Introduction to
Natural Language Processing 11
| Statisticke metody zpracovani
prirozenych jazyku]
(NPFLO068)

prof. RNDr. Jan Hajic, Dr.
Mgr. Jindfich Helcl, Ph.D.

UFAL MFF UK
{hajic,helcl}@Qufal.mff.cuni.cz

or SIS
Mon, S9, 09:00-10:30

Tagging, Tagsets, and Morphology

- ‘H”¢ W77 c)él Is A&MB \Ht }Ma‘)d Wl‘fa I VQ’/:/ O/MS/bL ﬂJ Mc K/m/ 71@3

The task of (Morphological) Tagging

Formally: A" —> T

A is the alphabet of phonemes (A* denotes any non-empty
sequence of phonemes)

— often: phonemes ~ letters
* T 1s the set of tags (the “t'c@set”)

Recall: 6 levels of language description:

 phonetics ... phonology ... morphology[syntax ... meaning ...
- a step aside: %go
’0

Recall: AT — 2LC1C2Cn) 5 T
{m;rphology tagging: disambiguation (~ “select”)

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 3

Tagging Examples

« Word form: A" — 2(LC1.C2..Cn) 5 T

— He always books the violin concert tickets early.
 MA: books — {(book-1,Noun,PI,-,-),(book-2,Verb,Sg,Pres,3)}
e tagging (disambiguation): ... = (Verb,Sg,Pres,3)
— ...was pretty good. However, she did not realize...
« MA: However — {(however-1,Conj/coord,-,-,-),(however-2,Adv,-,-,-)}

e tagging: ... = (Conj/coord,-,-,-)

— [®@nd][g1v][1t] [tu:][Ju:] (*and give 1t to you”)
 MA: [tu:] > {(to-1,Prep),(two,Num),(to-2,Part/inf),(too,Adv)}
e tagging: ... — (Prep)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 4

Tagsets

* General definition:
— tag ~ (C{,Cy---,Cy)
— often thought of as a flat list
T={t}
with some assumed 1:1 mapping
T (C,,C,...,.C)
* English tagsets (see MS):
— Penn treebank (45) (VBZ: Verb,Pres,3,sg, JJR: Adj. Comp.)
— Brown Corpus (87), Claws ¢5 (62), London-Lund (197)

1=1..n

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 5

Other Language Tagsets

* Differences:
— size (10..10k)
— categories covered (POS, Number, Case, Negation,...)
— level of detail

— presentation (short names vs. structured (“positional”))

) ExamplGeE:NDER POSSN VAR
POS % ASEl PERSON
\ \ 1 ‘KNEG 75%&4 //é/z/ﬂ s ob
— Czech: AGFS35-—-51A~=2- — S one
// POSSG\ VOICE 4 f'a autgop
SUBPOS DCOMP

NUMBER TENSE
2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

MW/}LA/%‘) OM/A 3,”5 @// /u%/f/y ﬁér/égg,
7257,43 Luides whit 5 et

Tagging Inside Morphology

* Do tagging first, then morphology:
* Formally: A"—> T — (L,C,,C,,...,C.)
* Rationale:

— have |T| <|(L,C,,C,,...,C.)| (thus, less work for the tagger)
and keep the mapping A"xT — (L,C,,C,....,C,) unique.

* Possible for some languages only (“English-like”)

— mapping R : (C,,C,,....,C)> T

reduced?

then (new) unique mapping U: A" x T, 4.ceqd = (L, T)

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 7

}‘9@45 —7 504&/ At —> 5&/ Weve — > be

o Lok [Lemmatization
éﬂ é%’ 74/ MW//@A/M/ V% /tﬁ/ V4 dﬂ////M//g Mb%{g VZ/u 74;%/ or M%f 7 554//4 L7
 Full morphological analysis: foo ol 2t lpa I

MA: AT — 2(L.CLC2,...Cn) ysed forwr s Pl Ay o

(recall: alemma | €L 1s a lexical unit (~ dictionary entry ref)

* Lemmatization: reduced MA:
— L: A" > 2w o {l; (Lt,b,....t) eMA(W)}
— again, need to disambiguate (want: A™ — L)
(special case of word sense disambiguation, WSD)
— “classic” tagging does not deal with lemmatization

(assumes lemmatization done afterwards somehow)

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 8

é/ﬁb& Olek ma{é//@ /5 ?.%;M%?j %Z& é/ﬂ”’/, 49 //5 Wg- s é"’/ééﬂﬁ J%W%’] //74(] 5”"773’///
&mé 7/44 ’7(/7. /5 ﬁd/ 4/0 7{ Var Aoz 7975,

