NPFL138, Lecture 14



# **Speech Synthesis**

Milan Straka

i ∰ May 20, 2025





EUROPEAN UNION European Structural and Investment Fund Operational Programme Research, Development and Education Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics



unless otherwise stated



### Mel Spectrograms

NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

TTSAlign

### **Speech Generation Pipeline**





https://miro.medium.com/v2/1\*QxNK0\_jgds7tKIDaHGRz7A.png

Tacotron 2

NPFL138, Lecture 14

Mel Spectrograms V

WaveNet GLUs

ParallelWaveNet

FastSpeech

### **Speech Generation Pipeline**

Ú F<sub>A</sub>L



https://www.englishclub.com/images/pronunciation/Phonemic-Chart.jpg

However, nowadays the input is most commonly represented using **characters** (some systems still allow specifying some input words using phonemes to allow more control over the output).

NPFL138, Lecture 14

WaveNet GLUs

ParallelWaveNet Tacotron 2

### **Time vs Frequency Domain**





A sound can be represented in the **time domain**, as a sequence of amplitudes, i.e., how the signal changes over time. -7 table funguine samplamite units form

Alternatively, it can be represented in a **frequency domain**, where a signal is represented by a *spectrum*: the magnitudes and phases of sinusoids with a collection of frequencies.

NPFL138, Lecture 14

et GLUs

ParallelWaveNet

### **Time vs Frequency Domain**

To convert a signal between time and frequency domains, Fourier transform can be used. In case of discrete-time signal, **discrete Fourier transform (DFT)** converts

- N complex-valued equally-spaced samples in the time domain to
- N complex-valued coefficients (magnitude and phase) of sinusoids with frequencies 1 Hz, 2 Hz, 3 Hz, ..., N Hz.



TTSAlign

Fast Fourier transform (FFT) is an algorithm that can perform discrete Fourier transform in in  $\mathcal{O}(N \log N)$  time for  $N = 2^k$  a power of two.

When the input signal consists of only real values, the upper half of the frequency spectrum is determined by the lower half  $(x_{N-i} = \overline{x_i})$ , where  $\overline{x}$  denotes complex conjugate); therefore, a discrete signal of N samples can be represented by sinusoids with frequencies of 1, 2, 3, ...,  $\frac{N}{2}$ .

NPFL138, Lecture 14

WaveNet GLUs



### Spectrogram

We can represent an arbitrary-length signal by a **spectrogram**, a series of fixed-length spectral densities (i.e., for every sinusoid, we compute some real-valued density, usually power density  $x^2$ ).

#### The spectrogram is computed using **short-time Fourier** transform (STFT), where

- DFT is performed on windows of fixed size,
- neighboring windows are shifted by a fixed hop length.

For every window, the signal is composed of sinusoids with frequencies up to half of the window length.

In speech synthesis, assuming a sampling frequency of 22.05kHz or 24kHz, commonly used values are 1024 for window length (denoted commonly as  $n_{fft}$ ; ~45ms) and hop length of 256 (circa 11ms).



WaveNet GLUs ParalleWaveNet

Tacotron 2

### Spectrogram



## To avoid discontinuities at the borders of the windows, *windowing* is used.



scaled cosine function.





Mel Spectrograms V

WaveNet GLUs

ParallelWaveNet

Tacotron 2

Input Signal

### Mel Spectrogram

Linearly increasing frequencies are not perceived to be equal in distance from one another by humans.

Therefore, the **mel scale** (from the word melody) was proposed, so that the pitches were judged by listeners to be in equal distance.

3200

There are in fact several mel scales, the most commonly used is





NPFL138, Lecture 14

Mel Spectrograms Way

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech



### Mel Spectrogram

To convert spectrogram to mel spectrogram, a collection of triangular filters equally-distanced in the mel scale is used.



https://siggigue.github.io/pyfilterbank//melbank-1\_00.pdf

Finally, we usually take the logarithm of the power spectrum, given that humans percieve loudness on logarithmic scale (i.e., dBs are also a logarithmic scale).

NPFL138, Lecture 14

Mel Spectrograms V

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

TTSAlign

### Mel Spectrogram





**Fig. 1** Waveform, spectrogram, and mel-spectrogram of a 10-s speech segment obtained from Google AudioSet. The mel-spectrogram, based on the auditory-based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based on the auditory-based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale based mel-frequency scale, provides better resolution for lower frequencies than the spectrogram based mel-frequency scale, provides better scale, provides better scale, provides better scale, provides based mel-frequencies than the spectrogram based mel-frequency scale, provides better scale, provides b

Figure 1 of "Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset", https://doi.org/10.1186/s13636-019-0152-1

Time

NPFL138, Lecture 14Mel SpectrogramsWaveNetGLUsParallelWaveNetTacotron 2FastSpeechTTSAlign11/55

### **Speech Generation Pipeline Revisited**





https://miro.medium.com/v2/1\*QxNK0\_jgds7tKIDaHGRz7A.png

In the context of speech synthesis, a **vocoder** (combination of words voice and encoder) is the second part of the pipeline, converting a (usually mel) spectrogram to a waveform.

NPFL138, Lecture 14

Mel Spectrograms WaveNet

GLUs

ParallelWaveNet

Tacotron 2

FastSpeech TTSAlign



NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

h TTSAlign



WaveNet, proposed in 2016, was one of the first neural architectures that produced high quality human speech.

Not many details were published in the original paper. From today's perspective, WaveNet is a vocoder capable of converting mel spectrograms to waveforms.

In the following, we start the description without the mel spectrogram conditioning, but we add it later.

WaveNet GLUs

ParallelWaveNet





NPFL138, Lecture 14

Mel Spectrograms W

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

TTSAlign

WaveNet and lie under to an dele under sousedy presto anchoring stephen vehillost upstoph

However, to achieve larger receptive field, we utilize **dilated** (or **atrous**) convolutions:



Figure 3: Visualization of a stack of *dilated* causal convolutional layers.

