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Consider generating a sequence of y1,...,yn € YV given input &1,...,ZyN.

Predicting each sequence element independently models the distribution P(y;|X).

4 o Xry --- XN

Y1 Y2 ys - YN

However, there may be dependencies among the y; themselves, in the sense that not all
sequences of y; are valid; but when generating each y; independently, the model might not be
capable of generating only valid sequences.
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Consider for example named entity recognition, whose goal is to locate named entities, which
are single words or sequences of multiple words denoting real-world objects, concepts, and
events. The most common types of named entities include:

® PER: people, including names of individuals, historical figures, and even fictional characters;

® (0RG: organizations, incorporating companies, government agencies, educational institutions,
and others;

® 1.0OC: locations, encompassing countries, cities, geographical features, addresses.

Compared to part-of-speech tagging, locating named entities is much more challenging — named
entity mentions are generally multi-word spans, and arbitrary number of named entities can
appear in a sentence (consequently, we cannot use accuracy for evaluation; F1l-score is

commonly used). QZ’OMIM% /ﬁﬂé Wemel /)bo/) e hodho bt

Named entity recognition is an instance of a span labeling task, where the goal is to locate
and classify spans in the input sequence.
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A possible approach to a span labeling task is to classify every sequence element using a
specialized tag set. A common approach is to use the BIO encoding, which consists of

® (: outside, the given element is not part of any span;
® B-PER, B-0RG, B-LOC, ..: beginning, the element is first in a new span;
® T-PER, I-0RG, I-LOC, ..: inside, a continuation element of an existing span.

In a valid sequence, the I-TYPE must follow either B-TYPE or I-TYPE.

(Formally, the described scheme is IOB-2 format; there exists quite a few other possibilities like
|OB-1, IEO, BILOU, ..)

The described encoding can represent any set of continuous typed spans (when no spans
overlap, i.e., a single element can belong to at most one span).
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However, when predicting each of the element tags independently, invalid sequences might be
created.

® \We can decide to ignore it and use heuristics capable of recovering the spans from invalid
sequences of BIO tags.

® \We can employ a decoding algorithm producing the most probable valid sequence of tags
during prediction.
O However, during training we do not consider the BIO tags validity.

® \We might use a different loss enabling the model to consider only valid BIO tag sequences
also during training.
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Let ®1,..., 2N be an input sequence.
Our goal is to produce an output sequence ¥, ..., YN, Where each y; € Y with Y classes.

Assume we have a model predicting p(y: = k| X;0), a probability that the t-th output element
y; is the class k.

! /’:9}”'4 »
However, only some sequences ¥y are valid. We now make an assumption that the validity of a

sequence depends only on the validity of neighboring output classes. In other words, if all
neighboring pairs of output elements are valid, the whole sequence is.
® The validity of neighboring pairs can be described by a transition matrix A € {0, l}YXY.

® Such an approach allows expressing the (in)validity of a BIO tag sequence.
O However, the current formulation does not enforce conditions on the first and the last
tag.

If needed (for example to disallow I-TYPE as the first tag), we can add fixed yy and/or
YN 41 imposing conditions on y; and/or yp, respectively.
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Let us denote ay (k) the log probability of the most probable output sequence of ¢ elements
with the last one being k.

We can compute a; (k) efficiently using dynamic programming. The core idea is the following:

Jl|k

t—1

ot (k) = log p(y: = k| X5 0) + maxj)such that A, , is valid %—1(J)-
_/ .
iy lide) v Kl celuece.

If we consider log A; j, to be —oco when A, = 0, we can rewrite the above as
oy (k) = logp(y: = k| X;0) + max; (aw—1(5)(+ log A ).

The resulting algorithm is also called the Viterbi algorithm, and it is dlso a search for the path
of maximum length in an acyclic graph.
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Inputs: Input sequence of length IV, tag set with Y tags.
Inputs: Model computing p(y: = k| X; @), a probability that y; should have the class k.
Inputs: Transition matrix A € RY XY indicating valid and invalid transitions.

