NPFL129, Lecture 12

Gaussian Mixture, EM Algorithm,
Bias-Variance Trade-off

Milan Straka

m December 19, 2022

— Charles University in Prague
F/, Faculty of Mathematics and Physics @ ? 9

A Institute of Formal and Applied Linguistics

U=

unless otherwise stated

L



Input: Input points @1, ..., &y, number of clusters K.
® Initialize g1, ..., g as K random input points.
® Repeat until convergence (or until patience runs out):

© Compute the best possible z; . It is easy to see that the smallest J is achieved by

. . . 2
I 1 ifk=argmin; ||z; — p,°,
i,k .
0 otherwise.
© Compute the best possible p;, = argmin,, Y. z; x||2; — p||*>. By computing a
derivative with respect to p, we get

1, — Z, 2i,kLq
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K-Means Clustering Uz

0 2 -2 0 2
Figure 9.1 of Pattern Recognition and Machine Learning.
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Gaussian Mixture vs K-Means

It could be useful to consider that different clusters might have different radii or even be
ellipsoidal.

Different cluster analysis results on "mouse" data set:
k-Means Clustering
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Multivariate Gaussian Distribution Ut

1 . 2
N(SB;/J,, 02) — \/ 2702 eXp (_ (w20.5) ) .

For D-dimensional vector @, the multlvapZte Gau55|an distribution takes the form

o/ Wz rorg % hv 7

. w1 A YO
N(w,u,?— g o (s W
N coumnnee dyon pWAw" N rUcm'mw# %ﬂé/d vl S’éﬂ/ﬁ'

The biggest difference compared to the single-dimensional case is the covariance matrix X,
which is (in the non-degenerate case, which is the only one considered here) a symmetric
positive-definite matrix of size D X D.

[ -~ @@(«}ab }\' woil  dwopnit

Recall that
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Multivariate Gaussian Distribution

If the covariance matrix is an identity, then the multivariate Gaussian distribution simplifies to

N D) =~ exp (e~ w7 (@)

(2m)P

We can rewrite the exponent in this case as

2
N(x; pu, I) o exp (_Ha: 2“” )

Therefore, the constant surfaces are concentric
hyperspheres (circles in 2D, spheres in 3D) centered

at the mean p.

The same holds if the covariance is 01, only the

hyperspheres' diameter changes.
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Multivariate Gaussian Distribution

Now consider a diagonal covariance matrix A. The exponent then simplifies to

@ w)*)

i 2A,;

N (z; p, A) o exp (— -

The constant surfaces in this case are axis-aligned
hyperellipsoids (ellipses in 2D, ellipsoids in 3D)
centered at the mean g with the size of the axes

depending on the corresponding diagonal entries in
the covariance matrix.
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Multivariate Gaussian Distribution

In the general case of a full covariance matrix, the fact that it is positive definite implies it has
real positive eigenvalues )\;. Considering the corresponding eigenvectors u;, it can be shown
that the constant surfaces are again hyperellipsoids centered at g, but this time rotated so that

: : o 1/2
their axes are the eigenvectors u; with sizes )\i/ :

L2
4 u?
\/ ux
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L1
Figure 2.7 of Pattern Recognition and Machine Learning.
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Generally, we can rewrite a positive-definite matrix 3 as UAU” = (UAY?*)(UAY?)T, and

then

ﬂoSWM

x~NpS) < x~p+UAN(O,I).

/poﬁa’w

Vezrny /fm//'

Therefore, when sampling from a distribution with a full covariance matrix, we can sample from
a standard multivariate N(O, I), scale by the eigenvalues of the covariance matrix, rotate

according to the eigenvectors of the covariance matrix and finally shift by p.

Note that different forms of covariance allow

o

more generality, but also require more parameters: @

( ® the 02T has a single parameter,

h ® the A has D parameters,

® ® the full covariance matrix 2 has (
parameters, i.e., ©(D?).

