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Speech Generation Pipeline

"Hello, my name is Joseph."

l

Text Input

l

Mel Spectrogram

l

Wave Form

https: //miro.medium.com/v2/1*QxNKQ_jgds7tKIDaHGRz7A.png
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Speech Generation Pipeline =
Traditionally, the input text was represented by phonemes. i
"Hello, my name is Joseph." i Text Input
monophthongs diphthongs Phonemic :
i I U | u Ia eI Chart i
% sheep ship good shoot here wait unvoiced hd : v
f e o 3 o wvo o1 av BN | o speccrogom
= bed teacher bird door tourist boy show i
@& AN a D es ar | av v i v
cat up far on hair my cow ! Wave Form
o b t d § & k g i
g pea boat tea dog cheese June car go i
< |
é f v e S Z I 3 https://miro.medium.com/v2/1*QXIV.KO_jgds7tK/DaHGRz7A.png
% fly video think this see Z00 shall television
°°m n n h | r w
man now sing hat love red wet yes
https: //www.englishclub.com/images/pronunciation/Phonemic-Chart.jpg
However, nowadays the input is most commonly represented using characters (some systems
still allow specifying some input words using phonemes to allow more control over the output).
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Time vs Frequency Domain Vet

A

Time Domain F:T Frequency Domain
> q y
s(t) S(w)

https: //miro.medium.com/v2/0*LrglrtygX7iK_UIN

A sound can be represented in the time domain, as a sequence of amplitudes, i.e., how the
signal changes over time. — 7 fule &Wu&){, gMle(M./V W\lAN49WM

Alternatively, it can be represented in a frequency domain, where a signal is represented by a
spectrum: the magnitudes and phases of sinusoids with a collection of frequencies.
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To convert a signal between time and frequency domains,
Fourier transform can be used. In case of discrete-time signal,
discrete Fourier transform (DFT) converts

® N complex-valued equally-spaced samples in the time

domain to |

, . FT .
.. . Time Domain Frequency Domain
® N complex-valued coefficients (magnitude and phase) of s(t) — Stw)

sinusoids with frequencies 1 Hz, 2 Hz, 3 Hz, .., N Hz.

Fast Fourier transform (FFT) is an algorithm that can perform discrete Fourier transform in
in O(Nlog N) time for N = 2% a power of two.

When the input signal consists of only real values, the upper half of the frequency spectrum is
determined by the lower half (zx_; = Z;, where T denotes complex conjugate); therefore, a

discrete signal of [N samples can be represented by sinusoids with frequencies of 1, 2, 3, .., %
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We can represent an arbitrary-length signal by a Input
spectrogram, a series of fixed-length spectral densities >
(i.e., for every sinusoid, we compute some real-valued Overlapping _
density, usually power density x?). Windew ity sy

Hop Overlap
Length Length

\
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_ Window Length

The spectrogram is computed using short-time Fourier
transform (STFT), where

Windowed

l
. . A t .
® DFT is performed on windows of fixed size, segments '”“\‘M"5‘)!"["{‘-!”””
® neighboring windows are shifted by a fixed hop
length.
FFT
For every window, the signal is composed of sinusoids Analysis
with frequencies up to half of the window length.
FFT Output 1
In speech synthesis, assuming a sampling frequency of T [T
22.05kHz or 24kHz, commonly used values are 1024 for © FFTLengm [T Output2
window length (denoted commonly as n_ fft; ~45ms) M s

and hop length of 256 (circa 11ms).
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Spectrogram L
To avoid discontinuities at the borders of the windows, . WWNWW’“'WWWWWW e
. . ) : A ALl | AR Lgal R
windowing is used. Sgnal - JFATITC Wil
Alvgindow of a signal without a windowing function (i.e. rectangular window) 00 Signal with a Hann window looks as if it would be continuous < Window Length >
| | T ] Ownsmng S S S
075 4 075 4 —=- Window function Window
0.50 0.50 1 Hop Overlap
s s Length | Length
- "*""’WMrﬂ»w
| |
~0.50 1 -0.50 | Windowed Iy
ors ] ors ] segments 4"%'4%”””’““
e https: //speechprocessingbook. aalto. fi/RepreseTrlvn}ea(?;c)ms/Windowing.htm/ L 1 | MJ‘ n"‘ "
A ."" ! Jf
Many possible window function e~ a |
_ _ Analysis
exist; we will use the Hann
window, which is as suitably FFTomwtr
- - f_-ﬂ- ’ .
scaled cosine function. Tos b
< *  FFT Output 2
. FFT Length J
. W‘W\WMWMWM FFT Output 3
https: /speec/?g;c()g;ssingbook. aalto.fi/ ‘\'A“' il ")“l":'.“""k ] W
F{epresentations/Windowing.htm/ https: //www.mathworks.com/help /dsp /ref/stft_output.pn
ps:// /help/dsp/ref/stft_output.png
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Mel Spectrogram

Linearly increasing frequencies are not perceived to be equal in distance from one another by
humans. > gmpuichys i)
> ompiy

Therefore, the mel scale (from the word melody) was proposed, so that the pitches were
judged by listeners to be in equal distance.