Outputs: The most probable sequence y consisting of valid transitions only.
Time Complexity: O(N - Y?) in the worst case. 7 fﬁ%f/m/%—%ﬁ//a @ ;&L /
e Fort=1,...,N: ﬁ
3
o Fork=1,...,Y: C i 0)71“””&3 %7’“/‘”””///9 U(/(/'Y)..,
= (k) < logp(y: = k| X;0) logits (unnormalized log probs) can also be used
= ft>1:
" Bt(k) S argmaX; quch that Aj; is valid Ot—1 (])
u Oft(ki) < Oét(k) + a1 (,Bt(k))
® The most probable sequence has the log probability max a, and its elements can be
recovered by traversing B from ¢ = IN downto t = 1.
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Span Labeling — Other Approaches Uz

With deep learning models, constrained decoding is usually sufficient to deliver high

performance. Ty{W,/my , /744/@%/:4,”, ai itonyoe //M/h/q/}a/ /ﬂac/m%y |
Historically, there have been also other approaches:

® Maximum Entropy Markov Models

We might model the dependencies by explicitly conditioning on the previous label:
P(y;| X, yi—1)-

Then, each label is predicted by a softmax from a hidden state and a previous label.

I xIro ry --- N

Y1 Yo Yys -+ YN

The decoding can still be performed by a dynamic programming algorithm.
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® Conditional Random Fields (CRF)

In the simplest variant, Linear-chain CRF, usually abbreviated only to CRF, can be
considered an extension of softmax — instead of a sequence of independent softmaxes, it is a
sentence-level softmax, with additional weights for neighboring sequence elements.

We start by defining a score of a label sequence Yy as

N
S(X,9;0,4) = f(n|X;0) + > (Ay.u + (5| X;0)),
and define the probability of a label sequence y using softmax:
p(y|X) = softmaxzeyw (s(X, z))y

The probability log p(yg.1q| X ) can be efficiently computed using dynamic programming in
a differentiable way, so it can be used in NLL computation.

For more details, see Lecture 8 of NPFL114 2022/23 slides.
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https://ufal.mff.cuni.cz/~straka/courses/npfl114/2223/slides/?08

Let us again consider generating a sequence of y1,...,ypy given input ®1,..., 2N, but this
time M < N, and there is no explicit alignment of @ and y in the gold data.
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Connectionist Temporal Classification UL

We enlarge the set of the output labels by a — (blank), and perform a classification for every
input element to produce an extended labeling (in contrast to the original regular labeling).
We then post-process it by the following rules (denoted as B):

1. We collapse multiple neighboring occurrences of the same symbol into one. y
2. We remove the blank —. 660}?&/” Wit ML §——= MO amagae — — — She — —
Because the explicit allgnment of inputs and Iabels is not known, we consider all possible

alignments. — % gx}ﬂ meéd Q/W/WM/ M%L %\ ot SV
7

Denoting the probability of label [ at time ¢ as pl, we define
/ cl/m %mwwl G £
at(s) d:(Ef Z Hpﬂ-i.

extended =1
labelings 7r:

B(Tr].t):yls

mg\ﬁ@ﬂ C\/L\b\ I MLV | \Mus\/m %7\\/’\ V’\\/\' “(}L~f}\\\[ «ldg "\’\w \mm/ \?V/L Mt@/,o(,,b jec\u,\ \Auu(\ M
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Connectionist Temporal Classification UL

Computation

When aligning an extended labeling to a regular one, we need to consider whether the extended
labeling ends by a blank or not. We therefore define

o (s)E > Hpm

extended
labelings 7r:

B(m1:)=Y1.5,m=— M%o Uz J)Vﬂé Maon /ﬁ d'yﬂ
MOENEDY Hpm

extended
labelings 7r:

B(m1t)=y.s ,7T157é UC(%& o

and compute a(s) as o’ (s) + ot (s).
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Connectionist Temporal Classification et
0 (¢ U'M> \q\\ )\g o Yo,