D;l)

N
: ‘loh\e Uz by’vn/

MultivariateGaussian GaussianMixture

o o

(a)

exdtimns mhg/
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Gaussian Mixture Uz

Let @1, @2, ..., 2N be a collection of N input examples, each being a D-dimensional vector
x; € RP. Let K, the number of target clusters, be given.

Our goal is to represent the data as a Gaussian mixture, which is a combination of K
Gaussians in the form ) g#”‘/ﬂ' C/M/% Mg/ﬂo

K (
p(e) = mN(@; iy, ).

Therefore, each cluster is parametrized as N (x; 1., X%,).
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Gaussian Mixture Uz
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Figure 9.5 of Pattern Recognition and Machine Learning.
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Figure 2.23 of Pattern Recognition and Machine Learning.
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Let @1, @2, ..., 2N be a collection of N input examples, each being a D-dimensional vector
x; € RP. Let K, the number of target clusters, be given.

Our goal is to represent the data as a Gaussian mixture, which is a combination of K
Gaussians in the form /7 pVM/E/bc[abWS’é Ze bod Mi(cly Ohrhuee

@/2 ;Z;ﬂ'k-/\[(m§ His X )-

Therefore, each cluster is parametrized as N (x; 1., X,).

Let =z € {0,1}# be a K-dimensional random variable, such that exactly one z;, is 1, denoting
to which cluster a training example belongs. Let the marginal distribution of z;, be

p(Zk = 1) = Tk,

. (" e " Z
so that the priors 7y, represent the “fertility” of the clusters. Then, p(z) = [, 7"
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Gaussian Mixture

, G)W%zwﬁw 9 &

— Zp(m,z Zp z)p x|z) = Zﬂk-/\/ x; g, 2i), x
7%/& ey Ws/bﬁw’ %n[% mc/jw/ B leho

Recognition

" 1nhly 2 vealéhs llusiens
%ahé U 2mim
K

We can write

and

and the log-probability of the whole clustering is therefore
Mach_/ng
N K Learning.
log p(X; 7, 11, 2) = Y log | Y meN (@i py,, Si)
= k=1
To fit a Gaussian mixture model, we utilize maximum likelihood estimation and minimize

L(m, p, 35 X)) Zlogzﬂ'k/\/ Ti5 gy 2 )-

DeepDoubleDescent 13/37
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The derivative of the loss with respect to p;. gives

OL(m,p, 3 X) _Z N (@5 py s Bi)

5 7 2,;1 (mz — p,k).
K, i lel 7le\/‘(mi; M, 2}l)

N (45047, 21)
o MmN (mi50,,%0)

2k, we get dﬂic‘:/ had il dﬁ/tf | Jﬂ/t Woe /'7797/ do [iouleick

Zi . (sz)wz M«&M/
K — Z r ( 2 k:) . /47/574 /éM aly /a/méa MyZ/?/VAa a ush

Denoting 7(z; 1) = , setting the derivative equal to zero and multiplying by

The 7(2;,1) are usually called responsibilities and denote the probability p(z; = 1|@;). Note
that the responsibilities depend on pt;, so the above equation is not an analytical solution for
M., but can be used as an iterative algorithm for converging to a local optimum.
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For 3, we again compute the derivative of the loss, which is technically complicated (we need

to compute a derivative of a matrix inverse, and also we need to differentiate a matrix
determinant) and results in an analogous equation:

» Soor(zip) (e — py,) (2 — IJ’k)T.

To minimize the loss with respect to 7r, we need to include the constraint Zk 7, = 1, so we

form a Lagrangian £(7) = L(m, p, 3; X)) — A (D, ™ — 1), and get

OL(r) N (zi; py, i)
— A\
oy, zz: Sy mN (@5 g, )

- > m(2ik), so

> =

Setting the derivative to zero and multiplying by 7, we obtain 7 =

T, =1/N - Zi r(zik)-
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Input: Input points @1, .(., &y, number of clusters K.

® Initialize g1, 2, and|m ] It is common to start by running the K-Means algorithm to
obtain z; , set 7(2; ) < 2k and use the M step below.