Morphological Analysis: Methods P

A Az et Ao L 5 Smed

%
e Word form list

* books: book-2/VBZ, book-1/NNS

Direct coding

 endings: verbreg:s/VBZ, nounreg:s/NNS, adje:er/JIR, ...
* (main) dictionary: book/verbreg, book/nounreg,nic/adje:nice

* Finite state machinery (FSM)

* many “lexicons”, with continuation links: reg-root-lex — reg-end-lex

* phonology included but (often) clearly separated

CFG, DATR, Untification, ...

e address linguistic rather than computational phenomena

* 1n fact, better suited for morphological synthesis (generation)
2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 9

Word Lists

Works for English

— “mput” problem: repetitive hand coding

* Implementation issues:

— search trees

— hash tables (Perl!) a Art

— (letter) trie:
a Artv

and,Conyj @ ant, NN

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 10

e Minimization?
at Prep

= i W
o=
N
~/
o~ > = S =
N - —& s
N B =
<
T = =
QU .M S
- :/m
Q <=
—=
N
S SN
N & ™
EE R == S
< | q
L — /H\M m N
NI N
—v < <
S R R T R § SE
LS = = % S . ﬂm - wWM s i
/ < m./nm (&)
- 2 o A _
T - = N ~ ~ DN =
\ | DN) : ;
//4 h T — <t AL:MW: —
~— S —
) A T R n%
>

Dwthunes

Word-internal! Segmentation (Direct)

 Strip prefixes: (un-, dis-, ...)
* Repeat for all plausible endings:
— Split rest: root + ending (for every possible ending)

— Find root 1n a dictionary, keep dictionary information

* 1n particular, keep inflection class (such as reg, noun-irreg-e, ...)
— Find ending, check inflection+prefix class match

— If match found:

« Output root-related info (typically, the lemma(s))
* Output ending-related information (typically, the tag(s)).

IWord segmentation 1s a different problem (Japanese, speech in general)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 11

flrobgy e B e o’ 7 ot

Finite State Machinery

* Two-level Morphology
— phonology + “morphotactics” (= morphology)

* Both components use finite-state automata:
— phonology: “two-level rules”, converted to FSA
e ¢.0«< +0ecerr
— morphology: linked lexicons

 root-dic: book/’book = end-noun-reg-dic
 end-noun-reg-dic: +s/”NNS”

 Integration of the two possible (and simple)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

12

— CIOBV? W[A) /LWULMVI/ /4 Au «@lh;)’/ @Wﬁl‘ﬂ ;‘/ﬂm §4//jl7wlﬂ /Wlt?;h ﬁl%/xu éf/i /47’/ tizh” 7[/%? /)/o/é éﬁméwzﬂ,

Finite State Transducer —« s+ e/
oy oyt hit)

a4 ;04 Y 2 2 A e

W”ﬁﬂé

« FST is a FSA where - %/ %4 o epuntdi! f0 1/

— symbols are pairs((r:s)from a finite alphabets R and S.

44 7% s O 7M£7/ lor %54
e “Checking” run: Sl el

— 1nput data: sequence of pairs, output: Yes/No (accept/do not)
— use as a FSA
* Analysis run:
— 1nput data: sequence of only s € S (TLM: surface);
— output: seq. of r € R (TLM: lexical), + lexicon “glosses”
« Synthesis (generation) run: — - w vt 5 e alpk

— same as analysis except roles are switched: S <> R, no gloss
2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 13

FST Example

* German umlaut (greatly simplified!):
u <> U 1f (but not only 1f) ¢ h e r follows (Buch — Biicher)
rule: uii< c:chheerr
FST: oth

B

BUCh/BUCh: /,6:[121—_—,\'—\/ Fi:," 1—1_}]:::‘,
F1 F3 F4 F5 i N
Bucher/Bucher: @ - uf"bth o @ @
-oth : oL
F1 F3F4F5F6 N1 \! @ T NG

Buch/Buck: oth

F1 F3 F4 Fl w

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 14

Parallel Rules, Zero Symbols

 Parallel Rules:
— Each rule ~ one FST
— Run 1n parallel
— Any of them fails = path fails

« Zero symbols (one side only, even though 0:0 o.k.)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 15

— behave like any other

The Lexicon

* Ordinary FSA (“lexical” alphabet only)
* Used for analysis only (NB: disadvantage of TLM):

— additional constraint:
* lexical string must pass the linked lexicon list
* Implemented as a FSA; compiled from lists of strings
and lexicon links “bank”

. Example: é‘@@f A

book
2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 16

TLM: Analysis

1. Initialize set of paths to P = {}.
2. Read input symbols, one at a time.

3. At each symbol, generate a

COIresponc

4. Prolong al

ing to the 0 sym!

| lexical symbols possibly
bol (voilal).

| paths 1n P by al

5. Check eac

| such possible (x:0) pairs.

h new path extension against the

phonological FST and lexical FSA (lexical symbols
only); delete impossible paths prefixes.

