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Today's Lecture Objectives

After this lecture you should be able to

® Explain second-order optimization methods
® |mplement gradient boosted decision trees for regression and classification

® Decide what supervised machine learning approach is suitable for particular problems
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Gradient Boosting Decision Trees — = b ol ;o bt dwh ditn” moch it Uiz

The gradient boosting decision trees also train a collection of decision trees, but unlike random
forests, where the trees are trained independently, in GBDT they are trained sequentially to
correct the errors of the previous trees.

If we denote y; as the tree1

prediction function of the
t*h tree, the prediction of
the whole collection is then

where wy; is a vector of

parameters (leaf values, to f @ )
be concrete) of the t™ tree.

Figure 1 of "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754
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Gradient Boosting for Regression Uz

Considering a regression task first, we define the overall loss as

E(w) = Zf(ti,y(wi;w)) +> %AH’“’tW’
5 PaVnmJﬁa /'—7/(% Ll _

® w = (wi,...,wr) are the parameters (leaf values) of the trees;

where

J E(ti,y(a}i;w)) is an per-example loss, (t; — y(@;; w))? for regression;

® the A is the usual L?-regularization strength. vzor Vé//wsﬂm
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Gradient Boosting for Regression Uz

To construct the trees sequentially, we extend the definition to

1
EY (wywy 1) = Z {f(ti,y(t_l) (T3 wr s 1) + yt(wz-;'wt))} + 5)\Hth2.
g 0)}’&“/! s}wwd, & Min Mam/ /)n ihee

In the following text, we drop the parameters of y(t_l) and y; for brevity.
The original idea of gradient boosting was to set

8E( zay )( )) - _(%(ti,y)
Oy(t-1 (x;) 0y

ye(®;) < —

y=yt (x;)

as a direction minimizing the residual loss and then finding a swtable constant “¢, which would
minimize the loss clolmé Yo avkoun ajméw (DMnW
( 5 /‘I%,A'I/e JJU\ Vlﬂﬁ 4 VO ,
S [£e v @) + )] + Al st
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First-order and Second-order Methods et

Until now, we used mostly SGD for finding a minimum, by performing
w +— w — aVE(w).

A disadvantage of this (so-called first-order method) is that we need to specify the learning
rates by ourselves, usually using quite a small one, and perform the update many times.

However, in some situations, we can do better.
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Assume we have a function f : R — R and we want to find its root. An SGD-like algorithm
would always move “towards” zero by taking small steps.

Instead, we could consider the linear local approximation A é// , , /A /
: : . T : - : him A )pxwmel
(i.e., consider a line “touching” the function in a given L /

point) and perform a step so that our linear local M;{ 0/7#7'%/ bl Se Vol
approximation has a value O: VgM/& Azt 4 ypnte

fla)
f'(z)

x — x—

Finding Minima
The same method can be used to find minima, because a
minimum is just a root of a derivative, resulting in:

f @)
@)
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Newton’s Method

The following update is the Newton's method of searching for extremes: ' <+— z — ]{,,((‘?)

It is a so-called second-order method, but it is just an SGD update with a learning rate f"L(:c)

Derivation from Taylor’'s Expansion
The same update can be derived also from the Taylor's expansion (z is a fixed point and € is not the

variable that moves) /é;é/ //,// gw 7%#/& i pon’ 2'4%/ QUJT( Wc(nljr

flo+9) ~f@) + £ @)+ 52" @) O

- 7/)1/1;/0 A hm;y/ 44 %é/& .ISVJ s 7(¢ ﬁé&/é 1/7/
which we can minimize for € by (i.e., the minimum of the apprOX|mat|on) oV 4 /pcl/ /&044 ﬁ ﬁl//hwa/ﬂ

0— 3f(g€-|- €) ~ f'(z) +ef"(z), obtaining z+¢e=1x — ]]:,’/((a;)) :
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Training MLPs with the Newton’s Method

Note that the second-order methods (methods utilizing second derivatives) are impractical
when training MLPs (and GLMs) with many parameters. The problem is that there are

too many second derivatives — if we consider weights w € RP,

A L N
® the gradient VE(w) has D elements; (7 v hoc WWMM”?M s b estoms Mf / /MW'A /
® however, we have a D X D matrix with all second derivatives, called the Hessian H:

o O?’E(w)
" dwow;

For completeness, the Taylor expansion of a multivariate function then has the following form:

1 WO gl Wecv/n/

L T v 2 . I
f(w + E) — .f(m) T € Vf(il!) + 25 He, < (MA& /{ e I,/Jf,ﬂ+«VM/MIMMm/

f hich btain the followi d-ord thod update: .,
rom wnicn we optain e 10 owmg Secona-oraer metnod up e;eg agumlom Q.VIIC/V! M(W &MM

r— x— H 'Vf(z) it ik ol waivine . arfi P
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Gradient Boosting Uz

