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Generative Models
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Discriminator Generator

There are several approaches how to represent a
GAN: Adversarial ! X
D(x)

probability distribution P(x). Likelihood-based vaiing

models represent the probability density function | / ]
directly, often using an unnormalized probabilistic VAE: maximize x | .| Encoder 2] Decoder | |,
variational lower bound q(2(x) L] po(x|2)

model (also called energy-based model; i.e.,
specifying a non-zero score or density or logits):

Flow Inverse ’
Flow-based models: X |—» 4.5_—. _ X
fx) ()

Invertible transform of
ef0 (X) distributions

PB (X) - ZO . Diffusion models: i ’_‘ R

. X0—> X1 X9 — Z
Gradually add Gaussian - - ‘ ’0 ——————————— Dby

noise and then reverse

However, estimating the normalization constant
o = fef"(x) dx is often intractable.

® We can compute Zg by restricting the model architecture (sequence modeling, invertible

networks in normalizing flows);
we can only approximate it (using for example variational inference as in VAE);
we can use implicit generative models, which avoid representing likelihood (like GANs).
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Generative Adversarial Networks
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Generative Adversarial Networks Uz

We have a generator G(2;0,), which given z ~ P(z) generates data .

Then we have a discriminator D(x; 8;), which given data @ generates a probability whether
x comes from real data or is generated by a generator.

The discriminator and generator play the following game: y
/M/b(;W»/WI/ /M/h) %hﬂﬂ/ﬂ;ﬁluy;” %7

min max Ez~ Py log D(x)] + E, p(z)|log(1 — D(G(2)))].
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Generative Adversarial Networks Uz
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Figure 1 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661

The generator and discriminator are alternately trained, the discriminator by

arg max Ee~ Py l0g D(2)] + E,p(y [log(1 — D(G(2)))]

S g e Mowi b,
( P'/""“?yﬂ/ (‘D/(é/ﬂh//) — 2 Yoo

and the generator by

argmin E, _p(, [log(1 — D(G(2)))]. 2 Pt
6,

Basically, the discriminator acts as a trainable loss for the generator.

NPFL138, Lecture 12 GAN GAN Convergence Flow Matching CFM Diffusion N DDPM SD Bonus 6/102



Because log(1 — D(G(z))) can saturate at the beginning of the training, where the
discriminator can easily distinguish real and generated samples, the generator can be trained by

argemin E.pz)|—log D(G(z))] | w

I

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.

On top of that, if you train the generator by using “real” as the gold label of the discriminator,
you naturally get the above loss (which is the negative log likelihood, contrary to the original
formulation).

GAN
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {21, ..., 2("™)} from noise prior p,(z).
e Sample minibatch of m examples {w<1), . ,:c(m)} from data generating distribution
pdata<w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23" [log D () 4102 (1- D (6 ()]

1=

end for
e Sample minibatch of m noise samples {z1), ... z(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, Yolos (10 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Generative Adversarial Networks
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GAN Convergence

Figure 2 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661
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Conditional GAN Uz

Assuming our dataset is conditional, i.e., / Discriminator Dixly) @ N
the individual examples are pairs (@, y) e
with ¢y being the image class, GANs can be " ‘ ‘ ‘ " / 5/%91//
easily extended to allow conditioning: \ oo

® the generator gets ¥ as an additional % 0000 Q000 Qy

input: G(2,vy),

® the discriminator also gets ¥ as an @nerator S Y XY X X ) \

additional input: D(@,y).
_ Wﬁ 6ommyw Ieceh four ot - owdlio 00000

by Wyl b Jexh /\

- 00000 00000
\ /

Figure 1 of "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784
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Deep Convolutional GAN =

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

/

(&) (c)

Figure 1 of "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269
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Deep Convolutional GAN
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Figure 1 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN =L

Figure 3 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https: //arxiv.org/abs/1511.06434
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Deep Convolutional GAN Uz

Figure 4 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN Uz
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Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN
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Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN Uz

Figure 8 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv. org/ab§/1511.06434
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GANs Training — Training Experience Uz

GAN output Your GAN
in paper output
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GANs Training

— Results of In-House BigGAN Training Ut
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GANs are Problematic to Train
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Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem, consider the following one:

min max - y. x

The update rules of £ and y for learning rate « are

oo It S A

The update matrix is a rotation matrix multiplied by a constant v1 + a? > 1

1 , Fut o Mﬁfy@\_
[ a] Vit a2 [cosgo smgo]’

a 1 sinp  Ccos
so the SGD will not converge with arbitrarily small step size.

GAN Convergence 21/102



GANSs are Problematic to Train Uz
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Fig. 1: Performance of gradient method with fixed step size for Example 2. (a)
illustrates the choices of x and y as iteration processes, the red point (0.1,0.1) is

the initial value. (b) illustrates the value of zy as a function of iteration numbers.
Figure 1 of "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647

NPFL138, Lecture 12 GAN GAN Convergence Flow Matching CFM Diffusion N DDPM SD Bonus 22/102



GANs are Problematic to Train UL
—oguids Ao Apode se skl vy o g
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Figure 2 of "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163

>."_. ,, g - . 9/

Figure 5 of "Generating Diverse High-Fidelity Images with VQ-VAE-2", https://arxiv.org/ab

s,/1906.00446
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The training can be improved by various tricks:

® |f the discriminator could see the whole batch, similar samples in it would be candidates for

fake images.
O Batch normalization helps a lot with this.

® Unrolling the discriminator update helps generator to consider not just the current
discriminator, but also how the future versions would react to the generator outputs. (The
discriminator training is unchanged.)

—3 Forward Pass
GD Gradients

91 0.2 0 Gradients
GD fO(GG,GD) SGD f1(9G,9D) ﬂ SGD fz(eG,GD) Unrolling
| SGD
* * * Gradients
GG eG eG

® Many others, like Wasserstein GAN, spectral normalization, progressive growing, ...
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The Variational Autoencoders:

® are theoretically-pleasing;

® also provide an encoder, so apart from generation, they can be used as unsupervised feature
extraction (the VAE encoder is used in various modeling architectures);

® the generated samples tend to be blurry, especially with L' or L? loss (because of the

sampling used in the reconstruction; patch-based discriminator with perceptual loss helps).
The Generative Adversarial Networks:

® offer high sample quality;
® are difficult to train and suffer from mode collapse.

