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Beyond Image Classification Uz

Beyond Image Classification
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Beyond Image Classification

® Object detection
(including location)

® |mage segmentation

® Human pose estimation

J - Q

\

rxiv.org/abs/1703.06870
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Beyond Image Classification Uz

Semantic e Classification - : Instance
- Classification L e Object detection g
Segmentation + localization segmentation
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CAT

TREE CAT CAT CAT DOG DUCK CAT CAT DOG DUCK
L J K )
No object " : . .
Just pixels Single object Multiple objects

https: //www.implantology.or. kr/articles/xml/RvNO/
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Object Localization

Class Scores

Fully Cat: 0.9
Connected: Dog: 0.05
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Slide 38 of http://cs231n.stanford.edu /slides/2021/lecture_15.pdf.

We can perform object localization by jointly predicting the bounding box coordinates using
regression.
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R-CNN

To be able to recognize and localize several objects,
assume we were given multiple interesting regions of
the image, called regions of interest (Rol). For each

of them, we decide:

Slide 48 of h ://cs231n.stanford. edu/slid es/2021/lecture_15, d f.
® whether it contains an object;
® the location of the object relative to the Rol.

| Bbox reg ” SVMs | Classify regions with

In R-CNN, we start with a network pre-trained on onarres o | o
. . . . ox reg
ImageNet (VGG-16 is used in the original paper), o rw | ®
. . oxres > ConvN Forward each region
and we use it to process every Rol, rescaling every o o through ConvNet
. onv e ]
one of them to the size of 224 x 224. o ot (ImageNet-pretranied)
onv
&Warpedimage regions
(224x224 pixels)

== Regions of Interest
> (Rol) from a proposal
method (~2k)

For every Rol, two sibling heads are added:
® classification head predicts either background or :
one of K object types (K + 1 in total), MMZ/W&/ M
) es231n Stonford s slides, 2021 lcture_15 pd

® bounding box regression head predicts 4 , /,4 Py 24 e
. . Slide 54 of http:/
bounding box parameters relative to Rol. /;Wm/ 5///&%6 Cu
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R-CNN — Bounding Boxes Uz

A bounding box is parametrized as follows. Let x,, y,, w,, h, be center coordinates and width
and height of the Rol respectively, and let x, y, w, h be parameters of the bounding box. We

represent the bounding box relative to the Rol as follows: : _ —
A, Wsin” Ao W hwth2uce /"Jé eliloos Z9)
/” M/M/M” v /ﬂ tw:(m_mr) Wy, ty:(y_yr)@
27/ /%Z yi/ﬁy = tw = log(w/w,),  t, =log(h/h,). U, 22 vZeylma Rl
/ // I P ;%
brdy vt > @ 27/34 , 2t Gt Dude (/5/74,4/ Mcé,q _ Lo w7 i Rob w224

In Fast R-CNN, the smoothj, loss, or Huber loss, is employed for bounding box parameters:

— ‘)mhia MSE e Neotgczunt) 4
¢ 0.5z2 if |z| < 1,
i damf smoothy, (z) = . 3
., lz| — 0.5 otherwise. 2
/7;2///3 l/@/ée ﬂw%@ .
The complete loss is then (A = 1 is used in the Fast R-CNN paper) j
2 a/wél/&,gz poWA b Mdy—/ b”d“f"”’“é e T M S
L(é, f, C, t) = L (é, C) +Z/)\ . [c > ]_] . Zie{x g k) SIIlOOthL1 (Ez — tz').
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R-CNN — Bounding Boxes Up

The described bounding box representation is usually called CXCYWH:

~
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https://miro.medium.com/1*Z80D7vwD-3UwP16asY-k6A jpeg
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R-CNN — Bounding Boxes Uz

In the datasets, the bounding boxes are usually represented using XYXY format:

(x—min, y—min)

(x—max, y-max)
oV

https://miro.medium.com/1*oZcZhzOWKb3kvBHPOHY fow. jpeg
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R-CNIN — Bounding Boxes Uz

Finally, you could also come across the XYWH format:

https://mir. medium.com/1*JLeFS2KI0zSTk6lUp10u2w. jpeg
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Fast R-CNN Architecture

The R-CNN is slow, because it needs to process every Rol by the convolutional backbone. To
speed it up, we might want to first process the whole image by the backbone and only then

extract a fixed-size representation for every Rol.

We achieve that using Rol pooling, replacing the last max-pool 14 x 14 — 7 x 7 VGG layer.
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Slide 65 of h ttp://cs231n.stanford.edu/slides/2021/lecture_15.pdf.
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During Rol pooling, we obtain a 7 X 7 Rol representation by first projecting the Rol to the

it ittt S

14 x 14 resolution and then computing each of the 7 X 7 values by max-pooling the

corresponding “pixels” of the convolutional image features.
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Fast R-CNN

https://commons.wikimedia.org/wiki/File: Tisnov,_Hajanky,_garaZzova_ozdoba_(6597).jpg

