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Sketch of the proof of Myerson's lemma ( Theorem 3.8). We prove all three claims at once. First,
let = be an allocation rule and p be a payment rule. We recall that the mechanism (z, p)
is DSIC if every bidder maximizes his utility by setting b; = v; and, moreover, his utility
u;(b) = v; - z;(b) — p;(b) is guaranteed to be non-negative. Expressing the utility of bidder i as
a function of his bid z, we write u;(z;b_;) = v; - 2;(2;b_;) — pi(z;b_;).

Assume the mechanism (z, p) is DSIC. The DSIC property says w;(z;b_;) = v; - x;(z;b—;) —
pi(z;6—;) < v; - xi(vi;b—;) — pi(vi; b_;) for every z. We use a clever swapping trick. For two
possible bids y and z with 0 < y < z, bidder 7 might as well have private valuation z and can
submit the false bid y if he wants, thus the DSIC condition gives

wi(y;b_i) = z - xi(y;b-i) — pi(y;b—i) < z-xi(2:0_3) — pi(2:b_;) = ui(2;0_;). (31)

Analogously, bidder  may have his private valuation v; = y and can submit the false bid z and
thus the mechanism (z, p) must satisfy

wi(z3b—;) =y xi(z36=) — pi(z;0-3) <y-2i(y; b—i) — pi(y; b—i) = wi(y; b—s). (3-2)

By rearranging inequalities (3.1) and (3.2) and putting them together, we obtain the following
inequality called the payment difference sandwich:

2(@i(y;0-i) — 2i(2:0-4)) < pi(y; b—i) — pi(230-i) < y(wa(y; b-i) — 2i(236-4)). (3-3)

Since 0 < y < z, we obtain, by ignoring the middle part of this inequality, z;(y:b_;) <
z;(z;b_;). Thus, if the mechanism (z, p) is DSIC, then z is monotone.

In the rest of the proof, we assume that the mechanism z is monotone. Let i and b_; be
fixed, so, in particular, we consider z; and p; as functions of z. First, we also assume that the
function z; is piecewise constant. Thus, the graph of x; consists of a finite number of intervals
with “jumps” between consecutive intervals; see Figure 3.1.
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Figure 3.1: A piecewise constant function.

For a piecewise constant function f, we use jump(f,¢) to denote the magnitude of the
jump of f at point ¢. If we fix z in the “payment difference sandwich” inequality (3.3) and let y
approach z from below in this inequality, then both sides become 0 if there is no jump of z;
at z (that is, if jump(z;, z) = 0). If jump(z;, z) = h > 0, then both sides tend to z - h. Thus, if
the mechanism (z, p) is supposed to be DSIC, then the following constraint on p must hold for
every z:

jump(p;, z) = z - jump(z;, 2).

If we combine this constraint with the initial condition p;(0;b_;) = 0, we obtain a formula for
the payment function p for every bidder i and bids b_; of other bidders,

¢
pi(bisb_i) = sz Sjump(xi( - 50-4), 25), (3.4)
j=1
where 21, ..., z¢ are the breakpoints of the allocation function z;( - ;b_;) in the interval [0, b;].

With some additional facts from calculus, this argument can be generalized to general
monotone functions z;. We omit the details here and only sketch the idea for differentiable x;.

If we divide the “payment difference sandwich” inequality (3.3) by z — y and take the limit of
the resulting function as z approaches y from above, then we obtain the constraint

Pi(ysb—i) =y -} (y;bs).

Combining this constraint with the initial condition p;(0; b_;) = 0, we obtain the formula

bod
plbib-) = [ 2 Lailaiba) iz
o dz
for every z. Note that we showed that this is the only possibility for the function p if we want to
extend the allocation rule z to a DSIC mechanism (z, p).

It remains to show that if = is monotone, then the mechanism (z, p) is indeed DSIC. This
argument works also for monotone allocation rules that are not necessary piecewise constant.
However, for the sake of clarity, we present it only for piecewise constant functions. The
proof is illustrated in Figure 3.2. We recall that the utility of bidder 7 satisfies u;(b;;b_;) =
v;-x;(bi; b—;) —pi(bi; b—;) when he bids b; and the other bidders bid b_;. The value v;-z;(b;; b—;)
is represented by a blue rectangle in Figure 3.2. Using the expression (3.4), we see that the
payment p; (b;; b_;) of bidder i corresponds to the part of [0, b;] x [0, z;(b;; b—;)] lying to the left
of the curve z;( - ;b_;); this is represented by the red areas in Figure 3.2. Clearly, it is optimal
for bidder i to bid b; = v;. Otherwise he either overbids b; > v;, in which case his utility is
smaller by the area above z;( - ;b_;) in the range [v;, b;], or he underbids b; < v;, in which case
his utility is smaller by the area below z;( - ;b_;) in the range [0, v;]; see Figure 3.2. [m]
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