In past few years, GANs saw a big development, improving the sample quality substantially.
However, since 2019/2020, VAEs have shown remarkable progress (alleviating the blurriness
issue by using perceptual loss and a 2D grid of latent variables), and are being used for
generation too. Furthermore, additional approaches (normalizing flows, diffusion models) were
also being explored, with diffusion models becoming the most promising approach since Q2 of
2021, surpassing both VAEs and GANSs.
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Flow Matching
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Flow Matching UL

In the past years (since 2022), the dominant approach for generating images has been based on
diffusion models (used by Stable Diffusion, DALL-E, ..).

https: //images.squarespace-cdn.com/content/v1/6213c340453c3f502425776e /0715034d-4044-4c55-9131-e4bfd6dd20ca/2_4x.png

The diffusion models are deeply connected to score-based generative models, which were
developed independently, but are just a different perspective on the same model family.

Recently, conditional flow matching was proposed as a generalization of both these
approaches, and that is the method we will describe in most detail.
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The general framework of generative modeling assumes we have samples w(l), :B(2), RN

(N)

from the data generating distribution Pgata, and the main challenges we should overcome are:

® provide fast sampling (diffusion models were originally not great here),
® generate high-quality samples (VAE struggles with this goal),
® properly cover the density of Pgata (the main issue of GANSs).

Modern approach to generative modeling is to start with a simple base distribution pg, usually a

standard Gaussian N(O, I), and learn a mapping that transforms that distribution into pgata.

Po 4 T

.....
‘e
“

‘e
......

Sampling then can be performed by sampling from py and performing the transformation.

Flow Matching
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Generating Images From Standard Normal Base Distribution

Diffusion N 29/102



Flow Matching Vet

0 t 1 0 ¢ 1

https: //dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/

The important concepts used by flow matching are:

® the probability density path p : [0, 1] X R% — R~ ¢, which is a time-dependent probability
density function, i.e., [ pi(x)de = 1;
O this probability density path should tran%‘oy@ the prior po mto P1 = DPdata

\J@MV{%
® a time-dependent vector field u : @H , WhICh can be used to construct a
flow ¢ : [0,1] x R? — R? via an ordlnary differential equation:

tSOt(w) = w(pt(x)), wolx) =2
NPFL138, Lecture 12 GAN GAN Convergence Flow Matching CFM Diffusion N DDPM SD Bonus 30/102



Note that the solution of the flow ODE

o) = w(pe(x)), o) =

is unique when w; is Lipschitz continuous in @ and continuous in t (Picard—Lindel6f theorem).

Recall that in a residual network, we update the current value = Residual Network  ODE Network
by adding the result of a residual block . )
hii1 = hy + f(hy; 0,), g3 53
82 b 82
which we can also write as \ | /
1 1
ht-l-l — ht — f(htaet)a 0% 5 0= =570 5
Input/Hidden/Output Input/Hidden/Output
where we can interpret the residual block as a “discrete Figure 1: Left: A Residual network defines a

discrete sequence of finite transformations.
Right: A ODE network defines a vector
field, which continuously transforms the state.
Both: Circles represent evaluation locations.

derivative”,

Therefore, the flow can be considered to be a continuous
generalization of residual networks.
Flow Matching 31/102



A vector field u; is said to generate a probability density path p; if the transport equation

holds: l)'ulfp'm o /J’m[{ @M/c
%pt (CB) = — le (pt(w)ut (CB)),
. def Oz ol j@‘J/WM‘V
where the divergence div(z) = > _; 52 is a vector

operator that operates on a vector field, producing for

N4

every point a scalar value, the field's source at that point —

(a positive value means a point is a source; negative if it ‘// \\‘\
is a sink). / l

The pi(x)us(x) is a flux, the probability mass passing dIOX(V ) > 0
through every point of the space (in the direction of the a/ay(v;) >0
vector field). V- (V)>0

Flow Matching

R
/TN
0/ox(V,) <0

a/ay(vy) <0
V(V) <0

—
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Assume we have a base distribution pg, usually N(O, I), and samples x(?) of the data
generating distribution p; = Pgata. Given a target probability density path p; and a
corresponding vector field u; generating p;, the flow matching (FM) objective is

Lrm(0) = By p (o) ||ve (25 0) — ue ()]

However, we need to overcome that we have no prior knowledge on how the p; and wu; should
look like given that there are many possible probability density paths p;, and that for an

arbitrary p;, we usually do not have access to the closed form of its generating vector field u;.

g
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i = ~";?::\r' A
i
A

Flow Matching
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Once we solve the remaining issues with the flow matching objective, we train

l

a NN model v¢(@; @) by predicting (matching) the vector field u; ().

Conv
si

v

Usually, the UNet architecture with skip connections is used to model v;.

DBlock 256x

}77

v

DBlock 128x

%7

v

|
.. |
Training N

DBlock 64x

DBlock 32x

Ji

DBINck 1§

)

UBloCk \16x

o

MBlock 32x

v

UBlock 64x

'

Sampling

UBlock 128x

v

During training, we minimize an objective corresponding to flow matching [ Nostoes 52 /
def 2
Lrm(0) = Epp, (o) l|vi(; 0) — wi ()|,
i.e., by performing a regression on the vector predicted by the model v;. |
-
|
|

In order to generate an image, we start by sampling Xg ~ pg, and then

UBlock 256x

perform numerical integration by the Euler method using T’ steps by

LTpr1/T < T T ’Ut(wk, 0). — ﬂ\ﬁ M;\M@W\iﬁ)w 01\@4

More involved methods like the midpoint or Runge-Kutta can also be used.

Flow Matching

v

256 Image
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Conditional Flow Matching
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Instead of directly defining the probability density path, we can construct it as a mixture of
simpler probability paths. Together with the fact that we do not have direct access to the data
generating distribution p; = Dgata apart from its samples, we turn to conditional probability

paths p;(x|x1), which we design so that

* po(x|®t) = po(),
® pi(a|x1) is tightly concentrated around @1, for example by using a normal distribution

: : 2 .
with a small variance o7 . > O:

pi(zlz1) = N (2|21, 00, 1) KT

We can then define the marginal probability path as

9(2) 2 Eayp. [pe(@]21)] = / 1 (2] ) Pansa (1) .