224x224x3
224x224%64 M yyo‘

112x112x128 /

https://en.wikipedia.org/wiki/File:VGG_neural_network.png
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Fast R-CNN and R-CNN Comparison A
Fast R-CNN
Object Linear +
category softmax Linear | Box offset
Regions of CNN Per-Region Network Slow” R-CNN
SVMs
Interest (Rols) LS —
from a proposal / ~7 /7 Crop + Resize features .
| SVMs
method &5/ “conv5” features Conv
Conv Net
» ) Run whole image Conv Net
Backbone through ConvNet
network: -
AlexNet, VGG, ConvNet
ResNet, etc V - .
: Input image
. Input image
Slide 61 of http://cs231n.stanford.edu/slides/2021/lecture_15.pdf.
GroupNorm 13/54
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Fast R-CNN Architecture Uz
7[%/77& pal Wﬁ/&héé’h Z W/Wéd d /mﬁﬂz %mfc

Outputs: beX
=1Deep . softmax regressor
ConvNet 'T

Rol 222 FC
pooling =
N FCs
Rol \ layer EI i
“projection\_ |
Conv X Rol feature
feature map VeCtor For each Rol

Figure 1 of "Fast R-CNIN", https://arxiv.org/abs/1504.08083
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Intersection over Union

For two bounding boxes (or two masks) the intersection over union (loU) is a ratio of the
intersection of the boxes (or masks) and the union of the boxes (or masks).

Choosing Rols for Training

During training, we use 2 images with 64 Rols each. The Rols are selected so that 25% have
intersection over union (loU) overlap with ground-truth boxes at least 0.5; the others are
chosen to have the loU in range [0.1,0.5), the so-called hard examples.

WVO “ d(\l" = ujy/m” W//Z z@#éwf 704957494, /}éé /V&éc ; Aooo

Running Inference o
O,
During inference, we utilize all Rols, but a single object can be found in several of them. To >

choose the most salient prediction, we perform non-maximum suppression — we ignore
predictions which have an overlap with a higher scoring prediction of the same class, where the
overlap is computed using loU (0.3 threshold is used in the paper). Higher scoring predictions is
the ones with higher probability from the classification head.

FastR-CNN 15/54



Object Detection Evaluation UL

Average Precision
Evaluation is performed using Average Precision (AP or APx).

We assume all bounding boxes (or masks) produced by a system have confidence values which
can be used to rank them. Then, for a single class, we take the boxes (or masks) in the order
of the ranks and generate precision/recall curve, considering a bounding box correct if it has

loU at least 50% with any ground-truth box. /5, /. /'a[.mZz/ZO Ms/%% Yover.
1, .

person — bottle
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] e R ' ' g 04§
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0.1 ..... ...................... o4l
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0 01020304 0506070809 1 0 01020304 0506070809 1
recall recall
Figure 6 of "The PASCAL Visual Object Classes (VOC) Challenge”, Figure 6 of "The PASCAL Visual Object Classes (VOC) Challenge",
http://homepages.inf.ed.ac.uk/ckiw/postscript /ijcv_voc09.pdf http://homepages.inf.ed.ac.uk/ckiw/postscript /ijcv_voc09. pdf
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Object Detection Evaluation — Average Precision Uz

The general idea of AP is to compute the area under the precision/recall curve.
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We start by interpolating the precision/recall curve, so that it is always nonincreasing.

Finally, the average precision for a single class is '

an average of precision at recall L

OOO’ Oo]—, 002, oo ey 100- &)0'5 /}7‘
The final AP is a mean of average precision of I T T T

a | | Cl asses. https: //miro.medium.com/max,/1400/1 *naZECOaEWO—XMyW/WA dFzF-GA jpeg
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For the COCO dataset, the AP is computed slightly differently. First, it is an average over 101
recall points 0.00,0.01,0.02,...,1.00.

In the original metric, loU of 50% is enough to consider a prediction valid. We can generalize
the definition to AP;, where an object prediction is considered valid if loU is at least t%.

The main COCO metric, denoted just AP, is the mean of APs5y, APs5, AP, ..., APys5.

Metric Description
AP Mean of AP50,AP55,AP60,AP65,...,AP95

AP AP at loU 50%

APy AP at loU 75%

APg AP for small objects: area < 322

APy AP for medium objects: 322 < area < 962
APy, AP for large objects: 962 < area

FastR-CNN 18/54



Even if Fast R-CNN is much faster then R-CNN, it can Training time (Hours)

still be improved, considering that the most problematic "/ =

SPP-Net

and time consuming part is generating the Rols. |

Fast R-CNN . 8.75

SPP-Net

Fast R-CNN
0 25 50 75 100

65(&%4 Se (L“Dmlﬂ, % }1{} J[o ﬁ{o (/é//ﬁz Vo4 /@aémv@fww; a/p i 74?
WV’%;/ F{/M’r/f yewit pfﬁou .
Faster R-CNN extends Fast R-CNN by including a region g clusifi

proposal network (RPN), whose goal is to generate the Rols Mmonng

automatically. y IS

proposals L ' g
The regional proposal networks produces the so-called region / | /
proposals, which then play the role of Rols in the rest of the Region Proposal Network

pipeline (i.e., the Fast R-CNN).

The region proposals are generated similarly to how predictions are
generated in Fast R-CNN. We start with several anchors and from - I
each anchor we generate either a single region proposal or nothing. ) —

feature maps

-
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Faster R-CNN — Anchors Uz

If we consider the 14 x 14 VGG backbone output, each “pixel” corresponds to a region of size
16 x 16 in the original image.

