the immediate reward, but also all following rewards.
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Develop goal-seeking agent trained using reward signal.

® Optimal control in 1950s — Richard Bellman

® Trial and error learning — since 1850s
O Law and effect — Edward Thorndike, 1911
® Responses that produce a satisfying effect in a particular situation become more
likely to occur again in that situation, and responses that produce a discomforting
effect become less likely to occur again in that situation

O Shannon, Minsky, Clark&Farley, .. — 1950s and 1960s
O Tsetlin, Holland, Klopf — 1970s
O Sutton, Barto — since 1980s
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Reinforcement Learning Successes Vet

® Human-level video game playing (DQN) — 2013 (2015 Nature), Mnih. @&

et al, Deepmind. e
© After 7 years of development, the Agent57 beats humans on all 57 CESSSREEEL B

Atari 2600 games, achieving a mean score of 4766% compared to
human players.

Figure 1 of "A Cmpar/son of learning
algorithms on the Arcade Learning
Environment"”,

® AlphaGo beat 9-dan professional player Lee Sedol in Go in Mar 2016. https: /arxiv.org /abes 1410, 8620
O After two years of development, AlphaZero achieved best

performance in Go, chess, shogi, being trained using self-play only.
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Figure 2 of "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

® |mpressive performance in Dota2, Capture the flag FPS, StarCraft I,
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® Neural Architecture Search — since 2017

O automatically designing CNN image recognition networks surpassing state-of-the-art
performance

O NasNet, EfficientNet, EfficientNetV2, ..

O AutoML: automatically discovering
® architectures (CNN, RNN, overall topology)
B activation functions

B optimizers
|

® Controlling cooling in Google datacenters directly by Al (2018)
O reaching 30% cost reduction

® QOptimize nondifferentiable loss
O improved translation quality in 2016

O Reinforcement learning from human feedback (RLHF) is used during chatbot training
(ChatGPT, ..)

® Discovering discrete latent structures
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Multi-armed Bandits Uzt

Compulsive gambling

Hagen Cartoons: http.//www.hogencortoons.com

http: //www.infoslotmachine.com/img/one-armed-bandit. jpg https: //hagencartoons.com/cartoon170.gif
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Multi-armed Bandits Uz
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Figure 2.1 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-2nd. html
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We start by selecting action Ay, which is the index of the arm to use, and we get a reward of
R;. We then repeat the process by selecting actions Ay, As, ..

Let g.(a) be the real value of an action a:

q«(a) = E[R;|A; = al.

Denoting (Q:(a) our estimated value of action a at time t (before taking trial t), we would like
Q:(a) to converge to gi(a). A natural way to estimate Q;(a) is

«t sum of rewards when action a is taken

Qi(a) =

number of times action a was taken

Following the definition of Q:(a), we could choose a greedy action A; as

A; = argmax Q;(a).
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Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. We however also need to
explore the space of actions to improve our estimates.

An e-greedy method follows the greedy action with probability 1 — €, and chooses a uniformly

random action with probability €.
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e-greedy Method
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Figure 2.2 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-2nd. html
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A Markov decision process (MDP) is a quadruple (S, .4, p, ), where:

® S is a set of states,

e Ais a set of actions,

* p(Sii1=5,Ri1 =7|S; = s, A = a) is a probability that action a € A will lead from
state s € S to 8’ € S, producing a reward r € R,

e v € 10,1] is a discount factor (we always use v = 1 and finite episodes in this course).

Let a return G; be Gy = P Y*R; 14k The goal is to optimize E[GY].
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If the agent-environment interaction naturally breaks into independent subsequences, usually
called episodes, we talk about episodic tasks. Each episode then ends in a special terminal
state, followed by a reset to a starting state (either always the same, or sampled from a
distribution of starting states).

In episodic tasks, it is often the case that every episode ends in at most H steps. These finite-
horizon tasks then can use discount factor v = 1, because the return G = Zfio YRy 1 is
well defined.

If the agent-environment interaction goes on and on without a limit, we instead talk about
continuing tasks. In this case, the discount factor 7y needs to be sharply smaller than 1.
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A policy 7 computes a distribution of actions in a given state, i.e., w(a|s) corresponds to a
probability of performing an action a in state s.

We will model a policy using a neural network with parameters 0:
m(als; 0).