6. Repeat 4-5 until max. # of consecutive 0 reached.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 17

TLM: Analysis (Cont.)

7. Generate all possible lexical symbols (get from all
FSTs) for the current input symbol, form pairs.

8. Extend all paths from P using all such pairs.

9. Check all paths from P (next step in FST/FSA).
Delete all outright impossible paths.

10. Repeat from 3 until end of input.

11. Collect lexical “glosses” from all surviving
paths.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 18

TLM Analysis Example

Bicher:

 suppose each surface letter corresponds to the same symbol at the lexical
level, just i might be U as well as u lexically; plus zeroes (+:0), (0:0)

e Use the FST as before.
e Use lexicons:
root: Buch “book” = end-reg-uml
Bilindni “union” = end-reg-s
end-reg-uml: +0 “NNomSg”
+er “NNomP1”

B:B % Bu:Bi = Buc:Bilic = Buch:Biich = Buch+e:BilichOe = Buch+er:BiuchOer

u
2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 19

TLM: Generation

* Do not use the lexicon (well you have to put the
“right” lexical strings together somehow!)

 Start with a lexical string L.
* Generate all possible pairs 1:s for every symbol 1n L.

* Find all (hopefully only 1!) traversals through the FST
which end 1n a final state.

* From all such traversals, print out the sequence of
surface letters.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 20

TLM: Some Remarks

Parallel FST (incl. final lexicon FSA)

— can be compiled into a (gigantic) FST
— maybe not so gigantic (XLT - Xerox Language Tools)

“Double-leveling” the lexicon:
— allows for generation from lemma, tag

— needs: rules with strings of unequal length

Rule Compiler
— Karttunen, Kay

PC-KIMMO: free version from www.sil.org (Unix,too0)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 21

Tagging: An Overview

Rule-based Disambiguation

« Example after-morphology data (using Penn tagset):

I watch a fly

NN NN DT NN

PRP VB NN VB
VBP VBP

* Rules using
— word forms, from context & current position
— tags, from context and current position
— tag sets, from context and current position

— combinations thereof

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 23

Example Rules

I watch a fly
NN NN DT NN
¢ If'then StYle: 7%& on vaa/,) 6)791\40‘4 o @Wh\ PRP VB NN VB
rd VBP VBP
* DT 1 1ag= NN

(implies NN, 4., @s a condition)
* PRP, 1, and DT, . 1,, = VBP
* {DTNNj 050 = DT
* {VB,VBZ,VBP,VBD,VBG}, . || 1,, = not DT
* Regular expressions: ~-awh wk z « 74 ¥
e not(<*,* DT> <* * nofNN>))
e not(<*,* PRP> <** notVBP>,<* * DT>)
* not(<*,{DT,NN}, notDT>)
e not(<*,*,DT>,<** {VB,VBZ,VBP,VBD,VBG}>)

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 24

(ﬂ”b bfwzf} 6%0% & ek Jn'vm, o @074%1 /L%1 V%L H’b Wes e me »5 ‘Am@
Implementation

 Finite State Automata

— parallel (each rule ~ automaton);

« algorithm: keep all paths which cause all automata say yes

— compile 1nto single FSA (intersection)
* Algorithm:

— a version of Viterbi1 search, but:
* no probabilities (“‘categorical” rules)
« multiple mput:
— keep track of all possible paths

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

25

Example: the FSA

o RI: not(<** DT> <* % notNN>))

R2: not(<*,* PRP>,<* * notVBP><* * DT>)

R3: not(<*,{DT,NN} , DT>)

R4: not(<*,*DT>,<** {VB,VBZ,VBP,VBD,VBG}>)

anything

1
I N
LS
anything else

\ anything
anything <* {DTNN},n0otDT> @

else

J

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 26

I watch a fly

Applying the FSA = « = =
o RI: not(<** DT> <* * nofNN>))
* R2: not(<*,* PRP><** notVBP><* * DT>)
* R3: not(<*,{DT NN}, DT>)
* R4: not(<*,*,DT><** {VB,VBZ,VBP,VBD,VBG}>)