Figure 3 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499

NPFL138, Lecture 14

Mel Spectrograms WaveNet

et GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

TTSAlign

### **Dilated Versus Regular Versus Strided Convolutions**

Mel Spectrograms





ParallelWaveNet

FastSpeech

Tacotron 2

**TTSAlign** 

GLUs

WaveNet

### WaveNet – Output Distribution



### Output Distribution ~ 20 jaou ty x, literé chei gencount?

WaveNet generates audio with 16kHz frequency and 16-bit samples.

However, classification into  $65\,536$  classes would not be efficient. Instead, WaveNet adopts the  $\mu$ -law transformation, which passes the input samples in [-1,1] range through the  $\mu$ -law encoding  $\gamma$ 

$$\sim pourilhino u mobilin'
pro nemivicas premos  $sign(x) \frac{\log(1+255|x|)}{\log(1+255)}, \sim \frac{2asc}{\sqrt{2}}$$$

and the resulting  $\left[-1,1
ight]$  range is linearly quantized into 256 buckets.

The model therefore predicts each samples using classification into 256 classes, and then uses the inverse of the above transformation on the model predictions.



### WaveNet – Architecture



Figure 4: Overview of the residual block and the entire architecture.

Figure 4 of "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499

The outputs of the dilated convolutions are passed through the gated activation unit:  $z = tanh(W_f * x) \odot \sigma(W_g * x).$  NPFL138, Lecture 14 Mel Spectrograms WaveNet GLUs ParallelWaveNet Tacotron 2 FastSpeech TTSAlign



### Global Conditioning - - vstupy por CAN si vozsítime o mise conditions

Global conditioning is performed by a single latent representation h, changing the gated activation function to

$$oldsymbol{z} = anh(oldsymbol{W}_f * oldsymbol{x} + oldsymbol{V}_f oldsymbol{h}) \odot \sigma(oldsymbol{W}_g * oldsymbol{x} + oldsymbol{V}_g oldsymbol{h}).$$

### **Local Conditioning**

For local conditioning, we are given a time series h, possibly with a lower sampling frequency (for example the mel spectrogram). We first use transposed convolutions y = f(h) to match resolution and then compute analogously to global conditioning

$$oldsymbol{z} = anh(oldsymbol{W}_f * oldsymbol{x} + oldsymbol{V}_f * oldsymbol{y}) \odot \sigma(oldsymbol{W}_g * oldsymbol{x} + oldsymbol{V}_g * oldsymbol{y}).$$

The authors mention that using repetition instead of transposed convolution worked slightly worse.

NPFL138, Lecture 14

WaveNet GLUs

ParallelWaveNet T

The original paper did not mention hyperparameters, but later it was revealed that:

- 30 layers were used
  - $^{\circ}$  grouped into 3 dilation stacks with 10 layers each
  - in a dilation stack, dilation rate increases by a factor of 2, starting with rate 1 and reaching maximum dilation of 512
- kernel size of a dilated convolution is 2 (and increased to 3 in Parallel WaveNet)
- residual connection has dimension 512
- gating layer uses 256+256 hidden units
- the  $1\times 1$  convolutions in the output step produce 256 filters
- trained for  $1\,000\,000$  steps using Adam with a fixed learning rate of 2e-4

NPFL138, Lecture 14

WaveNet GLUs

ParallelWaveNet Tacotron 2

TTSAlign





Figure 5: Subjective preference scores (%) of speech samples between (top) two baselines, (middle) two WaveNets, and (bottom) the best baseline and WaveNet. Note that LSTM and Concat correspond to LSTM-RNN-based statistical parametric and HMM-driven unit selection concatenative baseline synthesizers, and WaveNet (L) and WaveNet (L+F) correspond to the WaveNet conditioned on linguistic features only and that conditioned on both linguistic features and log  $F_0$  values.

NPFL138, Lecture 14 Mel Spectrograms WaveNet GLUs ParallelWaveNet Tacotron 2 FastSpeech TTSAlign



### **Gated Activations in Transformers**

NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

h TTSAlign

### **Gated Activations in Transformers**



Similar gated activations seem to work the best in Transformers, in the FFN module.

| Activation Name | Formula      | $\mathrm{FFN}(x;oldsymbol{W}_1,oldsymbol{W}_2)$                       |
|-----------------|--------------|-----------------------------------------------------------------------|
| ReLU            | $\max(0,x)$  | $\max(0, oldsymbol{x}oldsymbol{W}_1)oldsymbol{W}_2$                   |
| GELU            | $x\Phi(x)$   | $\operatorname{GELU}({oldsymbol{x}}{oldsymbol{W}}_1){oldsymbol{W}}_2$ |
| Swish           | $x\sigma(x)$ | $\mathrm{Swish}(oldsymbol{x}oldsymbol{W}_1)oldsymbol{W}_2$            |

There are several variants of the new gated activations:

| Activation Name         | Formula                                                                                                        | $\mathrm{FFN}(x;oldsymbol{W},oldsymbol{V},oldsymbol{W}_2)$                                   |
|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| GLU (Gated Linear Unit) | $\sigma(oldsymbol{x}oldsymbol{W}+oldsymbol{b})\odot(oldsymbol{x}oldsymbol{V}+oldsymbol{c})$                    | $(\sigma(oldsymbol{x}oldsymbol{W})\odotoldsymbol{x}oldsymbol{V})oldsymbol{W}_2$              |
| ReGLU                   | $\max(0, oldsymbol{x}oldsymbol{W}+oldsymbol{b}) \odot (oldsymbol{x}oldsymbol{V}+oldsymbol{c})$                 | $(\max(0, oldsymbol{x}oldsymbol{W}) \odot oldsymbol{x}oldsymbol{V})oldsymbol{W}_2$           |
| GEGLU                   | $\operatorname{GELU}({oldsymbol x}{oldsymbol W}+{oldsymbol b})\odot({oldsymbol x}{oldsymbol V}+{oldsymbol c})$ | $(\operatorname{GELU}(oldsymbol{x}oldsymbol{W})\odotoldsymbol{x}oldsymbol{V})oldsymbol{W}_2$ |
| SwiGLU                  | $\mathrm{Swish}(oldsymbol{x}oldsymbol{W}+oldsymbol{b})\odot(oldsymbol{x}oldsymbol{V}+oldsymbol{c})$            | $(\mathrm{Swish}(oldsymbol{x}oldsymbol{W})\odotoldsymbol{x}oldsymbol{V})oldsymbol{W}_2$      |