There are in fact several mel scales, S~~~ ' ~ '~ T | | T T T T T T T
the most commonly used is P00 L
oo e T
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To convert spectrogram to mel spectrogram, a collection of triangular filters equally-distanced
in the mel scale is used.

Frequency / mel

1263 1526 1789 2051 2314 2577
osl /[ \/ ANSVAN NG N— S - R
2ol [ \/- WA \ SN S N N S
2 04p )\ A NN NG e N
o2/ /] \ SN/ NN VAN S TN
00 : | | | ; |
1000 2000 3000 4000 5000 6000 7000 8000

Frequency / Hz

Finally, we usually take the logarithm of the power spectrum, given that humans percieve
loudness on logarithmic scale (i.e., dBs are also a logarithmic scale).
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Mel Spectrogram

Fig. 1 Waveform, spectrogram, and mel-spectrogram of a 10-s speech segment obtained from Google AudioSet. The mel-spectrogram, based on
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the auditory-based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram

Figure 1 of "Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset", https://doi.org/10.1186/513636-019-0152-1
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Speech Generation Pipeline Revisited Vet

"Hello, my name is Joseph."

l

Text Input

l

Mel Spectrogram

l

Wave Form

https: //miro.medium.com/v2/I1*QxNKQ_jgds7tKIDaHGRz7A.png

In the context of speech synthesis, a vocoder (combination of words voice and encoder) is the
second part of the pipeline, converting a (usually mel) spectrogram to a waveform.
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WaveNet
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WaveNet, proposed in 2016, was one of the first neural architectures that produced high quality
human speech.

Not many details were published in the original paper. From today's perspective, WaveNet is a
vocoder capable of converting mel spectrograms to waveforms.

In the following, we start the description without the mel spectrogram conditioning, but we add
it later.
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WaveNet

U=

Our goal is to model speech, using a convolutional auto-regressive model

X
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1gure 2: Visualization of a stack of causal convolutional layers.

Figure 2 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs,/1609.03499
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WaveNet &volm)z; Ut e Mebe il S QV&&ZO ehovs] S’IL‘;WM gioet uj/gﬁ/h UF\RL

However, to achieve larger receptive field, we utilize dilated (or atrous) convolutions:

© © © © 00 00 000 0 0 0 0,9 wd

Dilation = 8

Hidden Layer
Dilation = 4

9 Hidden Layer

Dilation = 2

Hidden Layer
Dilation = 1

Input

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Figure 3 of "WaveNet: A Generative Model for Raw Audio", https: //arxiv.org/abs/1609.03499
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Dilated Versus Regular Versus Strided Convolutions

https://github.com/vdumoulin /conv_arithmetic https://github.com/vdumoulin/conv_arithmetic

Dilated Convolution Transposed Strided Convolution

https://github.com/vdumoulin /conv._ arithmetic https://github.com/vdumoulin/conv_arithmetic
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Output Distribution 7@ 43 %, e’ e wa%
WaveNet generates audio with 16kHz frequency and 16-bit samples.

However, classification into 65 536 classes would not be efficient. Instead, WaveNet adopts the

p-law transformation, which passes the input samples in [—1, 1] range through the p-law

encoding X |

log(1 + 255|z|)
log(1 + 255) ™~

QC(SZ, .g'l’/‘?é/{v I (y{béj;h %&Ly.

sign(x)

>
e

and the resulting [—1, 1] range is linearly quantized into 256 buckets.

The model therefore predicts each samples using classification into 256 classes, and then uses
the inverse of the above transformation on the model predictions.