R1 blocks: - fy |remains:| = fy | Or | a £y
DT DT NN NN
VB NN VB
VBP VBP
R2 blocks: |: waten o |[T€MAINS €.Z2.:|1 waten a |and more
NN DT DT
PRP VB PRP
VBP

R3 blocks: | remains only:
R4 < R1! o

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 27

DT

Applying the FSA (Cont.)

watch a fly
NN NN DT NN
PRP VB NN VB
VBP VBP
e Combine: C o C o
DT NN NN
\WS = ixr dselll o jX U,MSQ, NN VB
VBP

— %ﬁy O%’WI &/WA/M s with
A/J LG : éawéé I watch a
1 z43 wﬁ) Qvﬂ : (:—

PRP

-clflpzﬁnming B %J m/“/ﬁgf l“”ma VBP

AR 75 ogomimn 97 L) -

s (o0 fo s] DT 7
g om0 3 i st sy ot

J////////”__— ﬂlgﬁ%Q!,% Ii #K %%Wwe
or Lm%.u

fly .

. I watch a
 Result: [, o= °

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 28

Tagging by Parsing

* Build a parse tree from the multiple input:

I
NN
PRP

VP
NP
watch a fly
NN DT NN
VB NN VB
VBP VBP

* Track down rules: e.g., NP — DT NN: extract (a/DT fly/NN)
* More difficult than tagging itself; results mixed

2024/25 LS

NPFLO68/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 29

Statistical Methods (Overview)

e “Probabilistic’:
. HMM

— Merialdo and many more (XLT)

e Maximum Entropy
— DellaPietra et al., Ratnaparkhi, and others

 Rule-based:

« TBEDL (Transformation Based, Error Driven Learning)
— Brill’s tagger
« Example-based

— Daelemans, Zavrel, others

* Feature-based (inflective languages)

e (lassifier Combination (Brill’s ideas)
2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

30

M O g
vell

HMM Tagging
ct. NPFLO067 slides 170-190
HMM in general: NPFLO67 slides 155-169

Transformation-Based Tagging

The Task, Again

* Recall:
— tagging ~ morphological disambiguation

— tagset V. c (C,,C,,...C))

» C. - morphological categories, such as POS, NUMBER,
CASE, PERSON, TENSE, GENDER, ...

— mapping w — {t €V} exists
« restriction of Morphological Analysis: A" — 2(L.C1.C2...Cn)
where A is the language alphabet, L is the set of lemmas

— extension to punctuation, sentence boundaries (treated
as words)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 33

Setting

 Not a source channel view

* Not even a probabilistic model (no “numbers™ used
when tagging a text after a model 1s developed)

 Statistical, yes:

* uses training data (combination of supervised [manually annotated

data available] and unsupervised [plain text, large volume]
training)

* learning [rules]

e criterion: accuracy (that’s what we are interested in in the end,
after all!)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 34

The General Scheme

Training Tagging

Annotated Plain text

Data
to annotate

LEARNER TAGGER
training iterations / \

Automatically
tagged data

Rules learned
Partially an-
notated data

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

The Learner

Iteration n

1

Remove tags

/ Iteration 1

Assign initial
tags

Interim
annotation

> Iteration 2)

Interim
annotation

A

ATD without
annotation

Interim
annotation

Interim
annotation

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 36

-}%(r W”d[/)v K/tﬂ 7/8%'/@/ 4‘70/9 ()lZ‘@g ar WLL’“‘HJ"\C‘)/{) f&m’&/ w%ﬁh OM{a %5%]'19 VLL(/ W@Jr Il 7%3 ﬂvy 7%3

v e ek

The I/O of an Iteration

In (1teration 1):
— Intermediate data (initial or the result of previous iteration)
— The TRUTH (the annotated training data)

— [pool of possible rules]
* QOut:

— One rule rg 44 to enhance the set of rules learned so far

— Intermediate data (input data transformed by the rule
learned in this iteration, Iyeceqci)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 37

The Initial Assignment of Tags

* One possibility:
— NN
* Another:

— the most frequent tag for a given word form

e Even:

— use an HMM tagger for the initial assignment

* Not particularly sensitive

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 38

The Criterion

Error rate (or Accuracy):
— beginning of an iteration: some error rate E.