NPFL138, Lecture 14

ParallelWaveNet Tacotron 2

### **Gated Activations in Transformers**

| Ú<br>F <sub>A</sub> L |
|-----------------------|
|-----------------------|

|                                    | Score   | CoLA  | SST-2 | MRPC  | MRPC  | $\mathbf{STSB}$ | STSB           | QQP   | QQP   | MNLIm | MNLImm | QNLI  | RTE   |                                    | $\mathbf{E}\mathbf{M}$ | F1             |
|------------------------------------|---------|-------|-------|-------|-------|-----------------|----------------|-------|-------|-------|--------|-------|-------|------------------------------------|------------------------|----------------|
|                                    | Average | MCC   | Acc   | F1    | Acc   | $\mathbf{PCC}$  | $\mathbf{SCC}$ | F1    | Acc   | Acc   | Acc    | Acc   | Acc   | $\mathrm{FFN}_{\mathrm{ReLU}}$     | 83.18                  | 90.87          |
| $\mathrm{FFN}_{\mathrm{ReLU}}$     | 83.80   | 51.32 | 94.04 | 93.08 | 90.20 | 89.64           | 89.42          | 89.01 | 91.75 | 85.83 | 86.42  | 92.81 | 80.14 | $\mathrm{FFN}_{\mathrm{GELU}}$     | 83.09                  | 90.79          |
| $\mathrm{FFN}_{\mathrm{GELU}}$     | 83.86   | 53.48 | 94.04 | 92.81 | 90.20 | 89.69           | 89.49          | 88.63 | 91.62 | 85.89 | 86.13  | 92.39 | 80.51 | $\mathrm{FFN}_{\mathrm{Swish}}$    | 83.25                  | 90.76          |
| $\mathrm{FFN}_{\mathrm{Swish}}$    | 83.60   | 49.79 | 93.69 | 92.31 | 89.46 | 89.20           | 88.98          | 88.84 | 91.67 | 85.22 | 85.02  | 92.33 | 81.23 | FFN <sub>GLU</sub>                 | 82.88                  | 90.69          |
| $FFN_{GLU}$                        | 84.20   | 49.16 | 94.27 | 92.39 | 89.46 | 89.46           | 89.35          | 88.79 | 91.62 | 86.36 | 86.18  | 92.92 | 84.12 |                                    |                        | 90.09<br>91.12 |
| $FFN_{GEGLU}$                      | 84.12   | 53.65 | 93.92 | 92.68 | 89.71 | 90.26           | 90.13          | 89.11 | 91.85 | 86.15 | 86.17  | 92.81 | 79.42 | $FFN_{GEGLU}$                      | 83.55                  | -              |
| $\mathrm{FFN}_{\mathrm{Bilinear}}$ | 83.79   | 51.02 | 94.38 | 92.28 | 89.46 | 90.06           | 89.84          | 88.95 | 91.69 | 86.90 | 87.08  | 92.92 | 81.95 | $\mathrm{FFN}_{\mathrm{Bilinear}}$ | 83.82                  | 91.06          |
| $FFN_{SwiGLU}$                     | 84.36   | 51.59 | 93.92 | 92.23 | 88.97 | 90.32           | 90.13          | 89.14 | 91.87 | 86.45 | 86.47  | 92.93 | 83.39 | $\mathrm{FFN}_{\mathrm{SwiGLU}}$   | 83.42                  | 91.03          |
| $\mathrm{FFN}_{\mathrm{ReGLU}}$    | 84.67   | 56.16 | 94.38 | 92.06 | 89.22 | 89.97           | 89.85          | 88.86 | 91.72 | 86.20 | 86.40  | 92.68 | 81.59 | $\mathrm{FFN}_{\mathrm{ReGLU}}$    | 83.53                  | 91.18          |

 Table 2 of "GLU Variants Improve Transformer", https://arxiv.org/abs/2002.05202
 Table 4 of "GLU Variants Improve Transformer", https://arxiv.org/abs/2002.05202

https://arxiv.org/abs/2002.05202

| Model                     | Params     | $\mathbf{Ops}$ | $\mathrm{Step/s}$ | Early loss        | Final loss | SGLUE           | XSum      | $\mathbf{WebQ}$ | WMT EnDe                 |
|---------------------------|------------|----------------|-------------------|-------------------|------------|-----------------|-----------|-----------------|--------------------------|
| Vanilla Transformer       | 223M       | 11.1T          | 3.50              | $2.182\pm0.005$   | 1.838      | 71.66           | 17.78     | 23.02           | 26.62                    |
| GeLU                      | 223M       | 11.1T          | 3.58              | $2.179 \pm 0.003$ | 1.838      | 75.79           | 17.86     | 25.13           | 26.47                    |
| Swish                     | 223M       | 11.1T          | 3.62              | $2.186 \pm 0.003$ | 1.847      | 73.77           | 17.74     | 24.34           | 26.75                    |
| ELU                       | 223M       | 11.1T          | 3.56              | $2.270\pm0.007$   | 1.932      | 67.83           | 16.73     | 23.02           | 26.08                    |
| GLU                       | 223M       | 11.1T          | 3.59              | $2.174 \pm 0.003$ | 1.814      | 74.20           | 17.42     | 24.34           | 27.12                    |
| $\operatorname{GeGLU}$    | 223M       | 11.1T          | 3.55              | $2.130\pm0.006$   | 1.792      | 75.96           | 18.27     | 24.87           | 26.87                    |
| $\operatorname{ReGLU}$    | 223M       | 11.1T          | 3.57              | $2.145\pm0.004$   | 1.803      | 76.17           | 18.36     | 24.87           | 27.02                    |
| $\operatorname{SeLU}$     | 223M       | 11.1T          | 3.55              | $2.315\pm0.004$   | 1.948      | 68.76           | 16.76     | 22.75           | 25.99                    |
| SwiGLU                    | 223M       | 11.1T          | 3.53              | $2.127 \pm 0.003$ | 1.789      | <b>76.00</b>    | 18.20     | 24.34           | 27.02                    |
| LiGLU                     | 223M       | 11.1T          | 3.59              | $2.149 \pm 0.005$ | 1.798      | 75.34           | 17.97     | 24.34           | 26.53                    |
| Sigmoid                   | 223M       | 11.1T          | 3.63              | $2.291 \pm 0.019$ | 1.867      | 74.31           | 17.51     | 23.02           | 26.30                    |
| $\operatorname{Softplus}$ | 223M       | 11.1T          | 3.47              | $2.207 \pm 0.011$ | 1.850      | 72.45           | 17.65     | 24.34           | 26.89                    |
| $\frown$ $\downarrow$     | 1 11       | Table 1        | of "Do Transf     |                   | <u>^</u>   | lementations an |           | 0               | arxiv.org/abs/2102.11972 |
| Proste                    | ubeché plu | í že           | ported Unit       | rs jsou obeché    | leps' net  | jen obyčeji     | ny vellan | nelinenn        | (tz).                    |

NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

h TTSAlign

1



### Parallel WaveNet

NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

TTSAlign

### **Parallel WaveNet**



Parallel WaveNet is an improvement of the original WaveNet by the same authors.

First, the output distribution was changed from 256  $\mu$ -law values to a Mixture of Logistic (suggested in another paper – PixelCNN++, but reused in other architectures since):

The logistic distribution is a distribution with a  $\sigma$  as cumulative density function (where the mean and scale is parametrized by  $\mu$  and s). Therefore, we can write

$$P(x|oldsymbol{\pi},oldsymbol{\mu},oldsymbol{s}) = \sum_i \pi_i igg[ \sigma \Big( rac{x+0.5-\mu_i}{s_i} \Big) - \sigma \Big( rac{x-0.5-\mu_i}{s_i} \Big) igg]$$

where we replace -0.5 and 0.5 in the edge cases by  $-\infty$  and  $\infty$ .

In Parallel WaveNet teacher, 10 mixture components are used.



Logisticpdfunction.svg

NPFL138, Lecture 14

Mel Spectrograms WaveNet

: GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

### Parallel WaveNet - d'in rehumentnimen 20 micontini tinho gen. 1. sec. asi 1029.

Auto-regressive (sequential) inference is extremely slow in WaveNet.

Instead, we model  $P(x_t)$  as  $P(x_t | \boldsymbol{z}_{< t}) = \text{Logistic}(x_t; \mu^1(\boldsymbol{z}_{< t}), s^1(\boldsymbol{z}_{< t}))$  for a random  $\boldsymbol{z}$  drawn from a logistic distribution  $\text{Logistic}(\mathbf{0}, \mathbf{1})$ . Therefore, using the reparametrization trick,

$$x_t^1 = \mu^1(\boldsymbol{z}_{< t}) + \overline{z_t} \cdot s^1(\boldsymbol{z}_{< t}).$$

Usually, one iteration of the algorithm does not produce good enough results - consequently, 4 iterations were used by the authors. In further iterations,

$$x_t^i = \mu^i(oldsymbol{x}_{< t}^{i-1}) + x_t^{i-1} \cdot s^i(oldsymbol{x}_{< t}^{i-1}).$$
 The mixing the particular to particular

After N iterations,  $P(\boldsymbol{x}_t^N | \boldsymbol{z}_{< t})$  is a logistic distribution with location  $\boldsymbol{\mu}^{ ext{tot}}$  and scale  $\boldsymbol{s}^{ ext{tot}}$ :

$$\mu^{ ext{tot}}_t = \sum_{i=1}^N \mu^i(oldsymbol{x}_{< t}^{i-1}) \cdot \Big(\prod_{j>i}^N s^j(oldsymbol{x}_{< t}^{j-1})\Big) ~~ ext{and}~~ s^{ ext{tot}}_t = \prod_{i=1}^N s^i(oldsymbol{x}_{< t}^{i-1}),$$

where we have denoted  $oldsymbol{z}$  as  $oldsymbol{x}^0$  for convenience.

NPFL138, Lecture 14

Tacotron 2 FastSpeech

### Parallel WaveNet Ted se mensine model duleto hir trénuje



The consequences of changing the model from  $x_t = f(x_{t-1}, \ldots, x_1)$  to  $\chi_1 \chi_2 \chi_2$  $\left| \begin{array}{c} 2 \\ 2 \\ 2 \end{array} \right|$ 

are:

- During inference, the prediction can be computed in parallel, because  $x_t^i$  depends only on  $oldsymbol{x}_{< t}^{i-1}$ , not on  $x_{< t}^{i}$ .
- However, we cannot perform training in parallel. If we try maximizing the log-likelihood of an input sequence  $\boldsymbol{x}^1$ , we need to find out which  $\boldsymbol{z}$  sequence generates it.
  - $^{\circ}$  The  $z_1$  can be computed using  $x_1^1$ .
  - $^{\circ}$  However,  $z_2$  depends not only on  $x_1^1$  and  $x_2^1$ , but also on  $z_1$ ; generally,  $z_t$  depends on  $m{x}^1$  and also on all  $m{z}_{< t}$ , and can be computed only sequentially.

Therefore, WaveNet can perform parallel training and sequential inference, while the proposed model can perform parallel inference but sequential training.

NPFL138, Lecture 14

### **Probability Density Distillation**

The authors propose to train the network by a **probability density distillation** using a teacher WaveNet (producing a mixture of logistic with 10 components) with KL-divergence as a loss.



### **Probability Density Distillation**

Therefore, instead of computing  $oldsymbol{z}$  from some gold  $oldsymbol{x}_g$ , we

- sample a random *z*;
- generate the output  $oldsymbol{x}$ ;
- use the teacher WaveNet model to estimate the log-likelihood of  $oldsymbol{x}$ ;
- update the student to match the log-likelihood of the teacher.