Because we defined the conditional probability paths to concentrate tightly around @, the
marginal probability p1(2) ~ Dgata-

CFM

36,102



Conditional and Marginal Vector Fields

Analously to how we defined the marginal probability path using the conditional probability
paths, it is also possible to define the marginal vector field (the vector field of the marginal
probability path) using the conditional vector fields u;(x|®1) (the vector fields of the

conditional probability paths): 'Jp\ Mot ‘0@«7/ A QM@‘ T WWL ¢ Xq
0 (@) & By, [ut<w|w1>@@] = [ (el P2 g
pi(x) pt(x)

Such a marginal vector field actually generates the marginal probability path.

ue(x) vs. u(x | x2) att = 0.11 oL ue(x) vs. u(x | xa) att = 0.53

; > c‘
' () <o »(4) .,
<) .6 oy 0, : -

/ By
CZMOZ(O 0 C/Wﬁ g’”f 7% /7457[ ég/h A \\\)
aéhﬂww% b /A X4 4/1/1,/ Wonz mn/ uln,

https://mlg.eng.cam.ac.uk/blog/2024,/01/20/flow-matching.html https: //mlg.eng.cam.ac.uk/blog/2024,/01/20/flow-matching.html
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To verify that the marginal vector field generates the marginal probability path, we need to
check that p; and w; satisfy the transport equation:

I01(2) = Boypins | S21(]21)

= Ea,~pye — div (ut(w\wt)Pt(w‘wl))]
— —div (Ewlwpdata [ut(w\wt)pt(wlwl)])

— — div (Egyope [un(zlepi(len) /(@] ()

7

definition of u;(x)

= — div (w(x)pi(x)).

Note that swapping a derivative and an integral requires various smoothness conditions; we
assume all our objects “nice enough”.
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Even with the definition of the marginal vector field, obtaining an unbiased estimate of the flow
matching objective is still intractable (the integrals in the definition of the conditional
probability path/vector field are intractable).

However, we can use the following simplified conditional flow matching (CFM) objective:

ECFM (9) = Et,mlwpdata,wNpt(w|az1) H’Ut(il?; 0) T fu’t(w‘wl) H2

This objective allows unbiased estimates, given that only the conditional variants of p; and u;
are needed.

Importantly, while this objective Lcopy is different from the original flow matching objective
Ly, it has the same gradients with respect to 6.
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Conditional Flow Matching

WIP: The proof that the gradient with respect to @ of Lry and Lopym will be added later.
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We now define the conditional probability paths that we will use. We consider normal
distributions with time-dependent mean p;(@1) and variance o2 (@1 ):

pe(|®) = N(az|ut(w1),af(m1)I).

We require

¢ /,L()(wl) = 0 and 0'8(:131) — 1 so that po(w\wl) :po(w), and
2

® ui(®1) = @ and o?(x1) = 02, so that p1(@x|®1) is concentrated around @ .

While there are infinitely many vector fields generating these probability paths, we use the

simplest one, corresponding to the flow (dependent on @)

pt(x) = or(®1)® + pe (1),

which is an affine transformation mapping standard normal distribution to a normal distribution

with mean g (@1) and variance o7 (@1).

CFM



Construction of the Conditional Vector Field

We now derive the conditional vector field u;(@|®1) so that its flow is the defined
oy (e )33 + pe (1)

pe(@) =
] N> le ¢ Yooy wgetoi”
Recalling the flow ODE Z () = (e ()), |t could be used to defined wuy, but

unfortunately for ¢ (@), not for arbitrary .

However, the affine map ¢; has an analytical inverse (assuming o¢(x1) > 0)

@LW [ Vawf ﬂ?%% (\

A@L’? Sot_l(z) _ Z—,th(wl).

Ut(wl)

Therefore, when we consider z = ¢, (@), we get u;(z|®1) = ¢} (p; 1 (2)).

Using the derivative @} (x|®1) = o} (®1)x + p;(@1), we obtain that

w(zlen) = 2P (2 (@) + (@),
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Construction of the Conditional Vector Field ezt

The authors propose to use conditional paths with mean and variance changing linearly in ¢:

def def

,th(ml) = t:l?l, at(azl) =1 (1 — O'min)t-
Therefore, the corresponding flow and vector field are

Dy (:13) = (1 — (1 — O'min)t)zc +t®;, sucha flow is called Optimal Transport
L1 — (]- _ amin)w
1— (1 — O'min)t .

1— Omin
1— (]. — O'min)t(

ut(x|ey) = T —tey) + @ =

Finally, recalling the general form Lcpm(0) © Et,mledata,wNpt(w|w1) |ve(2; 0) — ut(w|€l§1)||2,

for our specific case of OT flow we obtain o
p Mz ot travs wedle

Lcrm(0) = Et 2, ~paaa,zo~p0 H?Jt (SOt(flﬁo); 9) —\(5131 — ‘(1 — Umin)momz-

7[0L//ﬁ /C 7’% V&b/%@b/ h’/ﬁky/ 7/kc/wlyu o
Wesi g peantidy’ m o
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Conditional Probability Paths and Marginal Probability Paths
Whﬂ[”w /z fito! fedsondi, mfws%ﬁ/» iy [ioun

ZLM/& 74M/w/}4
/Z/W /z 1// s’f/M /M

AR = Llom, /w L ; 4 A 0/ R
...; = : :.." hM 97;) J §74’&Jﬁ . * / \

MM

hnvr /l’/

https://mig.eng.cam.ac.uk/blog/2024,/01/20/flow-matching. html https://mlig.eng.cam.ac.uk/blog/2024,/01/20/flow-matching. html|

https://mlg.eng.cam.ac.uk/blog/2024,/01,/20/flow-matching.html https://mlig.eng.cam.ac.uk/blog/2024,/01,/20/flow-matching.html
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Wemni ¢ ookl
VZM’%’ ZMM/(’//L
/P Moromnd

4 o
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https://mig.eng.cam.ac.uk/blog/2024,/01/20/flow-matching. html https://mlg.eng.cam.ac.uk/blog/2024,/01/20/flow-matching. html|

ut(x) vs. ue(x | x1) att = 0.53
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https://mig.eng.cam.ac.uk/blog/2024,/01/20/flow-matching. html| https://mlg.eng.cam.ac.uk/blog/2024,/01/20/flow-matching. html
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Let v¢(@; @) be a UNet-like neural network model predicting the vector field.