We can therefore interpret each value in the 14 X 14 output as a representation of a part of the

image centered in the corresponding image region, and try predicting a region proposal from
every one of them.

We call the dense grid of image regions from which we are predicting the proposals the
anchors. They have fixed size, and in practice we use several anchors per position.
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For every anchor, we classify it in two classes (background, object) and also predict the region
proposal bounding box relatively to the anchor, exactly as in (Fast) R-CNN.

We perform the classification and the 2A scores 4A coordinates <mm  Aanchor boxes
bounding box regression by first running cis 1ayer reg layer .

a 3 X 3 convolution followed by RelLU \ t

on the 14 X 14 VGG output, and then 256-d

attaching the two heads. Assuming intermediate layer .
there are A anchors on every position: t i

® the classification head generates 24
outputs, performing softmax on

every 2 of them; sliding window
® the regression head generates 44

conv feature map

region proposal coordinates.
The authors consider 3 scales (1282, 2562,512%) and 3 aspect ratios (1:1,1:2,2:1).
Pt p bl e e ok Reaw <
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During training, we generate

® positive training examples for every anchor that has the highest loU with a ground-truth

box;
® furthermore, a positive example is also any anchor with loU at least 0.7 for any ground-

truth box;
® negative training examples for every anchor that has loU at most 0.3 with all ground-truth

boxes:
® the positive and negative examples are generated with a ratio up to 1:1 (less, if there are

not enough positive examples; each minibatch consits of a single image and 256 anchors).
During inference, we consider all predicted non-background regions, run non-maximum
suppression on them using a 0.7 loU threshold, and then take IV top-scored regions (i.e., the

ones with the highest probability from the classification head) — the paper uses 300 proposals,
compared to 2000 in the Fast R-CNN.

FasterR-CNN 22/54



Table 3: Detection results on PASCAL VOC 2007 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07+12”: union set of VOC 2007 trainval and VOC 2012 trainval. For RPN,
the train-time proposals for Fast R-CNN are 2000. : this number was reported in [2]; using the repository
provided by this paper, this result is higher (68.1).

method # proposals | data | mAP (%)
SS 2000 07 66.9"
SS 2000 07+12 70.0
RPN+VGG, unshared 300 07 68.5
RPN+VGG, shared 300 07 69.9
RPN+VGG, shared 300 07+12 73.2
RPN+VGG, shared 300 COCO+07+12 78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training
data: “07”: VOC 2007 trainval, “07++12"”: union set of VOC 2007 trainval+test and VOC 2012 trainval. For
RPN, the train-time proposals for Fast R-CNN are 2000. : http:/ /host.robots.ox.ac.uk:8080/anonymous/HZJTQA html. ¥:
http:/ /host.robots.ox.ac.uk:8080/anonymous/YNPLXB.html. 8: http:/ /host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method # proposals | data | mAP (%)
SS 2000 12 65.7
SS 2000 07++12 68.4
RPN+VGG, shared' 300 12 67.0
RPN+VGG, shared? 300 07++12 70.4
RPN+VGG, shared® 300 COCO+07++12 75.9
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The Faster R-CNN is a so-called two-stage detector, where the regions are refined twice — once
in the region proposal network, and then in the final bounding box regressor.

Several single-stage detector architectures have been proposed, mainly because they are faster
and smaller, but until circa 2017 the two-stage detectors achieved better results.

FasterR-CNN 24 /54



Mask R-CNN UrzL

Straightforward extension of Faster R-CNN able to produce image segmentation (i.e., masks for
every object).

Bibkoack 09

"

Figure 2 of "Mask R-CNN", https://arxiv.org/abs/1703.06870
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Mask R-CNN — Architecture ez

RolAlign

ANANANANAN
) MANANANAN

Figure 1 of "Mask R-CNN", https://arxiv.org/abs/1703.06870
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Mask R-CNN — RolAlign Uzt

More precise alignment is required for the Rol in order to predict the masks. Instead of
quantization and max-pooling in Rol pooling, RolAlign uses bilinear interpolation of features at
four regularly sampled locations in each Rol bin and averages them.

L_____ _____ d_____ Lo ____ , |
Figure 3 of "Mask R-CNN", https://arxiv.org/abs/1703.06870

TorchVision provides torchvision.ops.roi_align and torchvision.ops.roi_pool.
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Mask R-CNN UrzL

Masks are predicted in a third branch of the object detector.

® Higher resolution of the mask is usually needed (at least 14 x 14, or even more).

® The masks are predicted for each class separately.
® The masks are predicted using convolutions instead of fully connected layers (the upscaling

convolutions are 2 X 2 with stride 2).
Faster R-CNN Faster R-CNN
w/ ResNet [19] w/ FPN [27]
/X7 ave - —> class 7X7 ﬁ_}ﬁ_) s
— ---> 3 — \
Ro 22| |xaoas || (208> Ror|| x256 | 1024 D108 DL | ol
/ %0/4 af/oé/a'

| [[14x14) 28x28]_ |(28x28 / p«& hwn/h

Rol || X256 (x4 X256 @
/ J‘(’ iy e
mask
R Figure 4 of "Mask R-CNN", https://arxiv.org/abs/1703.06870 7ta¢ lJ,/ M/