If the number of actions is finite, we consider the policy to be a categorical distribution and
utilize the softmax output activation as in supervised classification.
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(State-)Value and Action-Value Functions Yz

To evaluate a quality of a policy, we define value function v, (s), or state-value function, as

(0.@)

Vr (8) = Er |Gt|S; = 5| = Eqr [Zkzo 'Yth—Fk:—l—l‘St = 8]

— EAtNW(S) EStH,RtHNP(SaAt) [Rt+1 —|_ 7EAt+1N7T(St+1)E5t+2,Rt+2Np(St+1,At+1) [Rt—|—2 + s }]

An action-value function for a policy 7 is defined analogously as
o0
¢ (8, a) = Er |G|S; = 5, A; = a] = E; [Zkzo 7th—|—k:—i—1‘St =5, At = a] -

The value function and the state-value function can be easily expressed using one another:

dﬁwéh%hf,/ 'g/& 74 /m%% Z aé Lt kq%'
'Uﬂ-(s) = Kqr [Qﬂ'(sa CL)] ) / g O/Q

C_I7r(37 a,) — ESI’TNP [1°_—|— 'Y'Uw(sl)] .

Jevowd 2 7 {jﬁé 6{‘7%/ L o §74m

borou 4’/4('4’
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Optimal state-value function is defined as

v, (s) = max vy (s),

and optimal action-value function is defined analogously as

0.(s,a) £ maxg.(s, a).

Any policy m, with v,, = v, is called an optimal policy. Such policy can be defined as
m.(s) = argmax q,(s,a) = argmax E[R,.1 + vv,(Sit1)|S; = s, A, = a]. When multiple

a a
actions maximize g, (s, a), the optimal policy can stochastically choose any of them.

Existence

In finite-horizon tasks or if v < 1, there always exists a unique optimal state-value function,

a unique optimal action-value function, and a (not necessarily unique) optimal policy.
MDP 16/56



Policy Gradient Methods
We train the policy
(als; 0)

by maximizing the expected return v, (s).

To that account, we need to compute its gradient Vv, (s).

VZA& v W)r 6){”‘1' W VZ({«S VSMZJ oy, Qs ﬂam i ﬂﬁ?ér//w/n 57%.

—owt U VM/)V] Vno) KW/'J’!M/(’/\ <t Vl(‘ﬁ, 7%7“ g@'{ ‘7%/7"/92"' b
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Assume that S and A are finite, v = 1, and that maximum episode length H is also finite.

Let 7(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the
def

on-policy distribution under 7 as u(s). Let also J(0) = E, v, (s).
Then

Vour(s) x Y P(s—... = §[m) Y ar(s',a)Vor(als'; 0)
s'eS acA

and

VoJ(6) < > u(s) > ar(s,a)Ver(als;0),

s€S acA

where P(s — ... — §'|m) is the probability of getting to state s’ when starting from state s,
after any number of 0, 1, .. steps.
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Vu:(s) =V [ Za m(als; 0)q: (s, a)]

— -qﬂ(s, a)Vm(als;0) + w(a|s; @)V (s, a)]

a L

- :QW(S, a)Vr(als; 0) + w(al|s; B)V( ZS,,T p(s',r|s,a)(r + UW(S,)))}

— _qﬁ(s, a)Vr(als; @) + m(als; 0)(28/ p(s'|s, a)V'vW(SI))]

a L

S

We now expand v, (s').

= Za [qw(s, a)Vr(als; 0) + w(al|s; 9)(28, p(s'|s, a)(
Z [qw(s', a')\Vr(d'|s';0) + w(a'|s';0)( o p(s"|s, al)vvw(sn))}))]

l

Continuing to expand all v;(s"), we obtain the following:

/ /.
V(s Zs s E@P s — s in k steps |m) ZQGA qr(s',a)Vem(als';0).

’7&5’0/05/ 44/\7070
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To finish the proof of the first part, it is enough to realize that

H
o P(s — s in k steps |7) o« P(s — ... — §'|m).