Computation — Initialization ) e o Sk
We initialize ! as follows: o_ (0 ® ¢ 6 o

1 1 Ok (’0 ¢ O O
* a(0) %p_ m o?@m%w Wv/a a_ (] @ ®
* o, (1) %pyl bty e o, - oy (2]~ O O
* all other o' to zeros o_(2) o o o

x (1) T O O

Computation — Induction Step o~ (3] o e o b:w\c

. Figure 7.3 of "Supervised Sequence Labelling with Recurren ’
We then proceed recurrently accordmg to: B T O e arel Netwerke" dissertation bfA/ef%raiei\,\\u\w

[}qu (})[1,1/ a0 &é&/ )H)l/)

Sfu/m g Wi Vi

Y f S S—
it £ 0
i ys = Y51
We can write the update as p}, ( =l(s) + a )+ [ys # ys—1] - &1 (s — 1)).
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Unlike BIO-tag structured prediction, nobody knows how to perform CTC decoding optimally in

polynomial time.

The key observation is that while an optimal extended labeling can be extended into an optimal
labeling of a greater length, the same does not apply to a regular labeling. The problem is that
regular labeling corresponds to many extended labelings, which are modified each in a different
way during an extension of the regular labeling.

1.0

0.8

0.6

0.4

0.2

0.0

CTCDecoding

p(l=blank) = p(--)
= 0.7*0.6
= 0.42

60/!@0[/‘\\[/1]/ zh ot u(j@/ vﬂ&&’ I %wmml/ Nl
p(=A) = p(AA)+p(A-)+p(-A)
= 0.3*0.4 + 0.3¥0.6 + 0.7*0.4
= 0.58
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Beam Search
To perform a beam search, we keep k best regular (non-extended) labelings. Specifically, for
each regular labeling y we keep both ! (y) and o (y), which are probabilities of all (modulo
beam search) extended labelings of length £ which produce the regular labeling y; we therefore
keep k regular labelings with the highest o' (y) + o (y).
To compute the best regular labelings for a longer prefix of extended labelings, for each regular
labeling in the beam we consider the following cases:

* adding a blank symbol, i.e., contributing to o' (y) both from o (y) and o (y);

® adding a non-blank symbol, i.e., contributing to a!™!(*) from o’ (y) and contributing to a

*

possibly different al™1(*) from ol (y).

Finally, we merge the resulting candidates according to their regular labeling, and keep only the
k best.

CTCDecoding 17/32



AN

/’_\

4

3k
— )
\ b}
>
g« O
N
—_cC
SS
=
/ |
Sl j'cw‘fv Ao ol pedhn, L hg/;ﬂ!’f@'
%IZ&]WM%';%' 7 %z//Z L' o by, Hhirr




The embeddings can be trained for each task separately.

However, a method of precomputing word embeddings have been proposed, based on
distributional hypothesis:

Words that are used in the same contexts tend to have similar meanings.
The distributional hypothesis is usually attributed to Firth (1957):

You shall know a word by a company it keeps.

%@w% \ WW/OE(U &Z/WJWE& Ui —\(,%Jf - Wow\\‘ W#eM%JA{? W *lﬁh.
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Word2Vec UrzL
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Mikolov et al. (2013) proposed two very simple architectures for precomputing word
embeddings, together with a C multi-threaded implementation word2vec.
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— folle }a kwg/y/
Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza
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Word2Vec — SkipGram Model

INPUT PROJECTION OUTPUT

Wi+1

Wty2

N

Wy Wy

CBOW (Continuous Bag Of Words)

INPUT PROJECTION OUTPUT

Wt—2

Wi—1

Wi+1

I

Wrt2

Skip-gram

Considering input word w; and output w,, the Skip-gram model defines

p(wo|w;)

def

.
oV i W,

D w eV W

After training, the final embeddings are the rows of the V' matrix.
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Word2Vec — Hierarchical Softmax Uz

Instead of a large softmax, we construct a binary tree over the words, with a sigmoid classifier
for each node.