Improvements from Nov 2021: all convs (except for the output layer) are followed by BN, the
class&bbox head uses 4 convs instead of 2 MLPs, RPN contains two convs instead of one.
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net-depth-features | AP APsg APrs AP APs50 APrs align? | bilinear? | agg. | AP  AP5g9 APrs

ResNet-50-C4 30.3 51.2 31.5 softmax 24 .8 44 .1 25.1 RolPool [12] max| 26.9 48.8 26.4

ResNet-101-C4 32.7 54.2 34.3 sigmoid 30.3 51.2 31.5 v max| 27.2 49.2 27.1
RolWarp [10]

ResNet-50-FPN 33.6 55.2 35.3 +5.5 +7.1 +6.4 v ave | 27.1 48.9 27.1

ResNet-101-FPN | 354  57.3 37.5 RolAli v v max| 30.2 51.0 31.8

ResNeXt-101-FPN | 36.7 59.5 389 omisn v lave| 303 512 315

(a) Backbone Architecture: Better back- (b) Multinomial vs. Independent Masks (c¢) RolAlign (ResNet-50-C4): Mask results with various Rol
bones bring expected gains: deeper networks ~ (ResNet-50-C4):  Decoupling via per- layers. Our RolAlign layer improves AP by ~3 points and
do better, FPN outperforms C4 features, and  class binary masks (sigmoid) gives large ~ AP75 by ~5 points. Using proper alignment is the only fac-

ResNeXt improves on ResNet.

gains over multinomial masks (softmax).  tor that contributes to the large gap between Rol layers.

AP AP50 AP75 | AP®™®  APRY  APRY mask branch AP AP5y  APrs
RolPool | 23.6 465 216 | 282 527 269 MLP fe: 1024—1024—80-282 31.5 537 328
RolAlign | 309 51.8 321 | 340 553 364 MLP |  fc: 1024—1024—1024—80-282 3.5 540 326
+7.3  +53 +105| +58 +26  +95 FCN | conv: 256—256—256—256—256—80 | 33.6 552 353

(d) RoIAlign (ResNet-50-CS, stride 32): Mask-level and box-level
AP using large-stride features. Misalignments are more severe than
with stride-16 features (Table 2c¢), resulting in big accuracy gaps.

Table 2. Ablations. We train on t rainval35k, teston minival, and report mask AP unless otherwise noted.

FastR-CNN

FasterR-CNN MaskR-CNN FPN FocalLoss

RetinaNet

EfficientDet Group

Norm

(e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs.
multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs im-
prove results as they take advantage of explicitly encoding spatial layout.
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Mask R-CNN — Human Pose Estimation Vet

® Testing applicability of Mask R-CNN architecture.

® Keypoints (e.g., left shoulder, right elbow, ..) are detected as independent one-hot masks of
size 56 X 56 with softmax output function.

k k k k
AP AP AP | APV AP
CMU-Pose+++ [6] 61.8 849 675 | 571 682
G-RMI [32]1 624 840 685 | 591 68.1

Mask R-CNN, keypoint-only 62.7 87.0 684 | 574 T1.1
Mask R-CNN, keypoint & mask| 63.1 873 68.7 | 57.8 71.4

Table 4 of "Mask R-CNN", https://arxiv.org/abs/1703.06870
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Feature Pyramid Networks Ve

> predict

e e '

(b) Single feature map £/, S

(a) Featurized image pyramid ( )
bl ey A = nlt” s e 2hni

> predict

OWWU JQ/V\W’LS -

d’ww Wiy Mn()w/.

5 177‘4 747(‘/8 &Olmb'i/m.u &éa'/w’ n/Méz/'/M// %m#ms < ?//é////yﬁaﬁ
(c) Pyramidal feature hierarchy (d) Feature Pyramid Network o brin

Figure 1 of "Feature Pyramid Networks for Object Detection”, https://arxiv.org/abs/1612.03144
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Feature Pyramid Networks Ve

predict

predict

predict

predict

Figure 2 of "Feature Pyramid Networks for Object Detection", https://arxiv.org/abs/1612.03144
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Feature Pyramid Networks Ve

predict =/

—>» 1x1 conv

I o o o o o Em Em Em em Em Em Em Em Em Em Em Em Em Em em Em Em Em Em e e

Figure 3 of "Feature Pyramid Networks for Object Detection”, https://arxiv.org/abs/1612.03144
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We employ FPN as a backbone in Faster R-CNN.

Assuming ResNet-like network with 224 x 224 input, we denote Cy, Cj, . .

., U5 the image

features of the last convolutional layer of size 56 X 56,28 x 28,...,7 X 7 (i.e., C; indicates a
downscaling of 2’5). The FPN representations incorporating the smaller resolution features are

denoted as P, ..., Ps, each consisting of 256 channels; the classification heads are shared.

In both the RPN and the Fast R-CNN, authors utilize the P,, ..., P representations,
considering single-size anchors for every P; (of size 322, 642, 1282, 256, respectively).