— each possible rule r, when applied at every data position:
* makes an improvement somewhere in the data (¢;,,oved(r))
* makes 1t worse at some places (Cyy sened(t))

 and, of course, does not touch the remaining data

Rule contribution to the improvement of the error rate:
* COIl'[I'ib(I') — Cimproved(r) - Cworsened(r)

Rule selection at iteration 1:
* Toelected(i) — ATEMAX, contrib(r)

New error rate: E = E; | - contrib(ryecieqi)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 39

The Stopping Criterion

* Obvious:
— no improvement can be made
« contrib(r) < 0

— or improvement too small

« contrib(r) < Threshold

* NB: prone to overtraining!

— therefore, setting a reasonable threshold advisable
« Heldout?

— maybe: remove rules which degrade performance on H

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 40

The Pool of Rules (Templates)

 Format: change tag at position i from a to b / condition

* Context rules (condition definition - “template™):

Wiz Wi Wi W

i Winpt Wi Wi

ts Lo 4y, f i G s
Wi~q }
Iy W oy th v HM/
éuﬂm ns wgll
W; .2 Wi— ¢ (_Hm\(© dx%%‘/)l A HIW
t ..

Instantiation: w, t permitted

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 41

[Lexical Rules

* Other type: lexical rules

Wiz Wi Wi W,

i Wirr Wi Wi

[T ¥ S F T ¢ 1 G b
“look 1nside the word”
« Example: MU mw////é word 3w e 1k
— w; has suffix -1ed i wod /M/é B
— w, has prefix ge- Mmé/ it f’/m/ i J

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 42

Rule Application

* Two possibilities:
— 1mmediate consequences (left-to-right):

« data: DT NN VBPNN VBP NN...
* rule: NN — NNS / preceded by NN VBP
 apply rule at position 4:
DT NN VBPINN VBP NN...)
DT NN VBPINNS VBP NN...
e ...then rule cannot apply at position 6 (context not NN VBP).
— delayed (“fixed input”):

* use original input for context

« the above rule then applies twice.
2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 43

In Other Words...

1. Strip the tags off the truth, keep the original truth
2. Initialize the stripped data by some simple method
3. Start with an empty set of selected rules S.

4. Repeat until the stopping criterion applies:

— compute the contribution of the rule r, for each r:

COIltI'ib(I') — Cimproved(r) - Cworsened(r)
— select r which has the biggest contribution contrib(r), add 1t
to the final set of selected rules S.

5. Output the set S.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 44

oo e e el 52 slpo [b, 5 i 6L pukr it oy i
nedy iyt 4% / c/q/ﬁa'%m,’w / /ﬁkmb/&//
The Tagger pée wr s
Mirgiong Tomw“ﬁwt &lo)l/;vj/ pon({ Vﬂ b@fw ')xllo ﬂh +Vef/)\'wh. fck por] %W&' ol ﬂﬂWé?';%%,
Mw} L b - 4t
‘9/7‘”””/5 &@% d‘(w% mnm‘ﬂx o ﬂ[‘
— untagged data b b [S e confbion
— rules (S) learned by the learner

* Input:

* Tagging:
— use the same 1nitialization as the learner did

— for 1= 1..n (n - the number of rules learnt)

« apply the rule 1 to the whole intermediate data, changing
(some) tags

— the last intermediate data is the output.

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 45

N-best & Unsupervised Modifications

* N-best modification
— allow adding tags by rules

— criterion: optimal combination of accuracy and the
number of tags per word (we want: close to ¥1)

* Unsupervised modification
— use only unambiguous words for evaluation criterion
— work extremely well for English

— does not work for languages with few unambiguous
words

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 46

Maximum Entropy

(54

‘V\”‘/ MmNy, MAS’LV Wn’u?,

[/w ‘60(“ M@' Viee MOJ@L’A Lm ﬂ)Wn wmgl"w M’\ ({‘7%&”%5
W’y/ £ M/W/M W n;/w/f T py 4 biased ¢ MWh éwé’f%fw
4[%%%7(% [g,m, M/]uw l?y \//)Um.w'ym WO(/IZ& p17) “'VCMOWVV)

—Hiﬁ e ewlmm Wy rm‘A wg’me/m“ Qnlfoy dWivll 0 W/v/mém’/ " J'%w /57// Mmjé/;

1 2 3 4 5 6

‘ — (
/ MM. = 0.1 |01] 01 |04]o01]02 Wiorn
0.25 | 0.05 | 0.05 | 0.4 | 0.05 | 0:2

Maximum?? Entropy

 Why maximum entropy?