Training
During training, we minimize CFM objective by SGD /Adam:

def

ECFM(O) — Etawl’\“pdataawo’\“po Hvt (Sot(wo); 0) - (’J)1 - (1 - Umin)wo)
Specifically, we generate batches of training data X ~ pgata as usual, for
each batch example we also generate t ~ U|0, 1] and g ~ N (0, I), and

I

we minimize the mean squared error

|ve (01 (0); 0) — (@1 — (1 — oin) o) ||

Sampling
In order to generate an image, we start by sampling Xy ~ pg, and then
perform numerical integration by the Euler method using 1" steps by

1
Tpy1/T < Tk T T'Ut(wk; 9)-

CFM

l
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Further Reading About Flow Matching

® An introduction to Flow Matching https://mlg.eng.cam.ac.uk/blog/2024 /01 /20 /flow-
matching.html#fn:mini-batch-ot-deterministic-vs-stochastic

® A Visual Dive into Conditional Flow Matching https://dl.heeere.com/conditional-flow-
matching/blog/conditional-flow-matching /

® Diffusion Meets Flow Matching: Two Sides of the Same Coin
https: //diffusionflow.github.io/
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https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html#fn:mini-batch-ot-deterministic-vs-stochastic
https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/
https://diffusionflow.github.io/

Architectures of Diffusion Models, Suitable Also for FM Vet

Vector field v¢(@; @) can be predicted by UNet architecture with pre-activated ResNet blocks.

® The current continuous time step is represented using the Transformer sinusoidal
embeddings and added “in the middle” of every residual block (after the first convolution).

® Additionally, on several lower-resolution levels, a self-attention block (an adaptation of the
Transformer self-attention, which considers the 2D grid of features as a sequence of feature
vectors) is commonly used. Because the complexity is asymptotically the image width to the
power of four, only the lower-resolution levels are used for this self-attention.

f(x)

) transpose attention
convolution Ix1conv
feat map
e QVQ softmax self-attention
|| I\—\I >
B [ ex _Il_\[ feature maps (0)
N a i Mvew Hp
IxIcon Lo ® B
‘ Ixlconv ™
h(X) E

Ix1conv

Figure 2 of "Self-Attention Generative Adversarial Networks", https: //arxiv.org/abs/1805.08318
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Diffusion Models Architecture — ImaGen Urzt

i
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)
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Figure A.30 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487
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Figure A.27 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding”, https://arxiv.org/abs/2205.11487
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Diffusion Models Architecture — ImaGen =

Previous DBlock Previous UBlock

R S l

Skip Connection from DBlock
Conv
kernel_size=3X3

strides=stride

channels=channels Conditional Embeddings — CombineEmbs
Conditional Embeddings [ . . ResNetBlock
- . — i X numResNetBlocksPerBlock
(e.g., Time, Pooled Text Embeddings) SRR T channels=channels
fleslietBlock x numResNetBlocksPerBlock ' SelfAttention |
channels=channels - 1
Conv

|
I

! SelfAttention )
: ttention heads=8 kernel_size=3X3
. a ention_heads=

Full Contextual Text Embeddings — ) ) strides=stride

hidden_size=2Xchannels
output_size=channels channels=channels

Figure A.28 of "Photorealistic Text-to-Image Diffusion Models with Deep Language Figure A.29 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding”, https://arxiv.org/abs/2205.11487 Understanding”, https://arxiv.org/abs/2205.11487

There are of course many possible variants; furthermore, Visual Transformer can be used
instead of the UNet architecture.
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In many cases we want the generative model to be conditional. WWe have already seen how to
condition it on the current time step. Additionally, we might consider also conditioning on

® an image (e.g., for super-resolution): the image is then resized and concatenated with the
input noised image (and optionally in other places, like after every resolution change);

® 3 text: the usual approach is to encode the text using some pre-trained encoder, and then to
introduce an “image-text” attention layer (usually after the self-attention layers).

To make the effect of conditioning stronger during sampling, we might also employ classifier-
free guidance:

® During training, we sometimes train v¢(@, y; @) with the conditioning ¢, and sometimes we
train v¢(a, I; @) without the conditioning.
® During sampling, we pronounce the effect of the conditioning by taking the unconditioned
vector field and adding the difference between conditioned and unconditioned vector field
weighted by the weight w (values like w = 5 or w = 7.5 are mentioned in papers):
q qé 7% /VWMJ/ _/7 T Y S < o
il 1, (2 530) (0@, 336) — (@1, 236)). @%/%fw

c
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Samples from Model Trained Last Year on Practicals
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Samples from Conditional Model Trained Last Year
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Diffusion Models
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Diffusion Models: Overview of the Overall Process Vet
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Diffusion Models — Diffusion Process, Reverse Process U=t

pextlfxt
@ @ — O H

\-_—’

istic Models", https://arxiv.org/abs/ 2006 11239

F/gure 2of ' Denotsmg Diffusion P

Given a data point Xg from a real data distribution g(x), we define a T-step diffusion process
(or the forward process) which gradually adds Gaussian noise to the input image:

axirlxo) = [ a(xilxi 1):

t=1

Our goal is to reverse the forward process q(x:|X;_1), and generate an image by starting with
X7 ~ N(O, I), and then performing the forward process in reverse. We therefore learn a model
Do (X¢—1|X¢) to approximate the reverse of q(x¢|X¢—1), and obtain a reverse process:

T

P (Xo.7) = p(Xr) Po (X¢—1]%¢).

t=1
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Diffusion Models — Model Overview et

The pg(x¢_1|X¢) is commonly modelled using a UNet architecture with skip l
connections.
v
Training ‘ DBlocl: 256x }7
. . . . ‘ DBlock 128x }7
During training, we randomly sample a time step ¢, and perform an update of e
the parameters @ in order for pg(X;_1|X;) to better approximate the reverse | ...
v
Of Q(xt |Xt_1)' ‘ DBlocj{ 16x ‘
. ‘ UBlorlk 16x ‘
Sampling [
In order to sample an image, we start by sampling x7 ~ A(0, I), and then T
perform T steps of the reverse process by sampling X;_1 ~ pg(x;_1|x;) for | —
t from T down to 1. -
!
2562 Image

Figure A.30 of "Photorealistic Text-
to-Image Diffusion Models with
Deep Language Understanding”,
https://arxiv.org/abs/2205.11487
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Normal (or Gaussian) distribution is a continuous distribution

parametrized by a mean p and variance o?:

__ 025}
B
a 0.20 -

/1 (z — p)?
. 2 —_— 0.05
N( w , /JL ’ 0- ) _ 2ﬂ'0’2 eXp ( T 20-2 0'0(12.0 —I1A5 —ILO —(;.5 O‘.O OI.5 1‘.0 1‘.5 2.0

For a D-dimensional vector @, the multivariate Gaussian distribution takes the form

w1 1 ot
N B) 2 e (5@ W e w).