Denoting the teacher distribution as  $P_T$  and the student distribution as  $P_S$ , the loss is the teacher distribution as  $P_T$  and the student distribution as  $P_S$ , the loss is

$$D_{ ext{KL}}(P_S||P_T) = H(P_S,P_T) - H(P_S).$$
 ) protoce student in the primately

Therefore, we do not only minimize cross-entropy, but we also try to keep the entropy of the student as high as possible – it is indeed crucial not to match just the mode of the teacher.

• Consider a teacher generating white noise, where every sample comes from  $\mathcal{N}(0,1)$  – in this case, the cross-entropy loss of a constant **0**, complete silence, would be maximal.

In a sense, probability density distillation is similar to GANs. However, the teacher is kept fixed, and the student does not attempt to fool it but to match its distribution instead.

### **Probability Density Distillation Details**

Because the entropy of a logistic distribution  $\text{Logistic}(\mu, s)$  is  $\log s + 2$ , the entropy term  $H(P_S)$  can be rewritten as follows:

$$egin{aligned} H(P_S) &= \mathbb{E}_{z \sim ext{Logistic}(0,1)} \left[ \sum_{t=1}^T -\log p_S(x_t | oldsymbol{z}_{< t}) 
ight] \ &= \mathbb{E}_{z \sim ext{Logistic}(0,1)} \left[ \sum_{t=1}^T \log s(oldsymbol{z}_{< t},oldsymbol{ heta}) 
ight] + 2T. \end{aligned}$$

Therefore, this term can be computed without having to generate  $\boldsymbol{x}$ .

WaveNet GLUs

ParallelWaveNet



### **Probability Density Distillation Details**

However, the cross-entropy term  $H(P_S, P_T)$  requires sampling from  $P_S$  to estimate:

$$\begin{split} H(P_{S},P_{T}) &= \int_{\boldsymbol{x}}^{T} -P_{S}(\boldsymbol{x}) \log P_{T}(\boldsymbol{x}) \\ &= \sum_{t=1}^{T} \int_{\boldsymbol{x}}^{T} -P_{S}(\boldsymbol{x}) \log P_{T}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}) \\ &= \sum_{t=1}^{T} \int_{\boldsymbol{x}}^{T} -P_{S}(\boldsymbol{x}_{< t}) P_{S}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}) P_{S}(\boldsymbol{x}_{> t} | \boldsymbol{x}_{\le t}) \log P_{T}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}) \\ &= \sum_{t=1}^{T} \mathbb{E}_{P_{S}(\boldsymbol{x}_{< t})} \left[ \int_{\boldsymbol{x}_{t}}^{T} -P_{S}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}) \log P_{T}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}) \int_{\boldsymbol{x}_{> t}}^{T} \frac{P_{S}(\boldsymbol{x}_{> t} | \boldsymbol{x}_{\le t})}{1} \right] \\ &= \sum_{t=1}^{T} \mathbb{E}_{P_{S}(\boldsymbol{x}_{< t})} \left[ \int_{\boldsymbol{x}_{t}}^{T} -P_{S}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}) \log P_{T}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}) \int_{\boldsymbol{x}_{> t}}^{T} \frac{P_{S}(\boldsymbol{x}_{> t} | \boldsymbol{x}_{\le t})}{1} \right] \\ &= \sum_{t=1}^{T} \mathbb{E}_{P_{S}(\boldsymbol{x}_{< t})} \left[ H\left(P_{S}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t}), P_{T}(\boldsymbol{x}_{t} | \boldsymbol{x}_{< t})\right) \right] \int_{\boldsymbol{x}_{s \in t}}^{T} \frac{P_{S}(\boldsymbol{x}_{> t} | \boldsymbol{x}_{\le t})}{P_{S}(\boldsymbol{x}_{< t} | \boldsymbol{x}_{< t})} \right] \\ \text{MPEL138, Lecture 14} \qquad \text{Med Spectrograms} \qquad \text{Warket GLUs ParallelWarket Tactor 2 FastSpeech TTSAlign} \end{split}$$

### **Probability Density Distillation Details**



$$H(P_S,P_T) = \sum_{t=1}^T \mathbb{E}_{P_S(oldsymbol{x}_{< t})} H\Big(P_S(x_t|oldsymbol{x}_{< t}), P_T(x_t|oldsymbol{x}_{< t})\Big)$$

We can therefore estimate  $H(P_S, P_T)$  by:

- drawing a single sample  $m{x}$  from the student  $P_S$  [a Logistic( $m{\mu}^{ ext{tot}}, m{s}^{ ext{tot}})$ ],
- compute all  $P_T(x_t | \boldsymbol{x}_{< t})$  from the teacher in parallel [mixture of logistic distributions],
- and finally evaluate  $H(P_S(x_t|\boldsymbol{x}_{< t}), P_T(x_t|\boldsymbol{x}_{< t}))$  by sampling multiple different  $x_t$  from the  $P_S(x_t|\boldsymbol{x}_{< t})$ .

The authors state that this unbiased estimator has a much lower variance than naively evaluating a single sequence sample under the teacher using the original formulation.

NPFL138, Lecture 14

eNet GLUs

ParallelWaveNet

### **Parallel WaveNet**



The Parallel WaveNet model consists of 4 iterations with 10, 10, 10, 30 layers, respectively. The dimension of the residuals and the gating units is 64 (compared to 512 in WaveNet).

The Parallel WaveNet generates over 500k samples per second, compared to  $\sim$ 170 samples per second of a regular WaveNet – more than a 1000 times speedup.

| Method                                                                                                                | Subjective 5-scale MOS                                                              |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <b>16kHz, 8-bit μ-law, 25h data</b> :<br>LSTM-RNN parametric [27]<br>HMM-driven concatenative [27]<br>WaveNet [27]    | $\begin{array}{c} 3.67 \pm 0.098 \\ 3.86 \pm 0.137 \\ 4.21 \pm 0.081 \end{array}$   |
| <b>24kHz, 16-bit linear PCM, 65h data:</b><br>HMM-driven concatenative<br>Autoregressive WaveNet<br>Distilled WaveNet | $\begin{array}{c c} 4.19 \pm 0.097 \\ 4.41 \pm 0.069 \\ 4.41 \pm 0.078 \end{array}$ |

Table 1 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433

For comparison, using a single iteration with 30 layers achieve MOS of 4.21.