For the second part, we know that

VoJ(0) = E; p,Vovr(s) x Esop ZP(S — ... — 8 |m) Zqﬂ(s', a)Vem(a|s'; 0),
s'eS acA

therefore using the fact that u(s') = Esop P(s — ... — §'|m) we get

VoJ(6) < Y u(s) Y ar(s,a)Ven(als;6).

s€S acA

Finally, note that the theorem can be proven with infinite & and A; and also for infinite
episodes when discount factor v < 1.
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The REINFORCE algorithm (Williams, 1992) uses directly the policy gradient theorem,

minimizing —J (0) = —E,,vx(s). The loss gradient is then

Tl
Vo~ J(0) o — 3" () Y ax(s, ) Vor(als: 0) = (Bip Y ar(s,@)Vor(als: 0)
seS acA acA

we can estimate by sampling: 7 bl bty

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation WhiD
by E

<
Vo — J(0) x Es Eongr(s,a)Ve —logm(als; ),

where we used the fact that

1
m(als; 0)

Vo logm(als; @) = Vom(als; 0).
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REINFORCE Algorithm Uzt

REINFORCE therefore minimizes the loss —J(0) with gradient
/77/‘8b/&943 o 4[/& /5,,(,, /WZ;’ﬂl/b 74,&764{4//9/?]

EsyEorqr(s,a)Ve —logm(als; ),
R /7;07[\7 adsihmat %7/'3»&4 /7@/@ /n[f&ét
where we estimate the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log-likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization m(als, 6)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, Rr, following = (-|-, 8)
Loop for each step of the episode t =0,1,...,T — 1:
G+ Zg=t+1 ka_t_IRk (Gt)
0+ 0+ OéGVlHT('(At‘St,H)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-2nd.html by removing y"t from the update of 6
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REINFORCE Algorithm Example Performance Uz
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Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition".
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REINFORCE with Baseline UL

The returns can be arbitrary — better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

Vo (0) o Y 1u(s) > (ar(s,a) — b(s)) Ver(als; 0).

s€S acA

C—77Q7E Qo{i)/oé/ e I éDK@/ﬂ/é/& /0?%4 Shoesen, 4/ /4/7J>2—,@

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because - dely 4 gt b mgmn” Uiy 04%@/@

Zb )Vor(als; 0) = b(s ngw als; 8) = b(s)Ve Zw als; 0) = b(s)Vel = 0.

%Yb\/\/)/{]mgm{/ le @W\—\ G)V[}’\WVM( \/10&/;04?// Vv \/m‘l/v{ éwwdn’dv\
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A good choice for b(s) is v(s), which can be shown to minimize the variance of the gradient
estimator. Such baseline reminds centering of the returns, given that

V7 (8) = Egngn(s,a).

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (s, a) — v;(s) function is also called the advantage function

def
ar(s,a) = g (s,a) — v:(s).
Of course, the v;(8) baseline can be only approximated. If neural networks are used to estimate

m(als; @), then some part of the network is usually shared between the policy and value

function estimation, which is trained using mean square error of the predicted and observed
return.

— Ol///'(/w/m /4?4 40&/%74 ?//'Jaq/ M/%oé'v q/,; gw%w% / o c
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REINFORCE with Baseline UL

REINFORCE with Baseline (episodic), for estimating w9 ~ T,

Input: a differentiable policy parameterization w(als, 0)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a® > 0, o™ > 0

Initialize policy parameter 0 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,57_1, Ar_1, Ry, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,T — 1:
G T IR, (Gt)
5 — G fm — /éé /jm g///(/ /mluéwo_’a/pé g
W w+aVoVo(S,w) —> privier 3 hids tretrove
00+ o Vinn(4,S;,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction”, http://www.incompleteideas.net/book/the-book-2nd. html by removing y"t from the update of 6
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REINFORCE with Baseline Example Performance UL
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Example 13.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition". Figure 13.2 of "Reinforcement Learning: An Introduction”,

http://www.incompleteideas.net/book/the-book-2nd. html
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Neural Architecture Search (NASNet) — 2017 Vet

® \We can design neural network architectures using reinforcement learning.

® The designed network is encoded as a sequence of elements, and is generated using an
RNN controller, which is trained using the REINFORCE with baseline algorithm.

(Sample architecture A \

L with probability p J l

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

(Scale gradient of p by R)
Lto update the controllerJ

Figure 1 of "Learning Transferable Architectures for Scalable Image Recognition”, https://arxiv.org/abs/1707.07012

® For every generated sequence, the corresponding network is trained on CIFAR-10 and the
development accuracy is used as a return.
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Neural Architecture Search (NASNet) — 2017 UriL

The overall architecture of the designed network is fixed and only the Normal Cells and
Reduction Cells are generated by the controller.