The biggest difference compared to the single-dimensional case is the covariance matrix X3,

which is (in the non-degenerate case, which is the only one considered here) a symmetric
positive-definite matrix of size D X D.

However, in this lecture we will only consider isotropic distribution, where 3 = oI

N(z; p,0°I) = 1_[Z N (zi; i, 0%).
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* A normally-distributed random variable x ~ N (g, I can be written using the
reparametrization trick also as

X = u + oe, where e ~ N(0,I).

® The sum of two independent normally-distributed random variables x; ~ N(ul, U%I) and
x2 ~ N (py,051) has normal distribution N (pe; + o, (07 + 03)I).

Therefore, if we have two standard normal random variables e, ey ~ N(O, I), then

o1€1 + 02€2 = 4/ O'% —|—a§e

for a standard normal random variable € ~ N (0, I).
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DDPM - The Forward Process Uzt

We now describe Denoising Diffusion Probabilistic Models (DDPM).

peXt1|Xt
o —@— O %

\___/

F/gure 2of ! Denotsmg Diffusion Probabl/lst/c Models", https://arxiv.org/abs, 2006 11239

Given a data point Xq from a real data distribution g(x), we define a T-step diffusion process

(or the forward process) which gradually adds Gaussian noise according to some variance

schedule By, ..., Br:
T

q(x1.7|%0) = H q(xt|xt-1),

Q(Xt|xt—1) = N(Xt; v1-— 5tXt—1,ﬂtI),
=+/1—-Bx 1+ \/Ee for e ~ N (0, I).

More noise gets gradually added to the original image X, converging to pure Gaussian noise.
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Llet oy =1 — B; and & = H§:1 a;. Then we have
X = /0uXe_1 + V1 — oyey
= Vo (Varixi2 + V1 — 1€ 1) + V1 — ogey
= Voo 1%t 2+ vVar(l—ap 1) + (1 — )& 1
= Joroy 1%t 2+ /1 — apoy 18 1

= Joza; 10 2% 3+ /1 — oy 10 28 o

= v ouxg + V1 — areg
for standard normal random variables e; and e;.

In other words, we have shown that g(x;|x¢) = N(\/C_vtxo, (1— ézt)I).

Therefore, if &; — 0 as t — 00, the x; converges to N (0, I) as t — oo.

DDPM
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DDPM — The Forward Process Fx

Forward diffusion process (fixed)

Data Noise

CVPR 2022 tutorial https://cvpr2022-tutorial-diffusion-models.github.io/
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Originally, linearly increasing sequence of noise Loy - — linear

variations 81 = 0.0001, ..., Br = 0.04 was . cosine

used.

0.6 -

a;

However, the resulting sequence &; was not

0.4 1

ideal (nearly the whole second half of the
diffusion process was mostly just random
noise), so later a cosine schedule was proposed: 0.0-

& = %(cos(t/T-w) + 1).

0.2 4

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Figure 5. &; throughout diffusion in the linear schedule and our
proposed cosine schedule.

In practice, we want to avoid both the values of
0 and 1, and keep o in [g,1 — g] range.
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DDPM — Noise Schedule UL

We assume the images Xy have zero mean and unit variance (we normalize them to achieve
that). Then every

q(x¢|x0) = Varxg + v1 — aze

has also zero mean and unit variance.

The «/@; and 4/1 — @; can be considered as the signal rate and \
the nOise rate signal-to-noise power ratio

—2 —2 . :
Because \/a; + +/1 — @ =1, the signal rate and the noise rate ;

form a circular arc. The proposed cosine schedule
a; = cos(t/T - 7/2),
\/ ]. - at J— SiIl(t/T . 7'(-/2), diffusiontime=0.042 ::::::er 1

corresponds to an uniform movement on this arc.

https: //i.imgur.com/JWI9WOfA.gif
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DDPM - The Reverse Process Uzt

pextlfxt
@ —@— O H

\-_—’

F/gure 2of ' Denotsmg Diffusion Probab///st/c Models", https://arxiv.org/ abs/2006 11239

In order to be able to generate images, we therefore learn a model pg(x;—1|X¢) to approximate

the reverse of q(x;|x:_1).

When B, is small, this reverse is nearly Gaussian, so we represent pg as
pO(xt—1|xt) — N(Xt 17H0(xt, ) I)

for some fixed sequence of 01,...,07T.

The whole reverse process is then
T
po (X0:7) = p(XT) thl Po (Xi—1%¢).
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DDPM - Loss

We now want to derive the loss. First note that the reverse of q(x¢|x;—1) is actually tractable

when conditioning on Xj:
Q(Xt—1|xt7X0) — N(Xt—l; ﬁt(xhXO)aBtI)a
V015 Vor (1 — ;1)

iy (Xt, X0) = 1— a X0 + 1— &, Xt
~ 1 —ay-
Br=—_"H

We present the proof on the next slide for completeness.
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Forward Process Reverse Derivation =

Starting with the Bayes' rule, we get
q(x¢-1/%0)

Q(xt—1|xtax0) — Q(Xt‘xt—DXO)

Q(Xt|X0)
( 1 ((Xt —Vouxi1)? (%1 — Va1x0)? (% — v/ aux)? ))

xXexp| — ¢ + —

2 By I — g 1 —ay

]- X, — o X x2 x2 — o X Xt x2
—exp (- 5 (R e R )

1 o 1 2 \/_ vV O
:eXp(_i((E+—1_5ltl)xtl—2( 5 Xt T 1 - _1x0) —|—>)

From this formulation, we can derive that q(x¢—1|%¢,%0) = N (x¢—1; ft, (x4, %0), BtI) for
Q2 Qy ai(1—ay_1)+0: o+ By _ 1 - at 1
Br=1/(% + 57) = V(") =V (5a%%) = 5 B

~ o oy ay a1 B Oét(l — at—l)
(e, x0) = (530 + 35 ) o B = e+ R
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The full derivation of the loss is available in the Bonus Content of this presentation. The
resulting loss is

1

Li=F|——
t [2H0tIH2

2
o, 0) — g ()| ]

The model is then changed to predict €g(x;¢,t) instead of gty (X¢,t). The loss then becomes

(]_ — Oét)z
204(1 — o) ||ov I ?