NPFL138, Lecture 14

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

### **Parallel WaveNet**



The Parallel WaveNet can be trained to generate speech of multiple speakers (using the global conditioning). Because such a model needs larger capacity, it used 30 layers in every iteration (instead of 10, 10, 10, 30).

|                                       | Parametric | Concatenative | Distilled WaveNet |
|---------------------------------------|------------|---------------|-------------------|
| English speaker 1 (female - 65h data) | 3.88       | 4.19          | 4.41              |
| English speaker 2 (male - 21h data)   | 3.96       | 4.09          | 4.34              |
| English speaker 3 (male - 10h data)   | 3.77       | 3.65          | 4.47              |
| English speaker 4 (female - 9h data)  | 3.42       | 3.40          | 3.97              |
| Japanese speaker (female - 28h data)  | 4.07       | 3.47          | 4.23              |

Table 2: Comparison of MOS scores on English and Japanese with multi-speaker distilled WaveNets. Note that some speakers sounded less appealing to people and always get lower MOS, however distilled parallel WaveNet always achieved significantly better results.

Table 2 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433

WaveNet GLUs

ParallelWaveNet
### Parallel WaveNet – Additional Losses

To generate high-quality audio, the probability density distillation is not entirely sufficient. The authors therefore introduce additional losses:

 power loss: ensures the power in different frequency bands is on average similar between the generated speech and human speech. For a conditioned training data (x, c) and WaveNet student g, the loss is

$$ig\|\operatorname{STFT}(g(oldsymbol{z},oldsymbol{c})) - \operatorname{STFT}(oldsymbol{x})ig\|^2.$$

- **perceptual loss**: apart from the power in frequency bands, we can use a pre-trained classifier to extract features from generated and human speech and add a loss measuring their difference. The authors propose the loss as squared Frobenius norm of differences between Gram matrices (uncentered covariance matrices) of features of a WaveNet-like classifier predicting phones from raw audio.
- contrastive loss: to make the model respect the conditioning instead of generating outputs with high likelihood independent on the conditioning, the authors propose a contrastive distillation loss ( $\gamma = 0.3$  is used in the paper):

$$D_{ ext{KL}}ig(P_S(oldsymbol{c}_1)||P_T(oldsymbol{c}_1)ig) - \gamma D_{ ext{KL}}ig(P_S(oldsymbol{c}_1)||P_T(oldsymbol{c}_2)ig).$$

TTSAlign



| Method                                               | Preference Scores<br>versus baseline concatenative system<br>Win - Lose - Neutral |
|------------------------------------------------------|-----------------------------------------------------------------------------------|
| Losses used<br>KL + Power<br>KL + Power + Perceptual | 60% - 15% - 25%<br>66% - 10% - 24%                                                |
| KL + Power + Perceptual + Contrastive (= default)    | 65% - 9% - 26%                                                                    |

Table 3: Performance with respect to different combinations of loss terms. We report preference comparison scores since their mean opinion scores tend to be very close and inconclusive.

 Table 3 of "Parallel WaveNet: Fast High-Fidelity Speech Synthesis", https://arxiv.org/abs/1711.10433

NPFL138, Lecture 14

Mel Spectrograms W

WaveNet GLUs

ParallelWaveNet





NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2

FastSpeech

TTSAlign

NPFL138, Lecture 14

Tacotron 2 model presents end-to-end speech synthesis directly from text. It consists of two components trained separately:

- a seq2seq model processing input characters and generating mel spectrograms;
- a Parallel WaveNet generating the speech from Mel spectrograms.



#### NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs ParalleWaveNet

2 Layer

Pre-Net

41/55

## **Architecture**

The characters are represented using 512-dimensional embeddings, processed by 3 Conv+BN+ReLU with kernel size 5 and 512 channels, following by a single bi-directional LSTM with 512 units.

The Mel spectrograms used in Tacotron 2 are fairly standard:

- The authors propose a frame size of 50ms, 12.5ms frame hop, and a Hann window.
- STFT magnitudes are transformed into 80-channel  $\bullet$ Mel scale spanning 175Hz to 7.6kHz, followed by a log dynamic range compression (clipping input values) to at least 0.01).



TTSAlign

Mel Spectrogram



Waveform

Samples

US

NPFL

To make sequential processing of input characters easier, Tacotron 2 utilizes *location-sensitive attention*, which is an extension of the additive attention. While the additive (Bahdanau) attention computes

$$oldsymbol{lpha}_i = \operatorname{Attend}(oldsymbol{s}_{i-1},oldsymbol{h}), \ lpha_{ij} = \operatorname{softmax}ig(oldsymbol{v}^ op \operatorname{tanh}(oldsymbol{V}oldsymbol{h}_j+oldsymbol{W}oldsymbol{s}_{i-1}+oldsymbol{b})ig),$$

the location-sensitive attention also inputs the previous cummulative attention weights  $\hat{\alpha}_i$  into the current attention computation:

$$oldsymbol{lpha}_i = \operatorname{Attend}(oldsymbol{s}_{i-1},oldsymbol{h},oldsymbol{\hat{lpha}}_{i-1}).$$



$$\alpha_{ij} = \operatorname{softmax} \left( \boldsymbol{v}^{\top} \tanh(\boldsymbol{V}\boldsymbol{h}_j + \boldsymbol{W}\boldsymbol{s}_{i-1} + (\boldsymbol{F} \bigotimes \hat{\boldsymbol{\alpha}}_{i-1})_j + \boldsymbol{b}) \right),$$
ng 32-dimensional 1D convolution with kernel size 31. -> tallel down, also affentian vide h, m co  
affendavily i minilin linh  
38, Lecture 14 Mel Spectrograms WaveNet GLUS ParallelWaveNet Tacotron 2 FastSpeech TTSAlign 42/55



Ú F<sub>A</sub>L

Usually, the current state in the attention  $oldsymbol{s}_{i-1}$  is

represented using the decoder cell state. However, in this model, it is beneficial for the attention to has access to the generated spectrogram.