Softmax
x N
Softmax Reduction Cell
x N XN
Reduction Cell Reduction Cell
XN XN
Reduction Cell Reduction Cell | x 2
A
x N 3x3 conv, stride 2
A
Image Image
CIFAR10 ImageNet
Architecture Architecture

Figure 2 of "Learning Transferable Architectures for Scalable Image Recognition”, https://arxiv.org/abs/1707.07012
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Neural Architecture Search (NASNet) — 2017

® Each cell is composed of B blocks (B = 5 is used in NASNet).

® Each block is designed by a RNN controller generating 5 parameters.

x
© =
£ Q Select one Select second Select operation for Select operation for Select method to
58 S hidden state [ hidden state first hidden state second hidden state combine hidden state
(2]

\ X \ 7} \ X \ 7 7}
58 \ \ \ \
5=
8 E ! Vo Vol \ \ 4

v 7 \ \ v/ \
- - - < -~
[ Rt |
I repeat B times |

Figure 3. Controller model architecture for recursively constructing one block of a convolutional cell. Each block requires selecting 5
discrete parameters, each of which corresponds to the output of a softmax layer. Example constructed block shown on right. A convolu-
tional cell contains B blocks, hence the controller contains 5B softmax layers for predicting the architecture of a convolutional cell. In our

experiments, the number of blocks B is 5.

Figure 3 of "Learning Transferable Architectures for Scalable Image Recognition”, https://arxiv.org/abs/1707.07012

Step 1. Select a hidden state from h;, h;—1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create

a new hidden state.

Page 3 of "Learning Transferable Architectures for Scalable Image Recognition”,
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Figure 2 of "Learning Transferable Architectures for Scalable Image Recognition”,
https: //arxiv.org/abs/1707.07012
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Neural Architecture Search (NASNet) — 2017

The final Normal Cell and Reduction Cell chosen from 20k architectures (500GPUs, 4days).

Tohh y W/.o/z/zé fho ey B

hi+1

A

concat

—a
>
o
>
—~
v
b S
»
[

iden sep | | sep avg | |iden avg | [ avg sep | |sep
tity 3x3 | | 5x5 3x3 tity 3x3 | | 3x3 5x5 | | 3x3

[0}
w T

w »
x

Normal Cell Reduction Cell

Page 3 of "Learning Transferable Architectures for Scalable Image Recognition”, https://arxiv.org/abs/1707.07012
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EfficientNet changes the search in three ways.

® Computational requirements are part of the return. Notably, the goal is to find an
architecture ™ maximizing

TargetFLOPS=400M \ "’
DevelopmentAccuracy(m) - ( et ) ;

FLOPS(m)

where the constant 0.07 balances the accuracy and FLOPS (the constant comes from an

empirical observation that doubling the FLOPS brings about 5% relative accuracy gain, and
1.05 = 27 gives 5 ~ 0.0704).

® |t uses a different search space allowing to control kernel sizes and channels in different
parts of the architecture (compared to using the same cell everywhere as in NASNet).

® Training directly on ImageNet, but only for 5 epochs.

In total, 8k model architectures are sampled, and PPO algorithm is used instead of the
REINFORCE with baseline.
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EfficientNet Search Uz

Input Block Block Block Block Block Block Block
. — — — — — —p —p — output
image 1 2 3 4 5 6 7 P
I N -------------------------- ] -\:-":::-\\ Blocks are predefined Skeletons.
| Lgyfr - I_ZaKIer Ly _> Lzyfr - 21 x Lf}:ler Ly ! Search Space Per Block i:
- “Np F2: ! - Ny F4i e ConvOp: dconv, cony, ...
Nt S N e . ! e KernelSize: 3x3, 5x5
e SERatio: 0, 0.25, ...
e e  SkipOp: identity, pooal, ...
e FilterSize: Fi
e #layers: N

Contents in blue are searched

. . . e Convolutional ops ConvOp: regular conv (conv), depthwise
The overall architecture consists of 7 blocks, each described by 6 n

conv (dconv), and mobile inverted bottleneck conv [29].

parameters — 42 parameters in total, compared to 50 parameters of ° (oot kemelsie fernetize: 313, 51

e Squeeze-and-excitation [13] ratio SE Ratio: 0, 0.25.

t h e N AS N et sea rCh S pace . Skip ops SkipOp: pooling, identity residual, or no skip.