Mel Spectrograms WaveNet GLUs ParallelWaveNet Tacotron 2 FastSpeech TTSAlign 18/55



WaveNet — Architecture Uzt

Conv }
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Figure 4: Overview of the residual block and the entire architecture.
Figure 4 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499

The outputs of the dilated convo|u1§1 rE are passed through the gated actIszt/on unit:
o Uy ndn Wl Vie? Welwomm

z—ﬁ:anh Wf*a: @Vy g ¥ ).
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Global Conditioning
Global conditioning is performed by a single latent representation h, changing the gated
activation function to

z=tanh(Wsxax+Vih)©0c(W,xx+ V, h).

Local Conditioning

For local conditioning, we are given a time series h, possibly with a lower sampling frequency
(for example the mel spectrogram). We first use transposed convolutions y = f(h) to match
resolution and then compute analogously to global conditioning

z=tanh(W;ixx+Vixy) Oo(W,ysxx+V, xy).

The authors mention that using repetition instead of transposed convolution worked slightly
WOrse.

WaveNet
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The original paper did not mention hyperparameters, but later it was revealed that:

® 30 layers were used
O grouped into 3 dilation stacks with 10 layers each

O in a dilation stack, dilation rate increases by a factor of 2, starting with rate 1 and
reaching maximum dilation of 512

® kernel size of a dilated convolution is 2 (and increased to 3 in Parallel WaveNet)
® residual connection has dimension 512

® gating layer uses 2564256 hidden units

® the 1 X 1 convolutions in the output step produce 256 filters

® trained for 1 000000 steps using Adam with a fixed learning rate of 2e-4
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Best baseline | |WaveNet (L+F) | |No pref.

100
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o
I
I
|

Preference scores (%)

20.1

12.5
North American English  Mandarin Chinese

Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle)
two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat cor-
respond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative
baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet condi-
tioned on linguistic features only and that conditioned on both linguistic features and log F{y values.
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Gated Activations in Transformers

NPFL138, Lecture 14 Mel Spectrograms WaveNet GLUs ParallelWaveNet Tacotron 2 FastSpeech TTSAlign 23/55



Similar gated activations seem to work the best in Transformers, in the FFN module.

Activation Name Formula FFEN(x; W1, W,)

RelLU max (0, ) max (0, W)W,

GELU rP(x) GELU(xW )W,

Swish zo(x) Swish(xW )W,

There are several variants of the new gated activations:

Activation Name Formula FEN(x; W,V, W)
GLU (Gated Linear Unit) oW +b) ® (zV +¢) (c(xW) © £V )W,
ReGLU max(0,2W +b) © (£V +¢) (max(0,2W) o xV )W,
GEGLU GELU(xW +b) ® (£V +¢) | (GELU(xW) ® V)W,
SwiGLU Swish(zW +b) © (&V +¢) (Swish(zW) © £V )W,

GLUs 24 /55



Score | CoLA SST-2 MRPC MRPC STSB STSB QQP QQP MNLIm MNLImm QNLI RTE EM F1

Average | MCC Acc F1 Acc PCC SCC F1 Acc Acc Acc Acc Acc FFNReLU 83.18 90.87
FFNRorU 83.80 | 51.32 904.04 93.08 90.20 89.64 89.42 89.01 91.75  85.83 86.42 9281 8014 FFNgpLy 83.09  90.79
FFNGeLy 83.86 | 53.48 94.04 92.81  90.20 89.69 89.49 88.63 91.62  85.89 86.13 0239 8051  pRNg.. 8395 9076
FFNsuwish 83.60 | 49.79 93.69  92.31  89.46 89.20 88.98 88.84 91.67  85.22 85.02 92.33 8123 —pproo 9859069
FFNGLy 8420 | 49.16 9427 92.30  80.46  89.46 89.35 8879 91.62  86.36 86.18 92.02 84.12 : :
FFNGBGLU 84.12 | 53.65 93.92 9268  89.71 9026 90.13 89.11 91.85  86.15 8617 9281 7942 FEFNemcLu 83.55  91.12
FFNBilincar 83.79 | 51.02 94.38 92.28  89.46  90.06 89.84 88.95 91.69  86.90 87.08 9292 8195  FFNBilinear 83.82  91.06
FFNswicLU 84.36 | 51.59 93.92 92.23  88.97 90.32 90.13 89.14 91.87 86.45 86.47 92.93 8339 FFNgswiaLu 83.42  91.03
FFNReGLU 84.67 | 56.16 94.38 92.06  89.22  89.97 89.85 88.86 91.72  86.20 86.40 92.68 8159  FFNgecLU 83.53 91.18
Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ ‘ WMT EnDe
Vanilla Transformer 223M 11.17T 3.50 2.182 £+ 0.005 1.838 71.66 17.78 23.02 ‘ 26.62
GeLU 223M 11.17T 3.58 2.179 £+ 0.003 1.838 75.79 17.86 25.13 26.47
Swish 223 M 11.1T 3.62 2.186 4= 0.003 1.847 73.77 17.74 24.34 26.75
ELU 223 M 11.17T 3.56 2.270 £ 0.007 1.932 67.83 16.73 23.02 26.08
GLU 223M 11.1T 3.59 2.174 4+ 0.003 1.814 74.20 17.42 24.34 27.12
GeGLU 223M 11.1T 3.55 2.130 4 0.006 1.792 75.96 18.27 24.87 26.87
ReGLU 223 M 11.17T 3.57 2.145 + 0.004 1.803 76.17 18.36 24.87 27.02
SeLLU 223M 11.1T 3.55 2.315 £+ 0.004 1.948 68.76 16.76 22.75 25.99
SwiGLU 223 M 11.1T 3.53 2.127 4+ 0.003 1.789 76.00 18.20 24.34 27.02
LiGLU 223 M 11.1T 3.59 2.149 + 0.005 1.798 75.34 17.97 24.34 26.53
Sigmoid 223 M 11.1T 3.63 2.291 4+ 0.019 1.867 74.31 17.51 23.02 26.30
Softplus 223 M 11.17T 3.47 2.207 £0.011 1.850 72.45 17.65 24.34 26.89
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Parallel WaveNet
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Parallel WaveNet is an improvement of the original WaveNet by the same authors.