® Repeat until convergence (or until patience runs out):
© E step. Evaluate the responsibilities as

TN (25 oy, i)

r(zik) =
Zfil mN (x5 py, )

© M step. Maximize the log-likelihood by setting

@, = > T(Zik) 5, — > T(zie) (@i — ) (5 — )" > i m(zik)
¢ >ir(zik) > i T(2ik) ’ .
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Gaussian Mixture
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Figure 9.8 of Pattern Recognition and Machine Learning.
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The algorithm for estimating the Gaussian mixture is an example of an EM algorithm. @

The EM algorithm algorithm can be used when given a joint distribution p(X, Z; w)
over observed variables X and latent (hidden, unseen) variables Z, parametrized by w,

we maximize
log p(X;w) =log [ ¥ p(X, Z;w)
Z

with respect to w.
Usually, the latent variables Z indicate membership of the data in one of the set of groups.

The main idea is to replace the computation of the logarithm of the sum over all latent variable
values by the expectation of a logarithm of the joint probability under the posterior latent
variable distribution p(Z|X; w).

EM 18/37



® |[nitialize the parameters w"*v. @

® Repeat until convergence (or until patience runs out):
o wold — w"ev

© E step. Evaluate
Q(w|w01d) = EZ|X,’w01d [logp(X, Z, ’UJ)] .

O M step. Maximize the log-likelihood by computing

w"" < arg max Q (w|w

w

old) .
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The EM algorithm updates w to maximize Q(w|w°ld) on every step, and we now prove
that this update of weights also causes the log p(X; w) to increase.
First note that for any Z with nonzero probability, we can write
log p(X;w) = logp(X, Z; w) — log p(Z|X; w).
Computing the expectation with respect to p(Z|X, w°?), we get
logp(X;w) = Y p(Z|X;w)logp(X, Z;w) — Y p(Z|X;w!)logp(Z|X; w)
Z Z

= Q(wlw”) + H(p(Z| X; w™),p(Z| X; w)).
The above equation holds for any w, so also for w°d:
log p(X; w) = Q(w”|w’?) + H(p(Z| X;w), p(Z| X;w°)).
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Subtracting the second term log p(X; w°'?) from the first log p(X; w), we obtain @

log p(X; w) — log p(X; w*)

= Q(w|w”?) — Q(w™|w’) + H(p(Z| X; w?),p(Z| X;w)) — H(p(Z| X; w'))
— Q(w‘wdd) — Q('w‘)ld['w(’ld) + Dx1, (p(Z|X; wOId)Hp(Z|X; 'w))

Given that KL divergence is nonnegative, we get
log p(X; w) — log p(X; w!) > Q(w|w™) — Q(w|w?),

so if arg max,, Q('w|'w°1d) is larger than Q(w‘)ld['w‘)ld), we also increase log p(X; w).

To show that log p(X; w) actually converges to a stationary point, some additional regularity

old)

conditions are needed (one possibility is to require Q(w|w to be continuous in both w and

wOId). For a more detailed treatment, see the 1983 paper On the Convergence Properties of the
EM Algorithm by C. F. Jeff Wu.
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Consider a model y(&) solving a regression problem with MSE loss

L =By [(y(@) - 1)7].

Denoting g(®) = Ey/x [t], we can rewrite (y(z) — t)2 as

(y(@) — )" = (y(=) — g(@) + g(x) —¢)°
— (y(x) — g(2))’ + 2(y(2) — g(@)) (9(x) — t) + (g(x) — )"

When computing an expectation with respect to Pgaia (2, t), we obtain

L =Ex;:[(y(®) — 9(2))"] + 2Ex¢ [(y(2) — g(2))(9(2) — )] + Ex [(9(2) — 1)°]
= Exi[(y(x) — g(2))°] + Exi[(9(=) — 1)*],

because Eqx [g(x) — t] = 0.
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We have decomposed the loss into two components, where the second is the “label noise” called

irreducible error.

We now further decompose the first component Ey ¢ [(y(2) — g(x))?].

Assuming D is a dataset obtained from the data-generating distribution, we denote the
prediction of a model trained using this dataset as y(; D).