* Recall: so far, we always “liked”
— minimum entropy...
= minimum uncertainty
= maximum predictive power
... distributions
— always: relative to some “real world” data

— always: clear relation between the data, model and
parameters: €.g., n-gram language model

 This 1s still the case! But...

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

48

The Maximum Entropy Principle

Given some set of constraints (“‘relations™, “facts”),
which must hold (1.e., we believe they correspond to the

real world

What 1s t

we model):
ne best distribution among those available?

Answer: t

(of sucl

ne one with maximum entropy

1 distributions satisfying the constraints)

Why? ...philosophical answer:

— Occam’s razor; Jaynes, ...:

« make things as simple as possible, but not simpler;

* do not pretend you know something you don’t

2024/25 LS

NPFLO68/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl 49

Example

* Throwing the “unknown” die

— do not know anything — we should assume a fair die

(uniform distribution ~ max. entropy distribution)

e Throwing unfair die

— we know: p(4) = 0.4, p(6) = 0.2, nothing else

— best distribution?
— do not assume anything

about the rest:

 What if we use instead:

2024/25 LS

1 2 3 4 5 6
0.1 | 0.1 | 0.1 | 0.4 | 0.1 | 0.2
1 2 3 4 5 6
0.2510.051005| 04 |0.05| 0.2

NPFLO68/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl

™~

Using Non-Maximum Entropy
Distribution

 ME distribution: p: 011 021 031 044 051 062

e Using instead: q} 11 2 [3 1 4 | >
0.2510.05 1005} 04 |0.05] 0.2

» Result depends on the real world:

— real world ~ our constraints (p(4) = 0.4, p(6) = 0.2), everything
else no specific constraints:

 our average error: D(q||p) [recall: Kullback-Leibler distance]

— real world ~ orig. constraints + p(1) = 0.25:
 q1s best (but hey, then we should have started with all 3 constraints!)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 51

Things 1n Perspective: n-gram LM

 Is an n-gram model a ME model?

— yes 1f we believe that trigrams are the all and only
constraints

e trigram model constraints: p(z|x,y) = ¢(X,y,z)/c(X,y)

— no room for any “adjustments”
* like 1f we say p(2) = 0.7, p(6) = 0.3 for throwing a die

* Accounting for the apparent inadequacy:
— smoothing
— ME solution: (sort of) smoothing “built 1n”

 constraints from training, maximize entropy on training + heldout

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 52

- %@hgml/& é“‘ﬂ&&’/ 4”4—‘70;% Con Wg('.l{/l ﬁlv@}wha W oIAoo&u W‘g 1 /Wi/ éﬂ/ Wgw' VLD V%(/I//DVj)Z 6&,
~ ///@ o also o] iguls ! /WM/ 4 ahs Jrpesssyy oy

Features and Constraints

* Introducing...

— binary valued selector functions (“features”): S

* fi(y,x) € {0,1}, where /\)0

— y € Y (sample space of the event being predicted: words, tags, ...),

— X € X (space of contexts, e.g. word/tag bigrams, unigrams, weather
conditions, of - in general - unspecified nature/length/size)

— constraints:
* E (fi(y,x)) = E’(fi(y,x)) (= empirical expectation)
* recall: expectation relative to distribution p: E () = Zy,xp(x,y)fi(y,x)

+ empirical expectation: E*(£) = X,,p’(6y)f(y0) = 1/T| Z, 1f(y,x)
* notation: E’(fi(y,x)) = d;: constraints of the form E (fi(y,x)) = d,

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 53

Additional Constraint (Ensuring
Probability Distribution)

* The model’s p(y|x) should be probability distribution:
— add an “omnipresent” feature f,(y,x) = 1 for all y,x
— constraint: E (fy(y,x)) = 1

« Now, assume:
— We know the set S = {f.(y,x), 1=0..N} (|S|=N+1)
— We know all the constraints

* 1.e. a vector d,, one for each feature, 1=0..N

* Where are the parameters?

— ...we do not even know the form of the model yet

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 54

The Model

e (@G1ven the constraints, what 1s the form of the model
which maximizes the entropy of p?