If word w corresponds to a path 1y, n9,...,n7, we define

L-1
pus (w|w;) = H o([+1if n;y; is right child else-1] - V', W ,.).
j=1
LLCLE]M/M JW ‘Z?A \M\N\/’U [)WVMM/“I/ &7\
N

-~ 29
{REA
| \

oty cha oo o] |
Z OMWD@W / / L

@VW\IVWAA ) Mo
S/Wﬂ M/é 2%

()V"dlbwvﬁ Sy b
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Word2Vec = Negative Sampling> — A4/« & ot ppupa” mpre U1

Instead of a large softmax, we could train individual sigmoids for all words.

We could also only sample several negative examples. This gives rise to the following negative
sampling objective (instead of just summing all the sigmoidal losses):

PaL }/ad/l i) A %QH bue o Tiom 1 o 70/4 /I';tlm /ﬁ/ée 1 4 < 7 bt //&7@...

Ingc (Wo, w;) £ —1oga(V, W) = Y Eypy log (1 —o(V,W,,)).
j=1
@VO'\U SI uabew /ﬂh Mt;/ééa/}f&f;y/é’m// S'/Wq 644%@5’ } 2 ‘1')4,//%14

The usual value of negative samples k is 5, but it can be even 2 for extremely large corpora.

Each expectation in the loss is estimated using a single sample.

For P(w), both uniform and unigram distribution U (w) work, but
//l — Won/é o'p«}‘wogzé' 3/06//L
U(w 3/4] T _ 'utigorim” pedoiu

/ ! - / v 4 Co ’
g[ml/t M m VZA%?L Wﬂ/ﬂf M) ﬁ/l iy M”/S Jﬂhﬂ I J"J'Ob /fwhu/m&z'
outperforms them significantly (this fact has been reported in several papers by different
authors). g//,} /,/ ém//hw? zw/ghz/
Span Labeling  CTC CTCDecoding  Word2Vec  CLEs

Subword Embeddings ELMo 23/32



i~

—

—_

Mudutlm 3o, f71lpove il

/Wlf

g'\

)
SN
—
s
——
¢
o~

) A el dicneta o hiegafis! 9»74;/74, iy

~~
~

dn,” 7/1/1%%* 2 ﬁ’m’/& Azeh leemt~ ﬂ‘;;g‘/% 0/9/4,

NJ

wly, A% W rve

/;wa Nodo 977  Jatiul  ycign, (T 4 S;é]rvm/'du




A“‘“@“‘ by dph increased | John Noahshire phding
& ng o venl s reduced | Richard || Nottinghamshire mixing
"y (70 - 1mproved | George Bucharest modelling
el e e expected | James Saxony styling
decreased | Robert Johannesburg blaming
targeted | Edward || Gloucestershire | christening

Table 2: Most-similar in-vocabular words under
the C2W model; the two query words on the left
are 1n the training vocabulary, those on the right
are nonce (invented) words.
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In Vocabulary Out-of-Vocabulary

while his you richard trading computer-aided misinformed  looooook
although your  conservatives  jonathan  advertised - - —
LSTM-Word letting her we robe.rt advertising - - —
though nmy guys neil turnover - — —
minute their I nancy turnover - - —
chile this your hard heading computer-guided informed look
LSTM-Char whole hhs young rich training computerized performed cook
(before highway)  meanwhile is four richer reading disk-drive transformed looks
white has youth richter leading computer inform shook
meanwhile hhs we eduard trade computer-guided informed look
LSTM-Char whole this your gerard training computer-driven performed looks
(after highway) though their doug edward traded computerized outperformed  looked
nevertheless  your i carl trader computer transformed looking

Table 6: Nearest neighbor words (based on cosine similarity) of word representations from the large word-level and character-level (before

and after highway layers) models trained on the PTB. Last three words are OOV words, and therefore they do not have representations in the
word-level model.
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Another simple idea appeared simultaneously in three nearly simultaneous publications as
Charagram, Subword Information or SubGram.

