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Reinforcement Learning

Reinforcement learning is a machine learning paradigm, different from supervised and

unsupervised learning.

The essence of reinforcement learning is to learn from interactions with the environment to

maximize a numeric reward signal. The learner is not told which actions to take, and the actions
may affect not just the immediate reward, but also all following rewards.
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Deep Reinforcement Learning

In the last decade, reinforcement learning has been successfully combined with deep neural
networks.
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Course Website: https://ufal.mff.cuni.cz/courses/npfl122

® Slides, recordings, assighments, exam questions

Course Repository: https://github.com/ufal /npfl122

® Templates for the assignments, slide sources.

Piazza

® Piazza will be used as a communication platform.

You can post questions or notes,
O privately to the instructors, or

O to everyone (signed or anonymously).

Students can answer other student's questions too, which allows you to get faster response.
However, please do not send even parts of your solutions to other students.

® Please use Piazza for all communication with the instructors.

® You will get the invite link after the first lecture.

Organization
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https://ufal.mff.cuni.cz/courses/npfl122
https://github.com/ufal/npfl122

https://recodex.mff.cuni.cz

® The assignments will be evaluated automatically in ReCodEx.

® |f you have a MFF SIS account, you should be able to create an account using your CAS
credentials and should automatically see the right group.

® QOtherwise, there will be instructions on Piazza how to get ReCodEx account (generally

you will need to send me a message with several pieces of information and | will send it to
ReCodEx administrators in batches).
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https://recodex.mff.cuni.cz/

Practicals

® There will be 1-3 assignments a week, each with a 2-week deadline.
© There is also another week-long second deadline, but for less points.

® After solving the assignment, you get non-bonus points, and sometimes also bonus points.
® To pass the practicals, you need to get 80 non-bonus points. There will be assignments for
at least 120 non-bonus points.

® |f you get more than 80 points (be it bonus or non-bonus), they will be all transferred to
the exam. Additionally, if you solve all the assignments, you pass the exam with grade 1.

Lecture

You need to pass a written exam (or solve all the assignments).

® All questions are publicly listed on the course website.

® There are questions for 100 points in every exam, plus the surplus points from the practicals
and plus at most 10 surplus points for community work (improving slides, ...).

® You need 60/75/90 points to pass with grade 3/2/1.
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Develop goal-seeking agent trained using reward signal.

® Optimal control in 1950s — Richard Bellman

® Trial and error learning — since 1850s
O Law and effect — Edward Thorndike, 1911

® Responses that produce a satisfying effect in a particular situation become more
likely to occur again in that situation, and responses that produce a discomforting
effect become less likely to occur again in that situation

O Shannon, Minsky, Clark&Farley, .. — 1950s and 1960s
O Tsetlin, Holland, Klopf — 1970s
O Sutton, Barto — since 1980s

® Arthur Samuel — first implementation of temporal difference methods for playing checkers

Notable successes
® Gerry Tesauro — 1992, human-level Backgammon program trained solely by self-play
¢ |[BM Watson in Jeopardy — 2011
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Deep Reinforcement Learning — Atari Games

® Human-level video game playing (DQN) — 2013 (2015 Nature), Mnih. et al, Deepmind
© 29 games out of 49 comparable or better to professional game players

© 8 days on GPU
O human-normalized mean: 121.9%, median: 47.5% on 57 games

® A3C — 2016, Mnih. et al
© 4 days on 16-threaded CPU

O human-normalized mean: 623.0%, median: 112.6% on 57 games

® Rainbow — 2017
O human-normalized median: 153%; ~39 days of game play experience

® |Impala — Feb 2018
© one network and set of parameters to rule them all

O human-normalized mean: 176.9%, median: 59.7% on 57 games

® PopArt-Impala — Sep 2018
O human-normalized median: 110.7% on 57 games; 57*38.6 days of experience
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History of Deep Reinforcement Learning Ve

Deep Reinforcement Learning — Atari Games
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Figure 2 of "Recurrent Experience Replay
in Distributed Reinforcement Learning"
by Steven Kapturowski et al.
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Figure 3 of "When to use parametric models in reinforcement learning?" by Hado van Hasselt et al.
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Deep Reinforcement Learning — Board Games

® AlphaGo

O Mar 2016 — beat 9-dan professional player Lee Sedol

® AlphaGo Master — Dec 2016

O beat 60 professionals, beat Ke Jie in May 2017

® AlphaGo Zero — 2017
O trained only using self-play

O surpassed all previous version after 40 days of training

® AlphaZero — Dec 2017 (Dec 2018 in Nature)