Therefore, a separate attention RNN is used, which has to goal to represent the "mel spectrogram generated so far": its inputs are the decoder input (the result of the pre-net) concatenated with the attention context vector  $\boldsymbol{\alpha}_i^T \boldsymbol{h}$ , and the output of this attention RNN is used as  $\boldsymbol{s}_{i-1}$  in the attention computation.



WaveNet GLUs

ParallelWaveNet

Tacotron 2

TTSAlign



The decoder predicts the spectrogram one frame at a time. The predictions from the previous step are first passed through a *pre-net* composed of 2 fully-connected ReLU layers with 256 units and concatenated with attention context vector.

The decoder consists of 2 1024-dimensional LSTM cells and its output is linearly projected to the predicted frame.

The stop-token is predicted from a concatenation of decoder output and attention context vector, followed by a sigmoid activation.

The predicted spectrogram frame is post-processed by a *post-net* composed of 5 convolutional layers followed by batch normalization and tanh activation (on all but the last layers), with 512 channels and kernel size 5.

The target objective is the MSE error of the spectrogram and the decoder output both before and after the post-net.



TTSAlign



| System                 | MOS             |
|------------------------|-----------------|
| Parametric             | $3.492\pm0.096$ |
| Tacotron (Griffin-Lim) | $4.001\pm0.087$ |
| Concatenative          | $4.166\pm0.091$ |
| WaveNet (Linguistic)   | $4.341\pm0.051$ |
| Ground truth           | $4.582\pm0.053$ |

Tacotron 2 (this paper)  $4.526 \pm 0.066$ 

Table 1 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884

NPFL138, Lecture 14

Mel Spectrograms W

WaveNet GLUs

ParallelWaveNet





You can listen to samples at <u>https://google.github.io/tacotron/publications/tacotron2/</u>

NPFL138, Lecture 14

et GLUs

ParallelWaveNet

|                           | Synthesis                                                         |                                                                   |  |
|---------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Training                  | Predicted                                                         | Ground truth                                                      |  |
| Predicted<br>Ground truth | $\begin{array}{c} 4.526 \pm 0.066 \\ 4.362 \pm 0.066 \end{array}$ | $\begin{array}{c} 4.449 \pm 0.060 \\ 4.522 \pm 0.055 \end{array}$ |  |

| System                        | MOS               |
|-------------------------------|-------------------|
| Tacotron 2 (Linear + G-L)     | $3.944 \pm 0.091$ |
| Tacotron 2 (Linear + WaveNet) | $4.510\pm0.054$   |
| Tacotron 2 (Mel + WaveNet)    | $4.526 \pm 0.066$ |

**Table 2**. Comparison of evaluated MOS for our system when WaveNet trained on predicted/ground truth mel spectrograms are made to synthesize from predicted/ground truth mel spectrograms.

 Table 2 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram

 Predictions", https://arxiv.org/abs/1712.05884

**Table 3**. Comparison of evaluated MOS for Griffin-Lim vs. WaveNet as a vocoder, and using 1,025-dimensional linear spectrograms vs. 80-dimensional mel spectrograms as conditioning inputs to WaveNet.

FastSpeech

 Table 3 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884

| Total<br>layers | Num<br>cycles | Dilation cycle size | Receptive field<br>(samples / ms) | MOS               |
|-----------------|---------------|---------------------|-----------------------------------|-------------------|
| 30              | 3             | 10                  | 6,139 / 255.8                     | $4.526 \pm 0.066$ |
| 24              | 4             | 6                   | 505 / 21.0                        | $4.547\pm0.056$   |
| 12              | 2             | 6                   | 253 / 10.5                        | $4.481\pm0.059$   |
| 30              | 30            | 1                   | 61 / 2.5                          | $3.930\pm0.076$   |

### Table 4. WaveNet with various layer and receptive field sizes.

Table 4 of "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884

NPFL138, Lecture 14

**TTSAlign** 



# FastSpeech

NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

ech TTSAlign

n

### **FastSpeech**



(a) Feed-Forward Transformer (b) FFT Block (c) Length Regulator (d) Duration Predictor

Figure 1: The overall architecture for FastSpeech. (a). The feed-forward Transformer. (b). The feed-forward Transformer block. (c). The length regulator. (d). The duration predictor. MSE loss denotes the loss between predicted and extracted duration, which only exists in the training process. *Figure 1 of "FastSpeech: Fast, Robust and Controllable Text to Speech", https://arxiv.org/abs/1905.09263* 

FastSpeech performs non-autoregressive decoding of mel spectrogram from the input text.

A hard character-spectrogram frame alignment is computed using some existing system, and the representation of input character is then repeated according to the alignment.

NPFL138, Lecture 14

Mel Spectrograms WaveNet

t GLUs

ParallelWaveNet T

Tacotron 2 FastSpeech

**TTSAlign** 

### **FastSpeech**



| Method                                                                               | MOS                                                                                              |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| GT<br>GT (Mel + WaveGlow)<br>Tacotron 2 [22] (Mel + WaveGlow)<br>Merlin [28] (WORLD) | $\begin{vmatrix} 4.41 \pm 0.08 \\ 4.00 \pm 0.09 \\ 3.86 \pm 0.09 \\ 2.40 \pm 0.13 \end{vmatrix}$ |
| Transformer TTS [14] (Mel + WaveGlow)                                                | 3.88 ± 0.09                                                                                      |
| FastSpeech (Mel + WaveGlow)                                                          | $3.84 \pm 0.08$                                                                                  |

Table 1: The MOS with 95% confidence intervals.Table 1 of "FastSpeech: Fast, Robust and Controllable Text to Speech", https://arxiv.org/abs/1905.09263

| Method                        | Repeats | Skips    | Error Sentences | Error Rate |
|-------------------------------|---------|----------|-----------------|------------|
| Tacotron 2<br>Transformer TTS | 4<br>7  | 11<br>15 | 12<br>17        | 24%<br>34% |
| FastSpeech                    | 0       | 0        | 0               | 0%         |

Table 3: The comparison of robustness between FastSpeech and other systems on the 50 particularly hard sentences. Each kind of word error is counted at most once per sentence.