However, three aspect ratios (1 : 1,1 :2,2: 1) are still used. Lo WW’WW de vollost avhors

image test-dev test-std

method backbone competition | pyramid AP@ 5 AP | AP; AP,, AP; | APg. 5 AP | AP; AP, APZ

ours, Faster R-CNN on FPN ResNet-101 - 59.1 |36.2|18.2 39.0 482 | 585 |358|17.5 38.7 4738
Competition-winning single-model results follow:

G-RMIT Inception-ResNet 2016 - 347 | - - - - - - - -
AttractioNet* [10] VGG16 + Wide ResNet® | 2016 v 534 [357|156 38.0 52.7| 529 |353|147 376 519
Faster R-CNN +++ [16] ResNet-101 2015 v 55.7 349|156 387 50.9 - - - - -
Multipath [40] (onminival) VGG-16 2015 49.6 |31.5 - - - - - - - -

ION* [2] VGG-16 2015 534 | 312|128 329 452)| 529 |30.7|11.8 32.8 448
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Focal Loss

For single-stage object detection architectures, class
imbalance has been identified as the main issue
preventing obtaining performance comparable to
two-stage detectors. In a single-stage detector,
there can be tens of thousands of anchors, with
only dozens of useful training examples.

/ / "J%’" i / TN v .z 7V s .
ttps://commons.wikimedia.org/wiki/File: Tisnov,_Hajanky,__garazova_ozdoba_ (6597).jpg

Cross-entropy loss is computed as °
CE(p:) = — log(p1) -0,
—0
4 FL(p:) = —(1 — p)” log(p1) v=1
Ecross-entropy - = log Pmodel (y|w) _’Y=§
S
: 33
Focal-loss (loss focused on hard examples) is e |

well-classified
examples

proposed as |- .\U\\b wor wi ki &

Lfocal-loss = _(]— — Pmodel (y|€13))7 log pmodel(y|m)-

0 0.2 0.4 0.6 0.8 1
MNLC probability of ground truth class

Figure 1 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002
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Focal Loss =

For v = 0, focal loss is equal to cross-entropy loss.
Authors reported that v = 2 worked best for them for training a single-stage detector.
i u ik

—_
1

3 g 17
i) —v=0 o —=0
808 —7=05 B08-—7=05 gp}”’:éoé’/
%06 —Zi; %06 _zi; " fel
6 = 6 = -
5 2 Hiion #
G 0.4+ o 0-4
= =
So02r 202
£ S
3 0 ‘ 3 0 | | _
0 2 A4 .6 .8 1 0 2 A4 .6 .8 1
fraction of foreground examples fraction of background examples

Figure 4. Cumulative distribution functions of the normalized loss for positive and negative samples for different values of y for a converged
model. The effect of changing -y on the distribution of the loss for positive examples is minor. For negatives, however, increasing - heavily

concentrates the loss on hard examples, focusing nearly all attention away from easy negatives.
Figure 4 of "Focal Loss for Dense Object Detection", https://arxiv.org/abs/1708.02002
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Focal loss is connected to another solution to class imbalance — we might introduce weighting
factor a € (0, 1) for one class and 1 — « for the other class, arriving at

—ay - 10g Pmodel (Y] ).

The weight a might be set to the inverse class frequency or treated as a hyperparameter.

Even if weighting focuses more on low-frequent class, it does not distinguish between easy and
hard examples, contrary to focal loss.

In practice, the focal loss is usually used together with class weighting:

— QY - (1 — pmodel(y|m))7 ) lngmodel(y|w)°

For example, authors report that a = 0.25 (weight of the rare class) works best with v = 2.
/JO\/I(Iy §Q/ V\@‘(é‘{@/ \\/lLLt"A/l\j/ vsl/l7/ Q)F{sjrmf
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— vl éw@,’@( waelio (i cmgly«%e detaetor-

RetinaNet is a single-stage detector, using feature pyramid network architecture. Built on top of
ResNet architecture, the feature pyramid contains levels P3 through P, with each P, having

256 channels and resolution 2! times lower than the input. On each pyramid level P, we
consider 9 anchors for every position, with 3 different aspect ratios (1, 1 : 2, 2 : 1) and with 3
different sizes ({20,21/3,22/3} . 4. 212,

Note that ResNet provides only C5 to Cs features. Cg is computed using a 3 X 3 convolution
with stride 2 on Cs, and C% is obtained by applying ReLU followed by another 3 X 3 stride-2
convolution. The Cg and C5 are included to improve large object detection.

Co fort w’ dash il Pon ol g

RetinaNet
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RetinaNet — Architecture Uz

The classification head and the boundary regression heads are fully convolutional and do not
share parameters (but classification heads are shared across levels, and so are the boundary
regression heads), generating anchors - classes sigmoids and anchors bounding boxes per

position.

class+box ’
* subnets Y class

subnet

WxH J.._2
class+box %256 | x4 >

'/ : . :/ }

WxH J___> WxH L5 WxH
box %256 ><4) %256 x4A

subnet | / | / | /

-7 class+box |
y subnets \\
\
\
\

| \

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)
Figure 3 of "Focal Loss for Dense Object Detection”, https://arxiv.org/abs/1708.02002
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During training, anchors are assigned to ground-truth object boxes if loU is at least 0.5; to
background if loU with any ground-truth region is at most 0.4 (the rest of anchors is ignored
during training). The classification head is trained using focal loss with v = 2 and a = 0.25

(but according to the paper, all values of  in 0.5, 5] range work well); the boundary

regression head is trained using smoothy, loss as in Fast(er) R-CNN.