Returning to the gradient boosting decision trees, instead of using a first-order method, it was
later suggested that a second-order method could be used. Denoting

8£( ’Lay )(wz)) o ag(t“y)

L5 gi = -
and
Oty D (@) 0t y)
’ 8y(t_1) (:Bz)z 8y2 y=yt=1 (x;) ,

we can expand the objective EW® using a second-order approximation to

(t) ('wt§'w1..t—1) ~ Z [E(ti,y(t_l) (ZBZ)) +gz-yt( ) + hzyt( )} T )‘”wt”

1
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Gradient Boosting Uz

Recall that we denote the indices of instances belonging to a leaf 7 as Iy, and let us denote
the prediction for the leaf T as wy. Then we can rewrite

1 1
ED(wywy 4 ) ~ Z [giyt(wi) + ihzyg(wz)} + §>\||’th2 + const

(yu’}clm povize ~ Z [( Z gi)’wT + % ()\ + Z hi)'w%-} + const.
()MS Zl'sl? — @ icelr iclr

By setting a derivative with respect to w7 to zero, we get

HE®

T owr ZieIT gi+ ()\ * ZieIT hi)wT'

Therefore, the optimal weight for a node 7 is P ob}%, e ot JWS”J Wwﬂ’

U st L% o e
Viami a1t L wynlni vt hn o B iclr i | ) 9
V@/W V”/hx A+ ZieIT h; '/ ”Jd“ C//Olea V 74}}w Cpoy /Oy/w/
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Gradient Boosting

Substituting the optimum weights to the loss, we get

E® (w*) ~ 1 Z (ZieIT gz')z

-+ const,

2 T )\—|— ZiEIT hz

which can be used as a splitting criterion.

Instance index

" B
.

s
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gradient statistics

g1, h1 A
is male? Is= {2.8,5}

92.h2 Gz=g2+93+9s

Iy = {1} I = {4} H3 = ha + h3 + hs
93,h3 Gi= G2 =94
g4, hd

. G;

Obj = _Zj H+x T 3y

g5,h5

The smaller the score s, the betterthe structure is
Figure 2 of "XGBoost: A Scalable Tree Boosting System", https://arxiv.org/abs/1603.02754
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When splitting a node, the criteria of all possible splits can be effectively computed using the
following algorithm:

Algorithm 1: Exact Greedy Algorithm for Split Finding

Input: I, instance set of current node

Input: D, feature dimension

score <+ —o0

G ZiEI gi, H < Z@'GI hi

for k=1 toD do

GL < 0, HL ~—0

for j in sorted(I, by x;,) do

GL<—GL—|—gj, Hi <—HL—|—hj

GR<—G—GL, Hr +— H— Hp,

if Xjnextk?;éxjk then
score < max(score

G2 n G% G2
' HL +\ Hpr+X HIX

end

end
Output: Split with max score
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Furthermore, gradient boosting trees frequently use:

® data subsampling: either bagging or (even more commonly) only a fraction of the original
training data is utilized for training of a single tree (with 0.5 being a common value),

® feature subsampling;

® shrinkage: multiply each trained tree by a learning rate a;, which reduces the influence of
each individual tree and leaves space for future optimization.
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Binary Classification with Gradient Boosting Decision Trees UL

To perform classification, we train the trees to perform the linear part of a generalized linear
model.

Specifically, for a binary classification, we perform prediction by
p y y P /"7 Pl By £ <91>
T
J(y(mi)) — 0 (Zyt(wi;wt)> 3
t=1

= Swip!t //M%/ )e&oﬂ'/{&é S/MMM‘

and the per-example loss is defined as

ﬁ(ti,y(wi)) = —log [U(y(wi))ti (1 - U(y(wi)))l_ti}-
/> olese 440/&@ WEL
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Multiclass Classification with Gradient Boosting Decision Trees YRt

For multiclass classification, we need to model the full categorical output distribution.
Therefore, for each “timestep” ¢, we train K trees wy i, each predicting a single value of the

linear part of a generalized linear model.