Output filter size F;.

Number of layers per block V;.
Page 4 of "MnasNet: Platform-Aware Neural
Architecture Search for Mobile",
https://arxiv.org/abs/1807.11626
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Stage Operator Resolution | #Channels | #Layers
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 X 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7T X7 320 1
9 Convlxl & Pooling & FC 7TxT 1280 1

NAS
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If you liked the introduction to the deep reinforcement learning, | have a whole course
NPFL139 — Deep Reinforcement Learning.

® |t covers a range of reinforcement learning algorithms, from the basic ones to more
advanced algorithms utilizing deep neural networks.

® Summer semester, 3/2 C+Ex, 8 e-credits, similar structure as Deep learning.

® An elective (povinné volitelny) course in the programs:
O Artificial Intelligence,
© Language Technologies and Computational Linguistics.
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Generative Models
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Generative Models

https: //images.squarespace-cdn.com/content/v1/6213c340453c3f502425776e /0715034d-4044-4c55-9131-e4bfdbdd20ca/2_4x.png
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Generative Models Uz

Everyone: Al art will make designers obsolete  Everyone: Al art will make designers obsolete

Al accepting the job: Al accepting the job:

| —
https: //i.kym-cdn.com/photos /images /original /002/470/247/37b.jpg https://i.redd.it/now-that-hands-are-better-heres-a-meme-update-v0-73j3ez3wiloal. png?
. ' ' ' o s=bfbea761feabd1d44ccf34d5961b23aeealb19bc
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Generative Models

Generative models are given a set of realizations of a random variable X and their goal is to
estimate P(x).

Usually the goal is to be able to sample from P(x), but sometimes an explicit calculation of

P(x) is also possible.
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Deep Generative Models Uz
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Figure 1 of "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114

One possible approach to estimate P(&) is to assume that the random variable x depends on a
latent variable z: M(u Uz et upniae

ZP P(x|2) = E..pu P(|2).

We use neural networks to estimate the conditional probability Py(|2).
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® Autoencoders are useful for unsupervised feature extraction, especially when performing
input compression (i.e., when the dimensionality of the latent space z is smaller than the

dimensionality of the input).

® When @ + € is used as input, autoencoders can perform denoising.

® However, the latent space z does not need to be fully covered, so a randomly chosen 2
does not need to produce a valid .
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AutoEncoders Ut

! “A

encoded data can be decoded
O without loss if the autoencoder

has enough degrees of freedom
A encoder decoder

lsm?wf"’"‘w @

vt Lok e orakion without explicit regularisation,
training’ data for for new some points of the latent space
the autoencoder

are “meaningless” once decoded

https: //miro.medium.com/max/3608/1%SfaVxcGi_ELkKgAGOYRIQ@2x.png
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Variational AutoEncoders

We assume P(z) is fixed and independent on X.

We approximate P(x|z) using Py(x|z). However, in order to train an autoencoder, we need
to know the posterior Py (z|®), which is usually intractable.

We therefore approximate Pg(z|x) by a trainable Q,(2|x).
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To derive a loss for training variational autoencoders, we first formulate the Jensen's inequality.

f(x)

Recall that convex functions by definition fulfil that for w, v %
and real 0 <t <1,

fltu+ (1 —t)v) < tf(u) + (1 —t)f(v).

ftey + (1 —t)x2)

The Jensen's inequality generalizes the above property to
any convex combination of points: if we have u; € RP and

weights w; € R™ such that ) . w; = 1, it holds that
f(zwiuz’) < szf(uz)
i i

The Jensen's inequality can be formulated also for
probability distributions (whose expectation can be
considered an infinite convex combination):

f(E[u]) < Ey[f(w)].
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Our goal will be to maximize the log-likelihood as usual, but we need to express it using the
latent variable z:

log Py() = log Ep(z) | Po(x|2)].

However, approximating the expectation using a single sample has monstrous variance, because
for most z, Py(@x|z) will be nearly zero.