(y(2; D) — g(@))” =

Note that Ep |y(@; D) — Eply(x; D)]] = 0, therefore, for a given @, we have

Ep [(y(z; D) — g(x))?] = Ep[(y(2; D) — Eply(z; D)])°] + (Eply(e; D)) —

BiasVariance Trade-off



Putting all the parts together, we get that
Ep[L] = Ep [Ex:[(y(z; D) — 1)]]
— Ex¢| (Enly(2; D)) - 9())” + En|(y(®; D) — Enly(2; D)))’] + (9(x) )’ ].

4 \ .

N N N
bias? variance irreducible error

This is the so-called bias-variance trade-off, showing that the expected loss decomposes into
the three above components.

For classification problems, we can use the same decomposition on the MSE of probabilities,
and it is also possible to derive an analogy using the so-called 0-1 loss (see A Unified Bias-
Variance Decomposition by P. Domingos for the exact formulation).

This decomposition has been long interpreted as:

The price to pay for achieving low bias is high variance.
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Bias-Variance Trade-off
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Figure 3.5 of Pattern Recognition and Machine Learning.
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Bias-Variance Trade-off

A

Total Error

Optimum Model Complexity

Variance

Error

5 >
Model Complexity
Figure 3.2 of "On the Bias-Variance Tradeoff: Textbooks Need an Update" by B. Neal.

®f

3 HT

Figure 3.1 of "On the Bias-Variance Tradeoff: Textbooks Need an Update" by B. Neal.
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Bias-Variance Trade-off Uz

For a k-NN search, when we consider an expectation over all possible labelings of a fixed
training set, the MSE decomposes as

E[(y(@) — t(x))’] = (t(aa) - ;Zt(Nm))) + 2+,

k=1

where Ny () is the k*™® nearest neighbor of & and o2 is the irreducible error.
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2

) T T 50 o 5 10 2 25 » ° s 10 1
# Hidden Units

(KNN) (b) Kernel regression (higher kernel (c) Single hidden layer neural net-
work (higher “# Hidden Units” is

more complexity)

(a) K-nearest neighbor
(higher k is less complexity) width o is less complexity)

Quoting from Neural Networks and the Bias/Variance Decomposition by S. Geman, 1992:

The basic trend is what we expect: bias falls and variance increases with the number of
hidden units. The effects are not perfectly demonstrated (notice, for example, the dip in
variance in the experiments with the largest numbers of hidden units), presumably
because the phenomenon of overfitting is complicated by convergence issues and perhaps

also by our decision to stop the training prematurely.

BiasVariance Trade-off

28/37



Bias-Variance Trade-off

However, in past years, neural networks with increasing capacity have performed better and
better.

Traditional view of bias-variance

P

Practical setting

biased with .7 unbiased  ~
some variance ’
- ’ S -
- ~ - -~
’ S / \ ’ S | .
P \ , \ , \ ow variance
! f : 1 ! \ -
I high ¢\
I : I
\ o | ' variance ® J ' \ ® | @
: { \ ] J <~
\ bias , \ ¢
N ,\_/‘ ‘ A ”
_ _ \ ’ increasing network
increasing number ’ width
~ s
of parameters Se__=-"
Worst-case analysis Measure concentrates

Figure 4.1 of "On the Bias-Variance Tradeoff: Textbooks Need an Update" by B. Neal.
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under-fitting over-fitting

. Test risk

Risk

~N

~ ‘Training risk
sweet spot_ .+ —

Sa - =
Capacity of H

()

Risk

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

~ Training risk:

- . _interpolation threshold

~

Capacity of H

(b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold

have zero training risk.
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Double Descent — Overparametrized with Minimum L2 Urat
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’\ = = N=40 ReLU features
8k | “ —— N=4000 RelU features
6F I\
I
4 1
1
2 I
0
3 2 -1 0 1 2 3