During inference, at most 1000 objects with at least 5% probability from all pyramid levels are
considered, and all of them are combined using non-maximum suppression with a threshold of
0.5. Fixed-size training and testing is used, with sizes 400, 500, .., 800 pixels.

backbone AP APso APrs | APs APy APp
Two-stage methods -@- RetinaNet-50
Faster R-CNN+++ [16] ResNet-101-C4 349 557 374 | 156 387 509  36f [c] etnaner 101
Faster R-CNN w FPN [20] ResNet-101-FPN 362 591 390 | 182 390 482 | )/’/. IO (2163
Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [34] 34.7 55.5 36.7 13.5 38.1 520 < E [CIDSSD321 [9] |28 85
Faster R-CNN w TDM [32] | Inception-ResNet-v2-TDM | 36.8  57.7  39.2 162 398 521 Qaol i |59 &
One-stage methods S €] e ) 5
YOLOV2 [27] DarkNet-19 [27] 216 440 192 | 50 224 355 o [ RefinaNet 50500 |25 72
SSD513 [22, 9] ResNet-101-SSD 312 504 333 102 345 498 .| ReinaNe- 101800 373 198
DSSD513 [9] ResNet-101-DSSD 332 533 352 | 13.0 354 511 ‘ ‘ ‘
RetinaNet (ours) ResNet-101-FPN 39.1 59.1 423 | 218 427 502 50 100150 200 250
RetinaNet (ours) ResNeXt-101-FPN 408 611 441 | 241 442 512 inference time (ms)
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Ablations use ResNet-50-FPN backbone trained and tested with 600- plxMA images. /-
#sc lé#\ ?7 bj

«@ AP APso  APrs 0 « AP APsqg  APrsy AP5 APr5
.10 0.0 0.0 0.0 0 75| 31.1 49.4 33.0 1 30.3 49.0 31.8
25 10.8 16.0 11.7 0.1 75| 314 49.9 33.1 2 1 31.9 50.0 34.0
.50 30.2 46.7 32.8 02 75| 31.9 50.7 334 3 1 31.8 49.4 33.7
75 31.1 494 33.0 05 50| 329 51.7 35.2 1 3 324 52.3 33.9
.90 30.8 49.7 32.3 1.0 25| 33.7 52.0 36.2 2 3 34.2 53.1 36.5
.99 28.7 47.4 29.9 20 25| 34.0 52.5 36.5 3 3 34.0 52.5 36.5
999 | 25.1 41.7 26.1 50 25| 322 49.6 34.8 4 3 33.8 52.1 36.2

(a) Varying « for CE loss (v = 0)

(b) Varying ~ for FL (w. optimal «)

(c) Varying anchor scales and aspects

method b:}tzi:h Tt | AP APsy  APrs depth scale| AP  APso AP7s | APs APy APy |time
OHEM 128 7 31.1 472 33.2 50 400 | 30.5 478 327 11.2 33.8 46.1 | 64
OHEM 256 7 31.8 48.8 33.9 50 500 | 325 509 34.8 13.9 358 467 | 72
OHEM 512 7 30.6 47.0 32.6 50 600 | 34.3 532 369 162 374 474 | 98
OHEM 128 5 32.8 50.3 35.1 50 700 | 35.1 542  37.7 180 393 46.4 | 121
OHEM 256 5 31.0 47.4 33.0 50 800 | 357 550 385 18.9 389 46.3 | 153
OHEM 512 5 27.6 42.0 29.2 101 400 | 319 495 34.1 11.6 358 485 | 81
OHEM 1:3 | 128 5 31.1 472 33.2 101 500 | 344  53.1 36.8 14.7 38.5 49.1 | 90
OHEM 1:3 | 256 5 28.3 42.4 30.3 101 600 | 360 552 387 174  39.6 49.7 | 122
OHEM 1:3 | 512 5 24.0 35.5 25.8 101 700 | 37.1 56.6  39.8 19.1 40.6 494 | 154
FL nfa n/a | 36.0 54.9 38.7 101 800 | 37.8 57.5 408 202  41.1 49.2 | 198
(d) FL vs. OHEM baselines (with ResNet-101-FPN) (e) Accuracy/speed trade-off RetinaNet (on test—dev)
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EfficientDet — Architecture

EfficientDet builds up on EfficientNet and delivered state-of-the-art performance in Nov 2019
with minimum time and space requirements (however, its performance has already been
surpassed significantly). It is a single-scale detector similar to RetinaNet, which:

uses EfficientNet as a backbone;

employs compound scaling;
uses a newly proposed BiFPN, “efficient bidirectional cross-scale connections and weighted

feature fusion’.

Pes / 64 |=A=I

Ps /32 |=“=|

P;/16 es——

Ps/8 +
P, /4 BiFPN Layer

Input

EfficientNet backbone ,
Figure 3 of "EfficientDet: Scalable and Efficient Object Detection"”, https://arxiv.org/abs/1911.09070
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EfficientDet — BiFPN Uzt

In multi-scale fusion in FPN, information flows only from the pyramid levels with smaller
resolution to the levels with higher resolution.