2
Lt :E[ Het—89(\/5{tX0—|—\/1—O_étet,t)|| ]

The authors found that training without the weighting term performs better, so the final loss is
impl — — 2
L™ = Eie1. 1 xo e [Het — €g (v a;Xo + V1 — ey, t) I }

Note that both losses have the same optimum if we used independent &g, for every ¢.
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Algorithm 1 Training Algorithm 2 Sampling

1 repeat 1: x7 ~ N(0,T)
2: Xo ~ q(Xo) 2: fort=1T,...,1do
j- t“%l(ltf)‘“if)n({lw-wT}) 3. 7~ N(0,1)ift > 1,elsez = 0
- € ’ . 1 11—«
5: Take gradient descent step on dXe-1 = (Xt - \/ﬁ@(xtat)) T 0tz
Vo He—ee(\/o?txo—k\/l—o—éte,t)HQ 5: end for
6: return xg

6: until converged

In practice, instead of discrete, t may be continuous in the |0, 1] range. Note that sampling
using the proposed algorithm is slow because it is common to use T' = 1000 steps during
sampling.

The value of 0152 is chosen to be either 3; or Bt, or any value in between (it can be proven that

these values correspond to upper and lower bounds on the reverse process entropy).

Both of these issues are alleviated by using a different sampling algorithm DDIM, which runs in
several tens of steps and does not use ‘71&2-
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Stable Diffusion — Semantic and Perceptual Compression

| T

Semantic Compression

~ 80 -

0 y — Generative Model:

E 60 Latent Diffusion Model (LDM)

: 0 —

'E - Perceptual Compression

Q r

'é 20 | — Autoencoder+GAN
0 I\ "“T e o o i .

0 0.5 .O
Rate (bits/dim)

\ ‘.‘
:

Figure 2 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752
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Stable Diffusion — Architecture =

\|\ i Latent Space Conditioning
E Diffusion Process emanth
J Ma
P 8 Denoising U-Net €g Text

Repres
entations

Eixel Spacej

denoising step crossattention  switch  skip connection concat - J

Figure 3 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752
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(SD) Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Bjorn Ommer:
High-Resolution Image Synthesis with Latent Diffusion Models
https://arxiv.org/abs/2112.10752

(SDXL) Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas
Miiller, Joe Penna, Robin Rombach: SDXL: Improving Latent Diffusion Models for
High-Resolution Image Synthesis https://arxiv.org/abs/2307.01952

(SD3) Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller,
Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim
Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek, Robin Rombach:
Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
https://arxiv.org/abs/2403.03206

(SD3-Turbo) Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick
Esser, Robin Rombach: Fast High-Resolution Image Synthesis with Latent Adversarial
Diffusion Distillation https://arxiv.org/pdf/2403.12015

sD 72/102


https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2403.03206
https://arxiv.org/pdf/2403.12015

Bonus Content

DDPM Loss
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—Ey(x,) | 10g P (%0)| = —Eg(xy) | 108 Epy(x,.7) [P6 (%0 [®1.7)] ]
= —Eq(x) [log Eg(x1.r/x0) Q?SCSO[Q)H

(xor) | _
< _EQ(XO:T) [log % =E q(xo.7) [log po(x0.T)

= Ry
= Ry
= Ry
= Ry

q(xo.7) I
q XO:T)
q XO:T)
q XO:T)

q xO:T)

(X1T|X0)]

(xt\xt 1) (Xl‘x )
— ].0gp0(XT) + Zt ]- 0og pe(xt 1|xt) + 1 08 pB(XO}gl)i|

T
q(x¢—1|x¢,%0) q(Xt|Xo0) q(x1]x0)
— log po (xr) + Z log ( po (i 1) q(xt_lwi())) +log pe(xo|>31)]

— log pe(x7) + Z a1 [xox0) g0 (( “ )) + log Q(Xl‘x(’)}

Pe(Xt 1\Xt) po(Xo\Xl)

20 13 log p:fxz"ﬁ;:? log po (%o |1 )|

DKL( (%7 |%0)]|pa XT ) + Z DKL (q(x¢—1|%¢, x0)||po (% 1|xt)_10gp0 (XO‘Xl)}

~~

LT Lt LO
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The whole loss is therefore composed of the following components:

e [+ = Dk, (q(xT\xo)Hpg (XT)) is constant with respect to @ and can be ignored,

o [, = Dy, (q(xt_1|xt, Xo)||pe (xt_1|xt)) is KL divergence between two Gaussians, so it
can be computed explicitly as

1 2
L,=FE 7 _ ¢ H
t [2“0}.1”2 I’l’t(xt7x0) “O(Xta ) ]7
e [y = —logpe(xo|x1) can be used to generate discrete x¢ from the continuous X3; we

will ignore it in the slides for simplicity.
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DDPM — Reparametrizing Model Prediction

Recall that q(x;—1|x¢,X0) = N(xt_l; ﬁt(xt,xo),BtI) for

\/at 15t - Vou(l —oy1)

1 — oy

l'l't(xta XO) Xt

~ ].—Oétl

Br = Br-

1—C¥t

Because Xt = \/OétX() -+ \/]. — (4 €, we get Xg = \/16715 (Xt — 4/ 1— atet).

Substituting x( to ft,, we get

vV at—lﬁt 1 (Xt B met) 4 \/a_t(]- - at—l)x

[, (X, X0) =
p’t(t 0) 1—54t \/0_71*,

_ (Mﬂt 1 vl —&t—l))xt B (Mﬁt

1—ay +/ay 1 — oy
B 5t‘|‘04t(1—07t—1)x B ( By )
S (-a)ya
GAN GAN Convergence Flow Matching CFM Diffusion N

e —
\/1—5(“/(115 !

U=
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We change our model to predict €g(x¢,t) instead of ptg(X¢,t). The loss L; then becomes

o ;
L, =E 1. (%, %) — t H
! _2H0tI||2 Mt(xt Xo) Ha(xt ) ]
= gl (e )~ (s et ]
= Xt — — — | Xt — Xt,
2o Il o\ Vi—a ) Ja N VIoa
I (1—()ét)2 2
_E _ ¢ H
20n(1 — &) o d]E I~ S0
:]E- (1_at)2 e —eg(\/ax + 41— o€ if)H2
| 204 (1 — ay)||o I ||? t 0 e .