B Nh=2 C Nh=5 D Nh=10 E Nh=500
15 T T T 1.5 T T T 15 T T T 1.5 T T
MSE: 0.788675
1 1 1r 1
MSE: 35.8272 MSE: 0.00558132
0.5 0.5 0.5 0.5
H H 2 H
5 0 5 0 5 0 5 0
o] O (@] (]
-0.5 -0.5 0.5 0.5
O  Training Samples O  Training Samples O  Training Samples O  Training Samples
-1 Target function -1 Target function | 1 - Target function | - Target function
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Figure 1 of "Minnorm training: an algorithm for training over-parameterized deep neural networks", https://arxiv.org/abs/1806.00730
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Double Descent — RFF on MNIST

Zero-one loss
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Figure 2 of "Reconciling modern machine learning practice and the bias-variance trade-off" by M. Belkin et al.
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Double Descent — MLP and RF on MNIST

Zero-one loss (%)

Squared loss

1 1 | | |
10 40 100 300 800

) =

Number of parameters/weights (x103)
Figure 4 of "Reconciling modern machine learning practice and the bias-variance trade-
off" by M. Belkin et al.
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Deep Double Descent

Classical Regime: Modern Regime:

Bias-Variance Tradeoff Larger Model is Better
A N
s 1

0.5 : Critical — Test 0.7{ | ____ Optimal Early
o) ' Regime --=- Train Stopping
1
5 0.4 . 0.6 10
i 1 5
c 1 = .2
' 0.3 ! w 0.5 <
1 . +— b4
- \ Interpolation 0 100 &
~0.2 \ ! Threshold V0.4 L
ﬁ \\ 1 ’_
201 \ 0.3 1000

l\\
0D 1 10 - 20 30 40 50 60 0.z 0 10 20 30 40 50 60

ResNet18 width parameter ResNet18 Width Parameter

Figure 1: Left: Train and test error as a function of model size, for ResNetl8s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

Figure 1 of "Deep Double Descent: Where Bigger Models and More Data Hurt" by P. Nakkiran et al.
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The authors define the Effective Model Complexity (EMC) of a training procedure T with
respect to distribution D and parameter € > 0 as
[w’[lz OM‘ m/’w’a sz,/,,QW /70374%@1[/ q@wﬂ //hl/ o0 ﬂ7wm§./ J%m
EMCop(T) < max {n ‘ Eg~pn[Errorg(T(5))] < 5},

where Errorg(M) is the mean error of a model M on the train samples S.

Hypothesis: For any natural data distribution D, neural-network-based training procedure 7T,
and small € > 0, if we consider the task of predicting labels based on n samples from D, then:

® Under-parametrized regime. If EMCp (7)) is sufficiently smaller than n, any
perturbation of 7 that increases its effective complexity will decrease the test error.

* Over-parametrized regime. If EMCp .(7) is sufficiently larger than n, any perturbation
of T that increases its effective complexity will decrease the test error.

* Critically parametrized regime. If EMCp (7)) = n, then a perturbation of T that
increases its effective complexity might decrease or increase the test error.
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U=
Deep Double Descent =
Test Error _ Train Error .80
Interpolation
Model-wise Threshold
Double Descent
0.60
Epoch-wise
Double Descent
0
S
o) 0.40
o
L
0.20
0.01

1 15 30 45 60

1 15 30 45 60 (
ResNetl8 Width Parameter

ResNet1l8 Width Parameter

Figure 2: Left: Test error as a function of model size and train epochs. The horizontal line corre-
sponds to model-wise double descent—varying model size while training for as long as possible. The
vertical line corresponds to epoch-wise double descent, with test error undergoing double-descent
as train time increases. Right Train error of the corresponding models. All models are Resnet18s
trained on CIFAR-10 with 15% label noise, data-augmentation, and Adam for up to 4K epochs.

Figure 2 of "Deep Double Descent: Where Bigger Models and More Data Hurt" by P. Nakkiran et al.
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(a) CIFAR-100. There is a peak in test error even (b) CIFAR-10. There is a “plateau” in test error
with no label noise. around the interpolation point with no label noise,

which develops into a peak for added label noise.
Figure 4 of "Deep Double Descent: Where Bigger Models and More Data Hurt" by P. Nakkiran et al.
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