We therefore turn to our encoder, which is able for a given @ to generate “its” 2z

log Py(x) = log Ep(,) | Po(|2)]

D e P(z)

7% [feré mi - :lOgE ‘P(z|w)}[P0(m|z). Q (z| ):|

e s |
Q¢(z|cc)

P i3 wsawghfs il wlabi = Qelele) | log Py (a2) = Dt (Qu(2[@)[P(2)). . = #2
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The resulting variational lower bound or evidence lower bound (ELBO), denoted
L(0, p;x), can be also defined explicitly as:

L(0, p;x) = log Py(x) — Dx1,(Q,(2|)| Pa(2|)).

Because KL-divergence is nonnegative, £(0, ;%) < log Py(x).
By using simple properties of conditional and joint probability, we get that
L(0, ;%) = Eq, (21 | 10g Po(x) + log Py(z|x) — log Q, (z|z)]
= Eq, (z|2) :log Py(x, z) — log Q¢(z|w)}
=Eq,(2/z) | 10g Po(x|2z) + log P(z) —log Q,(2|)]
=Eq_(2a) | log Py(x|z)]| — Dxr (Qo (2]2)|| P(2)).
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(8,5 %) = Eq, (zia) | — log Py (/)] + Dict. (@ (2]2) | P(2))

® \We train a VAE by minimizing the —L£(6, ¢; x).
® The ]EQ(P(Z,;B) is estimated using a single sample.

® The distribution Q,(2|x) is parametrized as a normal distribution N (2|, o%), with the

model predicting p and o given @.
O In order for o to be positive, we can use exp activation function (so that the network

predicts log o before the activation), or for example a softplus activation function.

© The normal distribution is used, because we can sample from it efficiently, we can
backpropagate through it and we can compute Dxgr, analytically; furthermore, if we

decide to parametrize Q,(z|Z) using mean and variance, the maximum entropy
principle suggests we should use the normal distribution.

® We use a prior P(z) = N(0,1I).
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1ecousta oo Jes //]—/M’/ /us«;'

—
_L(O, P; X) = EQ¢(2|"’) [ — log Pg(:l?|2)] + Dxkr, (Q‘P(zlw)”P(z)) ;dﬂ@/ 4 (
Ty

image distribution latent space image o Wig
T in latent space sample z T j ‘e /MB%DM
Qp(z|x) /Cj //‘_
&y Chog Dy =0
nw
Qp(z|z) sample z 3 Py(x|2)
. e .
encoder o decoder

Note that the loss has 2 intuitive components:

® reconstruction loss — starting with @, passing though @Q),, sampling z and then passing
through Py should arrive back at @;

* latent loss — over all @, the distribution of Q,(2|x) should be as close as possible to the
prior P(z) = N (0, I), which is independent on .
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Variational AutoEncoders — Reparametrization Trick

In order to backpropagate through z ~ Q. (z|x), note that if
z ~N(p,0%),

we can write 2 as v@/t y sﬁv/y’/ //méi& 4 i sz //h%
z~p+oN,I).

Such formulation then allows differentiating 2z with respect to gt and o and is called a
reparametrization trick (Kingma and Welling, 2013).

W " h&//Z//w iy /W/ﬂ’ %’W’W/ al /aé/% fett &MMWJ’M’:-
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Variational AutoEncoders — Reparametrization Trick Urzt

no problem for backpropagation = === backpropagation is not possible due to sampling
...... N /

o

X

sampling without reparametrisation trick sampling with reparametrisation trick

https: //miro.medium.com/max/3704/1*S8CoO3T GtFBpzv8GvmgKeg@2x.png
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Variational AutoEncoders — Reparametrization Trick

image distribution latent space image
T in latent space sample z T
Qp(z|x)
p| € ~N(0,I)
Qp(z|x) z=€0+p Po(x|z)
. . .
encoder o decoder
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Variational AutoEncoders Uz
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4 of "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114
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Variational AutoEncoders
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(c) 10-D latent space (d) 20-D latent space
Figure 5 of "Auto-Encoding Variational Bayes", https://arxiv.org/abs/1312.6114

(b) 5-D latent space

(a) 2-D latent space
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Variational AutoEncoders

what can happen without regularisation x V what we want to obtain with regularisation

https: //miro.medium.com/max/3742/1*9ou OKh2w-b3NNOVx4Mw9bg@2x.png
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