First, the output distribution was changed from 256 u-law values to a Mixture of Logistic
(suggested in another paper — Pixel CNN++, but reused in other architectures since):

\/\L/ ‘\“?\ \/ﬁ)gwo M q&wf Mﬂﬁa mmer
Zﬂgré/”?/ /2 vt [égé//&'m' Uity W X ~ Z@Logistic(@, —éi % ﬁ \Q ) d
{ L7 Clg\og\\ \/7&0/{/0% N /I/(WWM' W”C’%%W‘/ﬂj/ %/& /Q;///aé7é&/)&
/%/M‘L POF /ﬂ/y/m //44'%%/&4 Wﬂm/
The logistic distribution is a distribution with a o a@ cumulative >3 ?

LR

density function (where the mean and scale is parametrized by p and

Mo o o o

0.2 : TS S el
. : : §=

8). Therefore, we can write

Plalmp,8) = S, [0(x+0.5 —m) _a(az — 0.5 —M)],

S; S;

=
—
N
|

1

where we replace —0.5 and 0.5 in the edge cases by —o0 and o0.
In Parallel WaveNet teacher, 10 mixture components are used.
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- (\{va o, ZJQWOVM foelo g |- osi Aooa,

Auto-regressive (sequential) inference is extremely slow in WaveNet.

Instead, we model P(z;) as P(z;|2.;) = Logistic (z; u'(2<¢), s'(21)) for a random z

drawn from a logistic distribution Logistic(0, 1). Therefore, using the reparametrization trick,
Z

LE% — /Ll (z<t) + /2 st (Z<t). o ﬁ /fwwm(/j JPaZe

2 wsueh oé/mz Aestgmrfi s 2
Usually, one iteration of the algorithm does not produce godd enough results — consequently,
4 iterations were used by the authors. In further iterations, b o s o s W,
. S . o ok wizn b gt gulehi
zh = (2 +ai s (@), P
7 e fHomte Jon 7;%//7(7 > ,‘/7// Kot

After N iterations, P(x |z~4) is a logistic distribution with location ptt°® and scale s®°t:

N

N N
i (i i (i1 i (i
et =Y @) ([T, @L") and s =[5,
1=1 1=1

Jj>1

where we have denoted z as 2° for convenience.
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9 b ‘- 7.
] 0J e momeng /Wf‘é/ Olblio 1ip 7%44‘,/&,
The consequences of changing the model from z; = f(x:—1,...,1) to Y Xe %q

1 _ ol
P 747 F “Z)/”“/ WS/% Ly = H (Z<t) ‘|‘Zti_'i (Zi<t)i_1 ) 24) )Z
\ Ty = p' () + = -s(a:<t)
7() Mt LZM[ A 764

. bl 15hp, DA ()(
are. P Ui ge Arsnebie s’ TRcum ! W )

® During mference the prediction can be computed in paraIIeI because a:t depends only on

o

:13<t1, not on :13<t
® However, we cannot perform training in parallel. If we try maximizing the log-likelihood of

an input sequence 2! we need to find out which 2z sequence generates it.