A word embedding is a sum of the word embedding plus embeddings of its character n-grams.
Such embedding can be pretrained using same algorithms as word2vec.

The implementation can be

® dictionary based: only some number of frequent character n-grams is kept;
® hash-based: character n-grams are hashed into K buckets (usually K ~ 10° is used).

vypraindy, slow v 1 h -
P\Adﬂna ﬁq }/Wa u?m«& wor S\ w
PM ()\/lr\j

héi hiin gl i

é}m Q\Ji\nvb \

‘3 - -
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https://arxiv.org/abs/1607.02789
https://arxiv.org/abs/1607.04606
http://link.springer.com/chapter/10.1007/978-3-319-45510-5_21

gMﬁWo/d/ /'M%an%'oh 94(/9 jht_,\

query tiling tech-rich english-born micromanaging  eateries dendritic

@ tile tech-dominated  british-born ~ micromanage  restaurants  dendrite

flooring tech-heavy polish-born  micromanaged eaterie dendrites

sg bookcases technology-heavy most-capped defang restaurants  epithelial
built-ins JIXiC ex-scotland internalise delis pS3

Table 7: Nearest neighbors of rare words using our representations and skipgram. These hand picked
examples are for illustration.
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Figure 2: Illustration of the similarity between character n-grams in out-of-vocabulary words. For each pair,
only one word is OOV, and is shown on the x axis. Red indicates positive cosine, while blue negative.

Figure 2 of "Enriching Word Vectors with Subword Information", https://arxiv.org/abs/1607.04606
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The word2vec enriched with subword embeddings is implemented in publicly available
fastText library https://fasttext.cc/.

Pre-trained embeddings for 157 languages (including Czech) trained on Wikipedia and
CommonCrawl are also available at https://fasttext.cc/docs/en/crawl-vectors.html.

Tohl, /’ﬂ %ao/mv C/OA@/ ﬁf
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ELMo

At the end of 2017, a new type of deep contextualized word representations was proposed by
Peters et al., called ELMo, Embeddings from Language Maodels.

The ELMo embeddings were based on a two-layer pre-trained LSTM language model, where a
language model predicts following word based on a sentence prefix. Specifically, two such
models were used, one for the forward direction and the other one for the backward direction.

Output
Layer

LSTM
Layer #2

LST™M

Layer #1

Embedding

http

, D.1% | Aarcverk Embedding of “stick” in “Let’s stick to” - Step #1
Possible classes: o]
All English words 10%  Improvisation
0%  Zyzzpva Forward Language Model Backward Language Mode

(

O ¢

o o o o I o o oo | oo oo
LSTM L] 0 ] o o o
o T 6-'J_LJ 6-'J_I_l Layer #1 ' ' ' v ' v
w w w
Embedding 11 11 L T I 11

111 [T

://jalammar.github.io/images/Bert-language-

Let’s

http://jalammar.github.io/images/elmo-forward-backward-language-model-embedding.png
modeling.png
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ELMo UrzL

To compute an embedding of a word in a sentence, the concatenation of the two language
model's hidden states is used.

Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers
N O

I T T 11

I I I B B

2- Multiply each vector by

a weight based on the task
I < S
[ T
I Y >

o
& &

3- Sum the (now weighted)
vectors

ELMo embedding of “stick” for this task in this context

http://jalammar.github.io/images/elmo-embedding.png

To be exact, the authors propose to take a (trainable) weighted combination of the input
embeddings and outputs on the first and second LSTM layers.

NPFL138, Lecture 9 Span Labeling CTC CTCDecoding Word2Vec CLEs Subword Embeddings ELMo 31/32



Pre-trained ELMo embeddings substantially improved several NLP tasks.

INCREASE
TASK PREVIOUS SOTA OUR ELMo + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 £0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2/17.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 £ 0.19 || 90.15 0222 £0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 547 £ 0.5 3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F; for
SQuAD, SRL and NER; average F; for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.
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