» Use Lagrangian Multipliers:

— minimizing some function ¢(z) in the presence of N
constraints g,(z) = d; means to minimize

O(x) - Zimy NA(g(X) - dy) (w.r.t. all A; and x)
— our case, minimize
A(p) =-H(p) - Zi=1..N7\“i(Ep(fi(YaX)) -dy) (w.r.t. all A; and p!)
— 1.e. §(z) = -H(p), gi(2)= E (t(y,x)) (variable z ~ distribution p)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 55

Loglinear (Exponential) Model

« Maximize: for p, derive (partial derivation) and solve
A’(p) = O:
o[-H(p) — Zi=0..N7\‘i(Ep(fi(yax)) -dy)}/op=0
6[2 p log(p) — Zieg xM((2 p £) - d))/Sp =0

1 +log(p) — Zicg nMi £ =0

1 +log(p) = 2oy A £ + 2y
p = ezizl..Nki fi + 7»0 -1

e p(y,x)= (1/ Z) e Zi-1.NATi(yX) (Z = e '"*, the normalization factor)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 56

The form of the constraints for the Maximum Entropy model is defined as

Vyberte jednu nebo vice moznosti:

a.

1T zh”zyﬂp(ylxt)fi(y,x‘) - di =0, where T is the training data
(and |T| its size), p(y|x) the conditional model probability
distribution, y the predicted variable and x the context (x; is the
concrete context at t-th data item), and f; the i-th feature. d; is the

v Yes, this is the approximation formula
using the data-oriented expected value
computation due to the complexity of
summing over all possible xs (which is
often impossible to enumerate).

true feature count as extracted from the training data.

Zy,xp(ylx)fi(y,x) - dij = 0, where p is the conditional model

distribution, f; are the features, and d; is the true count as

extracted from the training data.

X No. The weight in the expected value formula
computation must always be the joint distribution,
not the conditional one.

Ey(fi(y,x)) - di= 0, where E is the expected value v Yes. It simply says that the (joint) distribution p must be such

of feature count expressed in terms of the
probability distribution p as Ej(f;) =

Xy xP(x,Y)fi(y,x), with p being the model joint
distribution, and d; is the true count as extracted
from the training data.

L> ‘\'\/IS 15 ou

that it models the feature count in such a way that it equals to
the true count as found in the data, by using the standart
optimization technique known as Lagrange multipliers (where
the "multipliers" then serve as the feature weights).

;\/Ib a@u%lwims IWI/LL

i b5\ lint Yo unart
é\ /<J usg ..

—

v

/Z//Z o, 4{ /@/4’9?/
V7, /wé/ ﬂﬂw/é/ ,;/
%ﬂéﬁg /é/@/f/z

/71/5 /,,,7/ iﬁﬂg /ég%

/' Khmmwé ey 4// e

Getting the Lambdas: Setup

* Model: p(y,x) = (1/Z) e¥=1-~Ailiyx)

* Generalized Iterative Scaling (G.1.S.)
— obeys form of model & constraints:
* E,(fi(y,x)) =4,
— G.I.S. needs, in order to work, Vy,x 2., n fi(y,x) =C
« to fulfill, define additional constraint:

* fN+1(y3X) — Cmax - zi=1..N fi(Y9X)> where Cmax - maXx,y zi=1..N f1(y9X)

— also, approximate (because X 1s not (never) feasible)

x e All contexts
* Ep(f1) - zy,xp(X9Y)ﬁ(Y9X) = 1/‘T| thI..szer(Y|Xt)fi(YaXt)
(use p(y,x)=p(y|x)p’(x), where p’(x) is empirical i.e. from data T)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 57

Generalized Iterative Scaling

1. Initialize 1.\ (any values, e.g. 0), compute d., i=1..N+1
2. Set 1iteration number n to 1.
3. Compute current model distribution expected values

of all the constraint expectations
E,.(f) (based on p™(ylx,)

— [pass through data, see previous slide;

at each data position t, compute p™(y,x,), normalize]
4. Update A,D = L + (1/C) log(d/E,, ()
5. Repeat 3.,4. until convergence.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 58

Comments on Features

* Advantage of “variable” (~ not fixed) context in f(y,x):

— any feature o.k. (examples mostly for tagging):

previous word’s part of speech 1s VBZ or VB or VBP, y 1s DT

next word: capitalized, current: ““.””, and y is a sentence break (SB detect)
y 1s MD, and the current sentence is a question (last w: question mark)
tag assigned by a different tagger is VBP, and y is VB

it 1s before Thanksgiving and y 1s “turkey” (Language modeling)

even manually written ,,rules,* e.g. y 1s VBZ and there is ...