Table 3 of "FastSpeech: Fast, Robust and Controllable Text to Speech", https://arxiv.org/abs/1905.09263

### Later improved in FastPitch and FastSpeech 2 systems.

NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet Ta

Tacotron 2 FastSpeech

h TTSAlign



NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet

Tacotron 2 FastSpeech

TTSAlign





Figure 1: Overview of our Alignment Learning Framework: autoregressive models use a sequential attention mechanism to generate alignments between text and mels. Non-autoregressive models encode text and mels using simple 1D convolutions and use pairwise  $L_2$  distance to compute the alignments. The alignments represent the distribution  $P(s_t|x_t)$  and the alignment objective (Equation 1).

Figure 1 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447

**TTSAlign** 

NPFL138, Lecture 14

Mel Spectrograms Wa

WaveNet GLUs

ParallelWaveNet

Ú F<sub>A</sub>L

Let  $s_i$  denotes the *i*-th input text character, and  $\boldsymbol{x}_t$  be the *t*-th mel spectrogram frame.

Assuming we have access to some alignment

$$P(s_i | \boldsymbol{x}_t; \boldsymbol{\theta}).$$

We can train the alignment to maximize the probability of all monotonic alignments between the mel spectrogram and the input text:

$$\mathcal{L}(oldsymbol{ heta};oldsymbol{X},oldsymbol{s}) \stackrel{ ext{def}}{=} \sum_{oldsymbol{c} ext{ any valid} \ ext{monotonic alignment}} \prod_{t=1}^T P(c_t|oldsymbol{x}_t;oldsymbol{ heta}).$$



Figure 1: Overview of our Alignment Learning Framework: autoregressive models use a sequential attention mechanism to generate alignments between text and mels. Non-autoregressive models encode text and mels using simple 1D convolutions and use pairwise  $L_2$  distance to compute the alignments. The alignments represent the distribution  $P(s_t|x_t)$  and the alignment objective (Equation 1).

Figure 1 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447

Such a loss can be computed by exploiting the CTC loss (given that efficient implementations for it already exist).

NPFL138, Lecture 14

WaveNet GLUs

ParallelWaveNet Tacotron 2

2 FastSpeech

TTSAlign



Figure 3: Converged soft alignments for Flowtron, Tacotron2. Alignment framework provides sharper and more connected alignments.

fident and continuous alignments, and by extension, continuous speech without repeating or missing words.

Table 1: Pairwise preference scores judged by human raters, shown with 95% confidence intervals. Scores above 0.5 indicate models trained with  $\mathcal{L}_{align}$  were preferred by majority of raters.

Figure 3 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447

Table 1: Pairwise preference scores judged by human raters, shown with 95% confidence intervals. Scores above 0.5 indicate models trained with  $\mathcal{L}_{align}$  were preferred by majority of raters.

| Model                      | Alignment Framework vs Baseline |
|----------------------------|---------------------------------|
| Tacotron 2                 | $0.556 \pm 0.068$               |
| Flowtron ( $\sigma = .5$ ) | $0.635\pm0.065$                 |
| RAD-TTS ( $\sigma = .5$ )  | $0.639 \pm 0.066$               |
| FastPitch                  | $0.565\pm0.068$                 |
| FastSpeech2                | $0.521\pm0.067$                 |

Table 1 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447

Tacotron 2 100 Tacotron 2 + prior Tacotron 2 + prior +  $\mathcal{L}_{align}$ 50500010000 1500020000 150Flowtron (single-flow) Flowtron + prior 100 Flowtron + prior +  $\mathcal{L}_{align}$ 5010000 20000 30000 40000 0 50MCD-DTW RadTTS (MFA durations) RadTTS w/o prior +  $\mathcal{L}_{alian}$ 40 RadTTS with prior +  $\mathcal{L}_{alian}$ 30 500010000 15000FastPitch (Tacotron 2 durations) 40FastPitch + prior +  $\mathcal{L}_{align}$ 3530 1000 2000 3000 4000 5000 35FastSpeech 2 (MFA durations) FastSpeech 2 + prior +  $\mathcal{L}_{align}$ 30 2520000 40000 60000 80000 Iteration



Figure 2 of "One TTS Alignment To Rule Them All", https://arxiv.org/abs/2108.10447

NPFL138, Lecture 14

Mel Spectrograms WaveNet

Net GLUs

ParallelWaveNet Tacotron 2

TTSAlign

FastSpeech

### **Alignment Prior**

Ú<sub>F</sub><sup>AL</sup>

For faster alignment convergence (which makes the full model training faster), during training we might use a static 2D prior that is wider near the center and narrower near the corners.

The complete alignment is then the normalized product of the computed alignment and the alignment prior.



(a) Soft alignment  $A_{soft}$  (b) Beta-binomial Prior (c)  $A_{soft}$  w/ Prior (d) Hard alignment  $A_{hard}$ Figure 2. Visualizations of the alignment attention matrices A. The vertical axis represents text tokens from bottom to top. The horizontal axis represents mel-frames from left to right. Fig. 2a shows the baseline soft attention map. Fig. 2c combines Fig. 2a with Fig. 2b to penalize alignments straying too far from the diagonal. Fig. 2d is the most likely monotonic alignment extracted from Fig. 2c with Viterbi. Figure 2 of "RAD-TTS: Parallel Flow-Based TTS with Robust Alignment Learning and Diverse Synthesis", https://openreview.net/forum?id=0NQwnnwAORi

NPFL138, Lecture 14

Mel Spectrograms

WaveNet GLUs

ParallelWaveNet