P ()—»()—>» P7O

repeated blocks repeated blocks

Ps Ps O
Ps Ps O
P4 P4 O

P O—>@—> Ps O
(a) FPN (b) PANet (c) NAS-FPN (d) BiFPN
Figure 2 of "EfficientDet: Scalable and Efficient Object Detection"”, https://arxiv.org/abs/1911.09070

BiFPN consists of several rounds of bidirectional flows. Each bidirectional flow employs residual
connections and does not include nodes that have only one input edge with no feature fusion.
All operations are 3 X 3 separable convolutions with batch normalization and RelLU, upsampling

is done by repeating rows and columns and downsampling by max-pooling.
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When combining features with different resolutions, it is common to resize them to the same
resolution and sum them — therefore, all set of features are considered to be of the same

importance. The authors however argue that features from different resolution contribute to the
final result unequally and propose to combine them with trainable weighs.

® Softmax-based fusion: In each BiFPN node, we create a trainable weight w; for every
input |; and the final combination (after resize, before a convolution) is

eWi
. S ew
i J

® Fast normalized fusion: Authors propose a simpler alternative of weighting:

Z ReLU(w;)

l;.
e+ >.; ReLU(wy)

i
It uses € = 0.0001 for stability and is up to 30% faster on a GPU.
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Similar to EfficientNet, authors propose to scale various dimensions of the network, using a
single compound coefficient ¢.

After performing a grid search:

® the width of BiFPN is scaled as Wg;zpy = 64 - 1.35%,

® the depth of BiFPN is scaled as Dg;ppy = 3 + 9,

® the box/class predictor has the same width as BiFPN and depth D, = 3 + | /3],
® input image resolution increases according to Rjma4e = 512 + 128 - ¢.

Input  Backbone BiFPN Box/class
size Network  #channels #layers  #layers
Rinput Wbifpn Dbifpn Dclass
DO (¢ = 0) 512 BO 64 3 3
Dli(¢=1) 640 B1 88 4 3
D2 (¢ = 2) 768 B2 112 5 3
D3 (¢ = 3) 896 B3 160 6 4
D4d(p=4) | 1024 B4 224 7 4
D5(p=5) | 1280 B5 288 7 4
D6 (¢p =6) | 1280 B6 384 8 5
D6(¢p=7) | 1536 B6 384 8 5

EfficientDet
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EfficientDet — Results

A
52.5 1
EfficientDet-D7 fiicientDet-D6 ®
50 50.0 1 L7 AN
AmoebaNet + NAS-FPN + AA 4
D4 A A
- -
”z 47.5 —____—
- - -
151[ B2 e o ResNet + NAS-FPN //"F—kesNet + NAS-FPN
~ .x 45.01
7 - o .
% D2 7 - - <
Py
,
8 ol e RetinaNet 8 495 -
8 s 3
7 MaskRCNN o 40.01 x/’)hetinaNet |Params Ratio
251 [AP_FLOPs (ratio) ' 1 EfficientDet-D2 sM
EfficientDet-D0 33.8 2.5B MaskRCNN .
J ; RetinaNet [21] 53M  6.6x
I YOLOV3 [31] 33.0 71B (28x) 37.5- > :
YOLOv3 EfficientDet-D1 389 6.1B ' EfficientDet-D3 12M
H RetinaNet [1] 39.6 97B (16x) ResNet + NASFPN [£] 104M  8.7x
30 MaskRCNN [11] 37.9 149B (25x) -
" EfficientDet-D6 51.7 229B 35.0 1 EfficientDet-D6 52M
AmoebaNet+ NAS-FPN +AA [42]7|50.7 3045B (13x) lD AmoebaNet + NAS-FPN [42]| 209M 4.0x
TNot plotted. 0
0 200 400 600 800 1000 1200 0 50 100 150 200
FLOPs (Billions)
Figure 1 of "EfficientDet: Scalable and Efficient Object Detection”, ) P_a_‘rameters (M) . ) )
https: //arxiv.org/abs/1911.09070 Figure 4 of "EfficientDet: Scalable and Efficient Object Detection”,
o o https://arxiv.org/abs/1911.09070
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tet-dev val Latency
Model AP APsy AP, | AP || Params Ratio FLOPs Ratio | GPU,,, CPU;
EfficientDet-D0 (512) 33.8 522 35.8 || 33.5 3.9M 1x 2.5B 1x 16 0.32
YOLOV3 [31] 33.0 579 344 - - - 71B  28x 51t -
EfficientDet-D1 (640) 39.6 58.6 42.3 39.1 6.6M 1x 6.1B 1x 20 0.74
RetinaNet-R50 (640) [21] 37.0 - - - 34M  6.7x 97B 16x 27 2.8
RetinaNet-R101 (640)[21] 379 - - - 53M  8.0x 127B  21x 34 3.6
EfficientDet-D2 (768) 43.0 623 46.2 || 42.5 8.1M 1x 11B 1x 24 1.2
RetinaNet-R50 (1024) [21] 40.1 - - - 34M  4.3x 248B  23x 51 7.5
RetinaNet-R101 (1024) [21] 41.1 - - - 53M  6.6x 326B  30x 65 9.7
ResNet-50 + NAS-FPN (640) [8] 39.9 - - - 60M  7.5x 141B 13x 41 4.1
EfficientDet-D3 (896) 45.8 65.0 49.3 45.9 12M 1x 25B 1x 42 2.5
ResNet-50 + NAS-FPN (1024) [8] 442 - - - 60M 5.1x 360B 15x 79 11
ResNet-50 + NAS-FPN (1280) [8] 44 .8 - - - 60M 5.1x 563B  23x 119 17
ResNet-50 + NAS-FPN (1280@384)[8] 454 - - - 104M 8.7x 1043B  42x 173 27
EfficientDet-D4 (1024) 494 69.0 53.4 || 49.0 21M 1x 55B 1x 74 4.8
AmoebaNet+ NAS-FPN +AA(1280)[42] - - - 48.6 185M 8.8x 1317B  24x 259 38
EfficientDet-D5 (1280) H 50.7 70.2 54.7 H 50.5 H 34M 1x 135B 1x H 141 11
EfficientDet-D6 (1280) 51.7 71.2 56.0 51.3 52M 1x 226B 1x 190 16
AmoebaNet+ NAS-FPN +AA(1536)[42] - - - 50.7 209M  4.0x  3045B 13x 608 83
EfficientDet-D7 (1536) H 522 714 56.3 H 51.8 H 52M 1x 325B 1x H 262 24
We omit ensemble and test-time multi-scale results [27, 10].