© The 21 can be computed using .
1

© However, 29 depends not only on x; and a:% but also on z1; generally, z; depends on
2! and also on all Z-;, and can be computed only sequentially.

Therefore, WaveNet can perform parallel training and sequential inference, while the proposed
model can perform parallel inference but sequential training.
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Probability Density Distillation Urzt

The authors propose to train the network by a probability density distillation using a teacher
WaveNet (producing a mixture of logistic with 10 components) with KL-divergence as a loss.

WaveNet Teacher ' © 0 0 © 0 0 0 0O 0 0 0 0 0O 0 0.0 Teacher Output
O O O O O O O O O O C
Linguistic features -----»
O O O O O O O O O O
AAANANAY
O
T T T T T Generated Samples
?oooTooooTooooTooocT) xi:g(zi‘ij)
Student Output
O O O O O O O O
WaveNet Student Pla]2<:)
O O O O O O
Linguistic features ----- | O O O O O
T T T T T Input noise

O 0 0O 0O O 0O oo O o o o o o o o Zi
Figure 2 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433
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Therefore, instead of computing 2 from some gold @®,, we

® sample a random z;

® generate the output @;

® use the teacher WaveNet model to estimate the log-likelihood of @;
® update the student to match the log-likelihood of the teacher.

Denoting the teacher distribution as Pr and the student distribution as Pg, the loss is
Dx1,(Ps||Pr) = H(Ps, Pr) — H(Ps).
Therefore, we do not only minimize cross-entropy, but we also try to keep the entropy of the

student as high as possible — it is indeed crucial not to match just the mode of the teacher.

® (onsider a teacher generating white noise, where every sample comes from N(O, 1) —in
this case, the cross-entropy loss of a constant 0, complete silence, would be maximal.

In a sense, probability density distillation is similar to GANs. However, the teacher is kept fixed,
and the student does not attempt to fool it but to match its distribution instead.

ParallelWaveNet 31/55



Probability Density Distillation Details ezt

Because the entropy of a logistic distribution Logistic(u, s) is log s + 2, the entropy
term H(Pg) can be rewritten as follows:

" T
H(Ps) = E,Logistic(0,1) Z — logpg(:ctz<t)]
| t=1

+ 2T.

A
— IE’zr\JLogistic(O,l) Z log S(z<t7 0)
| =1

Therefore, this term can be computed without having to generate .
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Probability Density Distillation Details ezt
However, the cross-entropy term H(Ps, Pr) requires sampling from Pg to estimate: @

H(Ps, Pr) = | —Ps(z)log Pr(zx)

S

_PS(m) log PT(fL‘t|f‘3<t)

e

_PS(m<t)PS($t|w<t)PS(w>t|J3§t) 108 Pr ($t|m<t)

=

|
s 1 I
e

o [ [ ~Ps(ee-tog Pr(aens) [ Ps<w>t\m<t>]

\ . 4
~

1
T ( S b Fo it sl
= ZEPS(m<t)H(PS(mt|w<t)’ PT(xt{wa)) . 8—%’071(4 4/172;%.” /e&é{
=1
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PS,PT ZEPS (<) (PS($t\w<t)aPT($t!w<t))

We can therefore estimate H(Pg, Pr) b

® drawing a single sample @ from the student Py [a Logistic(pu**, 8*°*)]

® compute all Pp(x¢|®<;) from the teacher in parallel [mixture of logistic distributions],

® and finally evaluate H(Ps(x¢|®<¢), Pr(z¢|®<¢)) by sampling multiple different x; from
the Pg(x¢|®y).

The authors state that this unbiased estimator has a much lower variance than naively
evaluating a single sequence sample under the teacher using the original formulation.
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The Parallel WaveNet model consists of 4 iterations with 10, 10, 10, 30 layers, respectively.
The dimension of the residuals and the gating units is 64 (compared to 512 in WaveNet).

The Parallel WaveNet generates over 500k samples per second, compared to ~170 samples per
second of a regular WaveNet — more than a 1000 times speedup.

Method Subjective 5-scale MOS
16kHz, 8-bit p-law, 25h data:

LSTM-RNN parametric [27] 3.67 £ 0.098
HMM-driven concatenative [27] 3.86 £ 0.137
WaveNet [27] 421 £ 0.081
24kHz, 16-bit linear PCM, 65h data:

HMM-driven concatenative 4.19 + 0.097
Autoregressive WaveNet 4.41 £+ 0.069
Distilled WaveNet 441 £+ 0.078

For comparison, using a single iteration with 30 layers achieve MOS of 4.21.
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The Parallel WaveNet can be trained to generate speech of multiple speakers (using the global
conditioning). Because such a model needs larger capacity, it used 30 layers in every iteration

(instead of 10, 10, 10, 30).