The authors found that training without the weighting term performs better, so the final loss is
impl — — 2
Lilmp F = Ete{l..T},XO,et [Het — €9 (\/ a;Xg + V1 — azey, t) H }

Note that both losses have the same optimum if we used independent €g, for every t.
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Bonus Content

DDIM Sampling
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We now describe Denoising Diffusion Implicit Models (DDIM ), which utilize a different forward
process.

This forward process is designed to:

® allow faster sampling,

® have the same “marginals” g(x¢|xo) = N (v/&uxo, (1 — a)I).
The second condition will allow us to use the same loss as in DDPM; therefore, the training
algorithm is exactly identical do DDPM, only the sampling algorithm is different.

Note that in the slides, only a special case of DDIM is described; the original paper describes a

more general forward process. However, the special case presented here is almost exclusively
used.
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The forward process of DDIM can be described using

T
qo (%1.7|%0) = go(x7|x%0) thz qo (X¢—1/X¢, o),

where

* go(xr|%0) = N (varxo, (1 - ar)I),
® qo(X¢—1|%X¢,X0) = N(\/@tp(o + /1 — (Xt\;%XO),O - I).

With these definitions, we can prove by induction that gy(x;|Xg) = N‘(\/@txo, (1— o_at)I):

Xt—1 = v/ O0¢—1Xp + \/1_0‘—1(&\/%}(0)

= Voy_1Xo + \/1 — Qi1 (\/_X(hL ‘jli;ft \/_xo) = vV ap_1Xg + \/1 — O 1€;.

The real “forward” qo(x¢|x:—1,X0) can be expressed using Bayes' theorem using the above
definition, but we do not actually need it.
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Denoising Diffusion Implicit Models — The Reverse Process UraL

The definition of go(x¢—1|X¢,Xo) provides us also with a sampling algorithm; after sampling
the initial noise x7 ~ N (0, I), we perform the following for ¢ from T' down to 1:

T 1 =/ Qt_1X0 + \/1 — ay—1€9(xt, t)

O_ét_l (mt—\/1:/6%60(33t,t)) 4+ \/1 _ C_Vt—lse(wt,t)-

An important property of gy is that it can also model several steps at once:

Po
Qs 831

] q(x3|Ti,x0) - —_——————
Figure 2 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502

qo (%¢ |x¢, Xp) = (\/a_t’xo +V1—ay (xt \/_XO) O).

].Oét
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We base our accelerated sampling algorithm on the “multistep” qo(X¢ |X¢, X0).

Let t¢ =T ,tg_1,...,t; be a subsequence of the process steps (usually, a uniform
subsequence of T', ..., 1 is used), and let £y, = 0. Starting from initial noise x7 ~ N (0, I),
we perform S sampling steps for ¢ from S down to 1:

— Xy, —/1— 0y, €9 (s, ,t;) —
Ly, < o, 4 ( t \/5;. — ) + \/1 — 04 €9 (wtmti)'

o, estimate

7

The sampling procedure can be described in words as follows:

® using the current time step ¢;, we compute the estimated noise €g (:I:ti , ti);

® by utilizing the current signal rate 1/0;, and noise rate /1 — @;,, we estimate Xo;

® we obtain @; , by combining the estimated signal X, and noise €g(;,, t;) using the signal
and noise rates of the time step £;_1.
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Denoising Diffusion Implicit Models — Accelerated Sampling URRL

For comparison, we show both the original DDPM and the new DDIM sampling algorithms:
e sample &7 from N(0, I)

® lett¢g =T,tg_1,...,t; = 1 be a subsequence of the process steps
o DDPM: the original sequence 7', ..., 1 is usually used
o DDIM: S regularly-spaced steps 7', SleT, S§2T, ..., 1 are usually used

O additionally, we define tg = 0

® fory =.5,...,1:

DDPM : LTy , < ozlt (mti oy | se(mtiati)) + 0v2

/o,

VO
xo estimate

, 1—a;. .7
DDIM : @, « /s | ( % ol f )) +/1— &y eo(zt,, t;)

® return @
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DDIM - Accelerated Sampling Examples UL

dim(t) = 10 dim(T) =100

r":F"&L.

v . ! =3 ;
| ¢ b el el A y . EsD | (0
« 0 . 3 1 4
i . & ; S R A == Eax D b 3B
" S S i Sl Cul p A = = i Lk -

Figure 5 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502
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Bonus Content

Score Matching
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Recall that loglikelihood-based models explicit represent the density function, commonly using
an unnormalized probabilistic model

efe (x)

pg(X) — Zo )

and it is troublesome to ensure the tractability of the normalization constant Zg.

One way how to avoid the normalization is to avoid the explicit density pg(x), and represent a
score function instead, where the score function is the gradient of the log density:

se(x) = Vy log pg(x),

because
efe(x)
SB(X) = Vi lngg(X) = Vx log Zo — fo@(x) o Yx log ZBJ — fo@(x)'

0
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Langevin Dynamics Uzt

When we have a score function Vy log pg(x), we can use it to perform sampling from the
distribution pg(x) by using Langevin dynamics, which is an algorithm akin to SGD, but
performing sampling instead of optimum finding. Starting with xq, we iteratively set

X;+1 < X; + €Vy, logpe(x;) + V2ez;, where z; ~ N(0,I).

When € — 0 and K — 00, Xk obtained by the Langevin | :N;‘;.;;_;;.-,:; J Lot e e

dynamics converges to a sample from the distribution pg(x). iE

......

-

» .

-,

.................

¥

...................

T

....................

4 . a. I \\\%‘M‘—‘_‘“_ A
https://yang-song.net/assets/img/score/langevin.gif
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Score-Based Generative Modeling UL

B o e e G N S B R »
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Data samples Scores New samples

{x1, %z, , xn} " p(x) so(x) ~ Vi log p(x)

https://yang-song.net /assets/img/score/smld. jpg
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Noise Conditional Score Network

However, estimating the score function from data is inaccurate in low-density regions.