O self-play only, defeated AlphaGo Zero after 30 hours of training
O impressive chess and shogi performance after 9h and 12h, respectively

History

Shogi

Go

IphaZero vs. EImo
e 552

10/31



Deep Reinforcement Learning — 3D Games

® Dota2 — Aug 2017
© won 1lvl matches against a professional player

MERLIN — Mar 2018
O unsupervised representation of states using external memory

O beat human in unknown maze navigation

FTW — Jul 2018
O beat professional players in two-player-team Capture the flag FPS

O solely by self-play, trained on 450k games

® OpenAl Five — Aug 2018
© won 5v5 best-of-three match against professional team

o 256 GPUs, 128k CPUs, 180 years of experience per day

® AlphaStar
O Jan 2019: won 10 out of 11 StarCraft || games against two professional players
O QOct 2019: ranked 99.8% on Battle.net, playing with full game rules

History
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Deep Reinforcement Learning — Other Applications

® Optimize non-differentiable loss
© improved translation quality in 2016

O better summarization performance

® Discovering discrete latent structures

® [Effectively search in space of natural language policies

e TARDIS - Jan 2017
O allow using discrete external memory

® Neural architecture search (Nov 2016)
O SoTA CNN architecture generated by another network

© can search also for suitable RL architectures, new activation functions, optimizers...

® Controlling cooling in Google datacenters directly by Al (2018)
o reaching 30% cost reduction

® Improving efficiency of VP9 codec (2022; 4% in bandwith with no loss in quality)
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Note that the machines learn just to obtain a reward we have defined, they do not learn what
we want them to.

® Hide and seek
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https://openai.com/blog/emergent-tool-use/#surprisingbehaviors
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Multi-armed Bandits Ve

q+(3)

Reward 0 (1)

distribution ¢.(10)

Action

Figure 2.1 of "Reinforcement Learning: An Introduction, Second Edition".
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We start by selecting action A1, which is the index of the arm to use, and we get a reward of
R1. We then repeat the process by selecting actions Ay, A3, ..

Let g, (a) be the real value of an action a:

q.(a) = E[R|4; = al.

Denoting @Q:(a) our estimated value of action a at time t (before taking trial t), we would like
Q:(a) to converge to g« (a). A natural way to estimate Q:(a) is

+ sum of rewards when action a is taken

Qi(a) =

number of times action a was taken

Following the definition of Q;(a), we could choose a greedy action A; as

A; = argmax Q:(a).
a

Bandits
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Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. WWe however also need to
explore the space of actions to improve our estimates.

An e-greedy method follows the greedy action with probability 1 — €, and chooses a uniformly

random action with probability €.

g-greedy 17/31



e-greedy Method
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Figure 2.2 of "Reinforcement Learning: An Introduction, Second Edition".
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e-greedy Method et

Incremental Implementation

Let @11 be an estimate using n rewards Ry, ..., R,.
1 n
Qn—|—1 — T_LZlRfL

1 n—1e=

- E(R” + n—1 ;RL)
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e-greedy Method Algorithm Uz

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) <0
N(a) <+ 0

Loop forever:
argmax, Q(a) with probability 1 —e  (breaking ties randomly)
A+ : : s
a random action with probability e
R < bandit(A)
N(A) < N(A) +1
Q(A) + Q(A) + i [R — Q(A)]

Algorithm 2.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Analogously to the solution obtained for a stationary problem, we consider
Qn—I—l — Qn + a(an — Qn)

Converges to the true action values if

o0 o0
E o, =00 and E o’ < oo.
n=1 n=1

Biased method, because
Quir=(1—a)"Q + > a(l—a)" 'R
i=1

The bias can be utilized to support exploration at the start of the episode by setting the initial
values to more than the expected value of the optimal solution.
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Optimistic Initial Values and Fixed Learning Rate
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Figure 2.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Method Comparison Uz
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Figure 2.6 of "Reinforcement Learning: An Introduction, Second Edition".
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A Markov decision process (MDP) is a quadruple (S, A, p,~), where:

® S is a set of states,

o A is a set of actions,

* p(Sti1 =5, Ri1 =7|S: =s,A; = a) is a probability that action a € A will lead from
state s € S to ' € S, producing a reward r € R,

e v c[0,1] is a discount factor.