Parametric | Concatenative | Distilled WaveNet
English speaker 1 (female - 65h data) 3.88 4.19 4.41
English speaker 2 (male - 21h data) 3.96 4.09 4.34
English speaker 3 (male - 10h data) 3.77 3.65 4.47
English speaker 4 (female - 9h data) 3.42 3.40 3.97
Japanese speaker (female - 28h data) 4.07 3.47 4.23

Table 2: Comparison of MOS scores on English and Japanese with multi-speaker distilled WaveNets.
Note that some speakers sounded less appealing to people and always get lower MOS, however
distilled parallel WaveNet always achieved significantly better results.

ParallelWaveNet
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To generate high-quality audio, the probability density distillation is not entirely sufficient.
The authors therefore introduce additional losses:

® power loss: ensures the power in different frequency bands is on average similar
between the generated speech and human speech. For a conditioned training data (z, ¢)

and WaveNet student g, the loss is
| STFT(g(2, ¢)) — STFT(x)||".

® perceptual loss: apart from the power in frequency bands, we can use a pre-trained
classifier to extract features from generated and human speech and add a loss measuring
their difference. The authors propose the loss as squared Frobenius norm of differences
between Gram matrices (uncentered covariance matrices) of features of a WaveNet-like
classifier predicting phones from raw audio.

® contrastive loss: to make the model respect the conditioning instead of generating outputs
with high likelihood independent on the conditioning, the authors propose a contrastive
distillation loss (v = 0.3 is used in the paper):

Dxr, (Ps(e1)||Pr(e1)) — ¥Dkw (Ps(er)]|Pr(e)).
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Preference Scores

versus baseline concatenative system

Method Win - Lose - Neutral
Losses used

KL + Power 60% - 15% - 25%
KL + Power + Perceptual 66% - 10% - 24%
KL + Power + Perceptual + Contrastive (= default) 65% - 9% - 26%

Table 3: Performance with respect to different combinations of loss terms. We report preference
comparison scores since their mean opinion scores tend to be very close and inconclusive.
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Tacotron 2
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Tacotron 2 model presents end-to-end speech synthesis directly from text. It consists of two
components trained separately:

® a3 seg2seq model processing input characters and generating mel spectrograms;
® 3 Parallel WaveNet generating the speech from Mel spectrograms.

T Waveform
Mel Spectrogram Samples
5 Conv Layer L _ [ WaveNet | Jé/ ) ,
Post-Net — L MoL | _ OCJ tne %géé@é
|

| — lyagspyy Lpolt,
\ A Linear ] C(7g ’ 7/[4 //& M%O
2L > LSTM Projection ;
[ Pre?%ee; ’ ‘ Layers - /”4 /M g

Linear
Projection ]_> Sifefp Bk

Location
Sensitive
Attention

Input Text Character 3 Conv Bidirectional
P Embedding Layers LSTM
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Waveform
Samples

The Mel spectrograms used in Tacotron 2 are fairly
standard:

Mel Spectrogram

5 Conv Layer
Post-Net

WaveNet
MoL

—

® The authors propose a frame size of 50ms, 12.5ms
frame hop, and a Hann window.

\4

e STFT magnitudes are transformed into 80-channel | 23 |»{ 2.5V
Mel scale spanning 175Hz to 7.6kHz, followed by a
log dynamic range compression (clipping input values
to at least 0.01).

Linear
Projection

Linear
Projection ]_’ S e

Location
Sensitive
Attention

Inbut Text Character 3 Conv Bidirectional
- Pu Embedding Layers LSTM
Architecture

The characters are represented using 512-dimensional embeddings, processed by 3

Conv+BN+RelLU with kernel size 5 and 512 channels, following by a single bi-directional
LSTM with 512 units.