Data scores Estimated scores

Data density

https: //yang-song.net /assets/img/score/pitfalls.jpg

In order to accurately estimate the score function in low-density regions, we perturb the data
distribution by isotropic Gaussian noise with various noise rates oy:

4o, (i) = ]EX.Np(X.) [N(iv X, JtzI)] )

where the noise distribution g,, (X|x) = N (X;x,021I) as analogous to the forward process in

the diffusion models.
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To train the score function sg(x,0:) = Vx log q,, (X), we need to minimize the following
objective:

By g, |||86(%, 1) — Vs log 5, (%)]|*].

It can be shown (see P. Vincent: A connection between score matching and denoising
autoencoders) that it is equivalent to minimize the denoising score matching objective:

o) 2ty (1) [Hse 01) ~ Va log g5, (%[x)||*|

In our case, Vi logq,, (X|x) = Vi _”’2{(; x| — %X Because X = X + oe for standard
t t

normal random variable € ~ N (0, I), we can rewrite the objective to
—€e 2
]Et,XNp(x),eNN(O,I) [Hse (x + oe,0¢) — . H }7
t

so the score function basically estimates the noise given a noised image.
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Noise Conditional Score Network UL

Once we have trained the score function for various noise rates o;, we can sample using
annealed Langevin dynamics, where we utilize using gradually smaller noise rates o7;.

Algorithm 1 Annealed Langevin dynamics.

Require: {o;}F ¢ T.
1: Initialize x
2: fori < 1to L do
3 ¢+ ¢€-072/o2 > v is the step size.
fort < 1toT do
Draw z; ~ N(0,1)

4
5

~ . O
6: Xt = X1 + ESO(Xt—la oi) + /o 7y
7: end for
8
9:

X ¢ X7
end for
return X,

. S Algorithm 1 of "Generative Modeling by Estimating Gradients of the Data
i, AR Distribution™, https://arxiv.org/abs/1907.05600

https://yang-song.net /assets/img/score/multi_scale.jpg

Such a procedure is reminiscent to the reverse diffusion process sampling.
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Further Reading
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Martin Arjovsky, Soumith Chintala, Léon Bottou: Wasserstein GAN
https://arxiv.org/abs/1701.07875

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville:
Improved Training of Wasserstein GANs https://arxiv.org/abs/1704.00028

Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs
for Improved Quality, Stability, and Variation https://arxiv.org/abs/1710.10196
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral
Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957
Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in
Generative Adversarial Nets https://arxiv.org/abs/1807.00751

Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High
Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096

Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for
Generative Adversarial Networks https://arxiv.org/abs/1812.04948
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F/gure 2 of ”Large 5ca/e GAN Tra/n/ng for H/gh Fidelity Natura/ /mage 5ynthe5/5” https: //arxn/ org/ab5/1809 11096
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Figure 7 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096
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Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu: Neural Discrete Representation
Learning https://arxiv.org/abs/1711.00937

Ali Razavi, Aaron van den Oord, Oriol Vinyals: Generating Diverse High-Fidelity Images
with VQ-VAE-2 https://arxiv.org/abs/1906.00446

Patrick Esser, Robin Rombach, Bjorn Ommer: Taming Transformers for High-Resolution
Image Synthesis https://arxiv.org/abs/2012.09841

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, llya Sutskever: Zero-Shot Text-to-lmage Generation
https://arxiv.org/abs/2102.12092

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Bjorn Ommer: High-
Resolution Image Synthesis with Latent Diffusion Models
https://arxiv.org/abs/2112.10752
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Yang Song, Stefano Ermon: Generative Modeling by Estimating Gradients of the Data
Distribution https://arxiv.org/abs/1907.05600

Jonathan Ho, Ajay Jain, Pieter Abbeel: Denoising Diffusion Probabilistic Models
https://arxiv.org/abs/2006.11239

Jiaming Song, Chenlin Meng, Stefano Ermon: Denoising Diffusion Implicit Models
https://arxiv.org/abs/2010.02502

Alex Nichol, Prafulla Dhariwal: Improved Denoising Diffusion Probabilistic Models
https://arxiv.org/abs/2102.09672

Prafulla Dhariwal, Alex Nichol: Diffusion Models Beat GANs on Image Synthesis
https://arxiv.org/abs/2105.05233

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Bjorn Ommer: High-
Resolution Image Synthesis with Latent Diffusion Models
https://arxiv.org/abs/2112.10752

Bonus 97/102


https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2112.10752

® Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, M. Norouzi:
Image Super-Resolution via lterative Refinement https://arxiv.org/abs/2104.07636
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Diffusion-Based Text-Conditional Image Generation

® Alex Nichol et al.: GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models https://arxiv.org/abs/2112.10741

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

“a surrealist dream-like oil “a professional photo of a “a high-quality oil painting “an illustration of albert
painting by salvador dali sunset behind the grand of a psychedelic hamster einstein wearing a superhero
of a cat playing checkers” canyon” dragon” costume”

Figure 1 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741
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Diffusion-Based Text-Conditional Image Generation Vet

“zebras roaming in the field” “a girl hugging a corgi on a pedestal”

“a man with red hair” “a vase of flowers”

“an old car in a snowy forest” “aman wearing a white hat”

Figure 2 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741
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Diffusion-Based Text-Conditional Image Generation UrzL

® Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, et al.: Photorealistic
Text-to-Image Diffusion Models with Deep Language Understanding

https://arxiv.org/abs/2205.11487

Sprouts in the shape of text ‘Tmagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
dressed as a chef in a high end kitchen making dough.

bike. It is wearing sunglasses and a beach hat.
There is a painting of flowers on the wall behind him.

fairytale book.

A cute sloth holding a small treasure chest. A bright
golden glow is coming from the chest.

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi.

Figure 1 of "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, https://arxiv.org/abs/2205.11487
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Normalizing Flows Vet

® |aurent Dinh, David Krueger, Yoshua Bengio: NICE: Non-linear Independent
Components Estimation https://arxiv.org/abs/1410.8516

® [aurent Dinh, Jascha Sohl-Dickstein, Samy Bengio: Density estimation using Real NVP
https://arxiv.org/abs/1605.08803

® Diederik P. Kingma, Prafulla Dhariwal: Glow: Generative Flow with Invertible 1x1
Convolutions https://arxiv.org/abs/1807.03039

Figure 1 of "Glow: Generative Flowwith Invertible 1x1 Convolutions", https://arxiv.org/abs/1807.03039
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