—| difdy K

Then, we perform prediction by

(o, é%wma pu Dyt fitly |
softmax (y(x;)) = softmax (Z;F_l Y1 (T3 wen), ..., Z

T

1 yt,K(fBi; wt,K)) )

and the per-example loss for all K trees is defined analogously as

K(ti, y(wz)) — —log (softmax (y(w@))t),

(3

so that for a tree k at time ¢,

0L (ti, y" ) (a;)) _ (t-1)
Oy D () — (softmax (y (wz)) — 1ti)k'
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Multiclass Classification with Gradient

a,;m& Ne
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Boosting Decision

Trees

Tree 1 for class 1

proline <= 755.0
c_gb=-0.0
instances = 136
prediction=-0.0

VAN

Tree 1 for class 2

color_intensity <= 3.8
c_gb=-1.2
instances = 136
prediction=0.3

_7 N

Tree 1 for class 3

flavanoids <= 1.2
c_gb=-1.1
instances = 136
prediction=-0.3

P

N

c_ghb=-18.1
instances = 84
prediction=-1.4

c_gb=-28.5
instances = 52

\

prediction:V

C_gb=-43.2
instances = 49
prediction=2.8

|

c_gb=-12.
i es =87
prediction=-1.1

c_gb=-26.6
instances = 35
prediction=2.6

c_gb=-18.3
instances = 101
prediction=-1.3

T

Tree 2 W

proline <= 755.0
c_gb=-0.0
instances = 136
prediction=-0.0

N

Tree 2 for class 2

color_intensity <= 3.9
c_gb=-0.6
instances = 136
prediction=0.2

N

Tree 2 for class 3

flavanoids <= 1.4
c_gb=-0.6
instances = 136
prediction=-0.2

N

c_gb=-11.2
instances = 84
prediction=-1.2

c_gb=-13.2
instances = 52
prediction=1.4

c_gb=-19.7
instances = 53
prediction=1.7

c_gb=-87
instances = 83
prediction=-1.1

c_gb=-12.6
instances = 44
prediction=1.6

c_gb=-14.0
instances = 92
prediction=-1.3

Tree 3 for class 1

flavanoids <= 2.3
c_gb=-0.0
instances = 136
prediction=-0.0

N

Tree 3 for class 2

alcohol <= 12.7
c_gb=-04
instances = 136
prediction=0.2

N

Tree 3 for class 3

hue <=0.8

c_gb=-0.3
instances = 136
prediction=-0.2

/

N

c_gb=-9.1
instances = 76
prediction=-1.2

c_gh=-79
instances = 60
prediction=1.1

c_gb=-11.9
instances = 57
prediction=1.4

c_gb=-6.1
instances = 79
prediction=-1.0

c_gh=-95
instances = 35
prediction=1.6

c_gh=-83
instances = 101
prediction=-1.0

Newton's Method

GB Training

GB Classification

GB Demo

SupervisedML
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Playground

You can explore the Gradient Boosting_Trees playground and Gradient Boosting_Trees
explained.

Implementations

Scikit-learn offers an implementation of gradient boosting decision trees,
sklearn.ensemble.GradientBoostingClassifier for classification and
sklearn.ensemble.GradientBoostingRegressor for regression.

® Furthermore, sklearn.ensemble.HistGradientBoosting{Classifier/Regressor}
provide histogram-based splitting (which can be much faster for larger datasets — tens of
thousands of examples and more) and efficient categorical feature splitting.

There are additional efficient implementations, capable of distributed processing of data larger
than available memory (both offering also scikit-learn interface):

® XGBoost,
® LightGBM (which is the inspiration for the HistGradientBoosting#* implementation).
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https://ufal.mff.cuni.cz/~straka/courses/npfl129/2122/slides/10/gbt/playground.html
https://ufal.mff.cuni.cz/~straka/courses/npfl129/2122/slides/10/gbt/explained.html

This concludes the supervised machine learning part of our course.
We have encountered:

® parametric models
O generalized linear models: perceptron algorithm, linear regression, logistic regression,
multinomial (softmax) logistic regression
® |inear models, but manual feature engineering allows solving nonlinear problems

© multilayer perceptron: nonlinear, perfect approximator — Universal approx. theorem

® nonparametric models
© k-nearest neighbors

O support vector machines not in this course, but in the state exam

® decision trees
© can be both parametric or nonparametric depending on the constraints

® generative models
© naive Bayes
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When training a model for a new dataset, a good start is evaluating two models:

® an MLP with one/two hidden layers
O works best for high-dimensional data (images, speech, text), where an individual single
dimension (feature) does not convey much meaning; use pre-trained representation if
possible;

® gradient boosted decision tree
O works best for lower-dimensional data (“tabular data"), where the input features have
interpretations on their own.

If there are only a few training examples with a lot of features, naive Bayes might also work
well.

Finally, if your goal is to reach the highest possible performance and you have a lot of
resources, definitely use ensembling.
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Today's Lecture Objectives

After this lecture you should be able to

® Explain second-order optimization methods
® |mplement gradient boosted decision trees for regression and classification

® Decide what supervised machine learning approach is suitable for particular problems
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