Let a return G; be Gy = Y o v* Ry 14 k. The goal is to optimize E[GY].
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To formulate n-armed bandits problem as MDP, we do not need states. Therefore, we could
formulate it as:

® one-element set of states, S = {S};

® an action for every arm, A = {a1,a2,...,a,};

® assuming every arm produces rewards with a distribution of N'(u;,02), the MDP dynamics
function p is defined as

2
p(S,rlS,a;) = N(r|ui, o7).
One possibility to introduce states in multi-armed bandits problem is to consider a separate

reward distribution for every state. Such generalization is called Contextualized Bandits
problem. Assuming state transitions are independent on rewards and given by a distribution

next(s), the MDP dynamics function for contextualized bandits problem is given by
p(s',7|s,a;) = N(r|pis,07,) - next(s'|s).
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Recall that the Markov decision process is a quadruple (S, A, p,~y), where:

® S is a set of states,
o A is a set of actions,

® p(St1=6,Ri1 =7|S; =s,A; = a) is a probability that action a € A will lead from
state s € S to 8’ € S, producing a reward r € R,

® v € 1[0,1] is a discount factor.

Partially observable Markov decision process
extends the Markov decision process to a sextuple

(S, A, p,7v,0,0), where in addition to an MDP,

® (D is a set of observations,

® 0(O¢41]St11, At) is an observation model,
where observation O; is used as agent input
instead of the state S;.

Organization History Bandits e-greedy
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Planning in a general POMDP is in theory undecidable.

® Nevertheless, several approaches are used to handle POMDPs in robotics
© to model uncertainty, imprecise mechanisms and inaccurate sensors, ..
O consider for example robotic vacuum cleaners

Partially observable MDPs are needed to model many environments (maze navigation, FPS
games, ..).

® \We will initially assume all environments are fully observable, even if some of them will not.
® | ater we will mention solutions, where partially observable MDPs are handled using
recurrent networks (or networks with external memory), which model the latent states 5.
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We now present the first algorithm for computing optimal behavior without assuming a
knowledge of the environment dynamics.

However, we still assume there are finitely many states & and we will store estimates for each of
them.

Monte Carlo methods are based on estimating returns from complete episodes. Specifically, they
try to estimate

Q(s,a) = E[G¢|S; = s, At = al.
With such estimates, a greedy action in state S; can be computed as

A; = argmax Q(S;, a).

To hope for convergence, we need to visit each state-action pair infinitely many times. One of
the simplest way to achieve that is to assume exploring starts, where we randomly select the
first state and first action, and behave greedily afterwards.
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Monte Carlo with Exploring Starts

Monte Carlo ES (Exploring Starts), for estimating 7 ~ m,

Initialize:
m(s) € A(s) (arbitrarily), for all s € §
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s,a) < empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ag € A(Sp) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ag, following m: Sy, Ag, R1,...,S7_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =T—1,T—-2,...,0:
G+ YG+ Riqq
Append G to Returns(S;, Ay)
Q(St, Ay) « average(Returns(Sg, Az))
m(St) < argmax, Q(St, a)

Modlification of algorithm 5.3 of "Reinforcement Learning: An Introduction, Second Edition" from first-visit to every-visit.
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The problem with exploring starts is that in many situations, we either cannot start in an
arbitrary state, or it is impractical.

Instead of choosing random state at the beginning, we can consider adding “randomness”
gradually — for a given €, we set the probability of choosing any action to be at least

A(s)]

in each step. Such behavior is called e-soft.

In an e-soft behaviour, selecting and action greedily (the e-greedy behavior) means one action
has a maximum probability of

A(s)|

We now present Monte Carlo algorithm with e-greedy action selection.

1—¢e+

Monte Carlo Methods 30/31



On-policy every-visit Monte Carlo for ¢-soft Policies
Algorithm parameter: small € > 0

Initialize Q(s,a) € R arbitrarily (usually to 0), for all s € S,a € A
Initialize C(s,a) € Z to 0, for all s € S,a € A

Repeat forever (for each episode):
® Generate an episode Sy, Ay, R1,...,S7_1,Ar_1, Ry, by generating actions as follows:

O With probability €, generate a random uniform action
o Otherwise, set A; = arg max, Q(S;,a)

* G+0
® Foreacht=T—-1,T—2,...,0:
° GG+ Riyy
o C(S;, Ay) «+ C(S;, Ap) +
© Q(StaAt) A Q(StaAt) C(S JAp) (G Q(StaAt))
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