A
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To make sequential processing of input characters easier, Mel Spectrogram Samples
Tacotron 2 utilizes location-sensitive attention, which is e :

an extension of the additive attention. While the additive =5
(Bahdanau) attention computes

WaveNet
MoL

—

Linear
Projection

Linear
Projection ]_’ S e

Q; — Attend(si_l, h), [ ZLZyer H 2LSTM
Pre-Net Layers
a;; = softmax (’vT tanh(Vh; + Ws;_1 + b)),

Location
Sensitive
Attention

A

the location-sensitive attention also inputs the previous
cummulative attention weights &; into the current o Ton |o{ Sharecter ) (300w ) (Bidrectona
attention computation:

o; = Attend(si_l, h, &7;_1).
In detail, the previous attention weights are processed by a 1-D convolution with kernel F':

a;j = softmax (v tanh(Vh; + Wsio1 + (F 8 &i-1); + b)),
—2 ‘\mltl/\l(/ ({Ol/ﬁll\l//wj m\/ MWA U/ﬂlé{/'?, m o
4#%()»%/01 b Mfmm/t/w /{Mhm
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Usually, the current state in the attention 8;_1 is

represented using the decoder cell state. However, in this
model, it is beneficial for the attention to has access to

the generated spectrogram.

Therefore, a separate attention RNN is used, which has
to goal to represent the “mel spectrogram generated so
far": its inputs are the decoder input (the result of the
pre-net) concatenated with the attention context vector

a?h, and the output of this attention RNN is used as
8;_1 in the attention computation.

Mel Spectrograms WaveNet GLUs ParallelWaveNet

5 Conv Layer
Post-Net

Mel Spectrogram

\4

2 Layer
Pre-Net

I

2LSTM

Linear
Projection

Waveform
Samples

WaveNet
MoL

—

Loicis Linear

Projection

Stop Token

-

Location

A

Sensitive
Attention

Input Text

_.[

3 Conv
Layers

Character
Embedding

1

Bidirectional
LSTM

—

Tacotron 2

FastSpeech
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Waveform

Mel Spectrogram Samples

The decoder predicts the spectrogram one frame at a
time. The predictions from the previous step are first
passed through a pre-net composed of 2 fully-connected
RelLU layers with 256 units and concatenated with

attention context vector. v
2 Layer

The decoder consists of 2 1024-dimensional LSTM cells I W
and its output is linearly projected to the predicted frame.

WaveNet
MoL

5 Conv Layer
Post-Net
A

Linear

Projection ]_’ S e

Location
Sensitive
Attention

A

The stop-token is predicted from a concatenation of
decoder output and attention context vector, followed by [ 7. L E - -
. . . . Embedding Layers LSTM

a sigmoid activation.

The predicted spectrogram frame is post-processed by a
post-net composed of 5 convolutional layers followed by batch normalization and tanh activation
(on all but the last layers), with 512 channels and kernel size 5.

The target objective is the MSE error of the spectrogram and the decoder output both before
and after the post-net.
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System MOS
Parametric 3.492 £+ 0.096
Tacotron (Griffin-Lim) 4.001 £ 0.087
Concatenative 4.166 = 0.091
WaveNet (Linguistic) 4.341 = 0.051
Ground truth 4.582 £ 0.053
Tacotron 2 (this paper) 4.526 = 0.066
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Tacotron 2
400
300
200

100

Much Worse Slightly  Aboutthe  Slightly Better Much
Worse Worse Same Better Better

Figure 2 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https: //arxiv.org/abs/1712.05884

You can listen to samples at https://google.github.io/tacotron/publications/tacotron2/
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Synthesis System MOS
Training Predicted Ground truth

Tacotron 2 (Linear + G-L) 3.944 4+ 0.091
Predicted 4.526 £ 0.066  4.449 + 0.060 Tacotron 2 (Linear + WaveNet) 4.510 £ 0.054
Ground truth  4.362 4 0.066  4.522 4 0.055 Tacotron 2 (Mel + WaveNet) 4.526 + 0.066

Table 2. Comparison of evaluated MOS for our system when Table 3. Comparison of evaluated MOS for Griffin-Lim vs. WaveNet

WaveNet trained on predicted/ground truth mel spectrograms are as a vocoder, and using 1,025-dimensional linear spectrograms vs.
made to synthesize from predicted/ground truth mel spectrograms.  80-dimensional mel spectrograms as conditioning inputs to WaveNet.

Total  Num Dilation  Receptive field

layers cycles cyclesize (samples/ ms) MOS
30 3 10 6,139 /2558  4.526 4 0.066
24 4 6 505/21.0 4.547 £ 0.056
12 2 6 253/10.5 4.481 4+ 0.059
30 30 1 61/2.5 3.930 £ 0.076

Table 4. WaveNet with various layer and receptive field sizes.