fLatency marked with T are from papers, and others are measured on the same machine with Titan V GPU.
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EfficientDet — Inference Latencies =
92 7 52 1
EfficientDet-D6 < EfficientDet-D6 P
50 - e-=="7T AN 50 - D5 === """ AN
48 1 //I 48 1 ,/I
e 7
d '/
o 461 ,# ResNet + NAS-FPN Q. 461 _,»7 ResNet + NAS-FPN
< e
o) o) -
O 44 O 44
@) O .
o | LAT Ratio | O | LAT Ratio
421 EfficientDet-D2 24ms 421 Efﬁ.cientDet-DZ 1.2s
RetinaNet [21] 65ms 2.7x II /xRetinaNet RetlgaNet [21] 9.7s 8.Ix
40 1 EfficientDet-D3 42ms 404 & * EfficientDet-D3 2.5s
D f ResNet + NASFPN [8] 173ms 4.1x D1II ResNet + NASFPN [£] 27s  11x
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GPU latency (s) CPU latency (s)
Figure 4 of "EfficientDet: Scalable and Efficient Object Detection”, https://arxiv.org/abs/1911.09070
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Given that EfficientDet employs both a powerful backbone and new BiFPN, authors quantify
the improvement of the individual components.

‘ AP  Parameters FLOPs
ResNet50 + FPN 37.0 34M 97B
EfficientNet-B3 + FPN 40.3 21M 75B
EfficientNet-B3 + BiFPN | 44.4 12M 24B

The comparison with previously used cross-scale fusion architectures is also provided:

AP #Par{ams #FLQPS

ratio ratio
Repeated top-down FPN | 42.29 1.0x 1.0x
Repeated FPN+PANet 44.08 1.0x 1.0x
NAS-FPN 43.16  0.71x 0.72x
Fully-Connected FPN 43.06 1.24x 1.21x
BiFPN (w/o weighted) | 43.94  0.88x 0.67x
BiFPN (w/ weighted) 44.39  0.88x 0.68x

EfficientDet
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Normalization Uz

Batch Normalization —7§ ™ & Qw5 ‘o, koo mlf (obithi jou gl o /g&/y,,;,%)

Neuron value is normalized across the minibatch, and in case of CNN also across all positions.

Layer Normalization

Neuron value is normalized across the layer.
Batch Norm Layer Norm Instance Norm Group Norm

H, W
H, W

NAVAVAVAWA

L
L1
L
L
L
| —

NAVAVAVAWA

NAVAVAVAWA

Z A\ A\ N\ N\

[}

Figure 2 of "Group Normalization", https://arxiv.org/abs/1803.08494
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Group Normalization

Group Normalization is analogous to Layer normalization, but the channels are normalized in

groups (by default, G = 32).
_/0 l//c/ Cé%@ﬂé/ U %}4&
%MMW%M vltd o prockly.
V

OSIDK%A/(M Qe oé VA‘! \mgI\'
W&‘A& v mb‘rbrm/w M,uwm
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32|
£30
gzs— _ Sty 749&44 40/@/%»/
26 | / el Wi Lyt y ot bt
248 o ° ° —o /%57’ pe mé% b4
5 16 8 4 2

batch size (images per worker)
Figure 1 of "Group Normalization", https://arxiv.org/abs/1803.08494
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Group Normalization

train error

----Batch Norm (BN)
-—-Layer Norm (LN)
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Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation
error (right) vs. numbers of training epochs. The model is ResNet-50.
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Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.
Figures 4 and 5 of "Group Normalization", https://arxiv.org/abs/1803.08494
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backbone APbeX APbeX APbeX APmask Ap%ask APmask
BN" | 377 579 409 | 328 543 347
GN 38.8 59.2 42.2 33.6 55.9 354

Table 4. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 C4. BN means BN is frozen.

backbone

box head | AP?P°* AP20°* APbEOx

APmask APmask APmask

*k

BN
BN
GN

*

- 38,6 595 419
60.0 43.2
GN | 40.0 61.0 433

GN | 395

342 56.2 36.1
344 564 36.3
348 573 363

Table 5. Detection and segmentation results in COCO, using
Mask R-CNN with ResNet-50 FPN and a 4conv1fc bounding box
head. BN means BN is frozen.

GroupNorm

54/54