Tacotron 2
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FastSpeech
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[ Linear Layer ] A
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E Positional
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ConvlD + Norm
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(a) Feed-Forward Transformer (b) FFT Block (c) Length Regulator (d) Duration Predictor

Figure 1: The overall architecture for FastSpeech. (a). The feed-forward Transformer. (b). The
feed-forward Transformer block. (c). The length regulator. (d). The duration predictor. MSE loss
denotes the loss between predicted and extracted duration, which only exists in the training process.

FastSpeech performs non-autoregressive decoding of mel spectrogram from the input text.

A hard character—spectrogram frame alignment is computed using some existing system, and
the representation of input character is then repeated according to the alignment.
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Method | MOS

GT 441 + 0.08
GT (Mel + WaveGlow) 4.00 £ 0.09
Tacotron 2 [22] (Mel + WaveGlow) 3.86 +0.09
Merlin [28] (WORLD) 240 £ 0.13
Transformer TTS [14] (Mel + WaveGlow) | 3.88 £ 0.09
FastSpeech (Mel + WaveGlow) | 3.84 +0.08

Table 1: The MOS with 95% confidence intervals.

Method | Repeats | Skips | Error Sentences | Error Rate
Tacotron 2 4 11 12 24%
Transformer TTS 7 15 17 34%
FastSpeech |0 | 0 | 0 | 0%

Table 3: The comparison of robustness between FastSpeech and other systems on the 50 particularly
hard sentences. Each kind of word error is counted at most once per sentence.

Later improved in FastPitch and FastSpeech 2 systems.
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One TTS Alignment To Rule Them All
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One TTS Alignment To Rule Them All
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Figure 1: Overview of our Alignment Learning Framework: autoregressive models use a sequential attention mechanism to generate
alignments between text and mels. Non-autoregressive models encode text and mels using simple 1D convolutions and use pairwise Lo
distance to compute the alignments. The alignments represent the distribution P(s¢|x+) and the alignment objective (Equation 1).

Figure 1 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447
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One TTS Alignment To Rule Them All UL

Let s; denotes the i-th input text character, L o]

and @; be the t-th mel spectrogram frame.
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pro b a b I | Ity Of a | | m O n Oto n I C a | Ig n m e n tS b etwee n Figure 1: Overview of our Alignment Learning Framework: autoregressive models use a sequential attention mechanism to generate

alignments between text and mels. Non-autoregressive models encode text and mels using simple 1D convolutions and use pairwise Lo

1 . distance to compute the alignments. The alignments represent the distribution P(s;|z) and the alignment objective (Equation I).
t h em el S p eCt rog ram an d t h €in p u t teXt ) Figure 1 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447

I

T

L(0;X,s) = > 1] P(ci|:;0).

c any valid t=1
monotonic alignment

Such a loss can be computed by exploiting the CTC loss (given that efficient implementations
for it already exist).
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One TTS Alignment To Rule Them All
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(a) Flowtron (b) Flowtron with L 414y, (c) Tacotron 2 (d) Tacotron 2 with L qi3gr,

Figure 3: Converged soft alignments for Flowtron, Tacotron2. Alignment framework provides sharper and more connected alignments.

Table 1: Pairwise preference scores judged by human raters,
shown with 95% confidence intervals. Scores above 0.5 indicate
models trained with L q1ign Were preferred by majority of raters.

Figure 3 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108. 10447

fident and continuous alignments, and by extension, continuous
speech without repeating or missing words.

Table 1: Pairwise preference scores judged by human raters,
shown with 95% confidence intervals. Scores above 0.5 indicate
models trained with L .14, were preferred by majority of raters.

Model Alignment Framework vs Baseline

Tacotron 2 0.556 = 0.068
Flowtron (o = .5) 0.635 4+ 0.065
RAD-TTS (o = .5) 0.639 + 0.066
FastPitch 0.565 + 0.068
FastSpeech2 0.521 + 0.067

Table 1 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447
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For faster alignment convergence (which makes the full model training faster), during training
we might use a static 2D prior that is wider near the center and narrower near the corners.

The complete alignment is then the normalized product of the computed alignment and the

: .
alignment prior.
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Figure 2. Visualizations of the alignment attention matrices .A. The vertical axis represents text tokens from bottom to top. The horizontal

axis represents mel-frames from left to right. Fig. 2a shows the baseline soft attention map. Fig. 2c combines Fig. 2a with Fig. 2b to
penalize alignments straying too far from the diagonal. Fig. 2d is the most likely monotonic alignment extracted from Fig. 2¢ with Viterbi.
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