— remember, the predicted event plays a role in a feature:

also, a set of events: f(y,x) is true 1f y 1s NNS or NN, and x is ...

x can be 1gnored as well (“unigram” features)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 59

Feature Selection

* Advantage:

— throw 1n many features

* typical case: specify templates manually (pool of features P), fill in
from data, possibly add some specific manually written features

— let the machine select
e Maximum Likelihood ~ Minimum Entropy on training data

* after, of course, computing the A.’s using the MaxEnt algorithm

* Naive (greedy of course) algorithm:
— start with empty S, add feature at a time (MLE after ME)
— too costly for full computation (|S| x |P| x [ME-time)|)
— Solution: see Berger & DellaPietras

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 60

References

Manning-Schuetze:
— Section 16.2

Jelinek:

— Chapter 13 (includes application to LM)
— Chapter 14 (other applications)

Berger & DellaPietras in CL, 1996, 1997

— Improved Iterative Scaling (does not need X._, fi(y,x) = C)
— “Fast” Feature Selection!

Hildebrand, F.B.: Methods of Applied Math., 1952

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 61

Wy nis

=
= 1
e
S
§_,
=
BN
X
o
wv
S
Sy
S-

/jrﬂ g | o Jor Wb pmImpt o atnit and wo b

Q~

514//4 %1 / %]/,g “ -7 KIH/\‘\s c,latls ‘\-V fc)bQV’T\/'/?\mr&

| .| |
Juciom | possible | dantnes| addinn Hlew (1| The Tlmp | Aeo
n [0U | Y ’ ’ v
(/ YZ5 — = 51 X) —>
) y / : /
2 dwﬁu/a \\ l) - 7 “m”’éhj e Lty L nx el 4l
Y \\’/ - k. 0t - N d
\//’_\ _ 9—1<// | ‘ / /
[Y J=7 Pl — > p
\ o7 | RN L?}vma-, 7 - il _ “‘\L’{,l, W ME(
/ (Z 21 Culx = 7]' Q /
g \ a / \ A
() Q
%\A\ \ N 9 /{y-ln/.h
WS \Mv\ ttwg {009 VS

=
=
=
QL
o
(N
=
.
S
cs
N
N

ttnsion, to0 3wty i v | oy A
) g

Dol aumalset bt

p L i | / 1]/
Lo gad Fielae Wi el gule e chorese
C 9,
/] /) YA 4 N L, |
Tl 297009 ! 4”,:1 W%fl Wé v | e V’/?)lmw»"f Lot
N
\
\\
\ / [ANYI
\ ane JARN .7
\ I > / s
\ \ pe d VA 5
\\\\ | // \ 0
NN\ \ red
RN L
NG)
N) |
\ [\\\L\\ 0”’% 7h?l M 1},”/
| l ann Ayl sl s
‘ p /a 7LMVﬂ oy /

3

]
. 44
l v og ™ /’lelﬁﬂ e

Maximum Entropy Tagging

The Task, Again

* Recall:
— tagging ~ morphological disambiguation

— tagset V. c (C,,C,,...C))

» C. - morphological categories, such as POS, NUMBER,
CASE, PERSON, TENSE, GENDER, ...

— mapping w — {t €V} exists
« restriction of Morphological Analysis: A" — 2(L.C1.C2...Cn)
where A is the language alphabet, L is the set of lemmas

— extension to punctuation, sentence boundaries (treated
as words)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 63

Maximum Entropy Tagging Model

* (General
p(y.x) = (1/Z) eZrxhifi(y:x)
Task: find A, satisfying the model and constraints
* E(fi(y;x)) =4,
where

« d. = E’(f(y,x)) (empirical expectation 1.e. feature frequency)
* Tagging
— 2y xifi(tx) ' . '
p(t,x)=(1/2) e (A, might be extra: cf. p in AR)

* t € Tagset,
* X ~ context (words and tags alike; say, up to three positions R/L)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 64

Features for Tagging

e (Context definition

— two words back and ahead, two tags back, current word:

* X; = (Wit Wi ot Wi Wi, Wio)

— features may ask any information from this window

¢ e.g.:
— previous tag is DT
— previous two tags are PRP$ and MD, and the following word is “be”
— current word 1s “an”
— suffix of current word 1s “ing”

* do not forget: feature also contains t,, the current tag:
— feature #45: suffix of current word is “ing” & the tagis VBG < f,; =1

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 65

Feature Selection

* The ritght data-based way:

— (try to) test all possible feature combinations

« features may overlap, or be redundant; also, general or specific
- impossible to select manually

— greedy selection:

 add one feature at a time, test 1f (good) improvement:
— keep if yes, return to the pool of features if not

— even this 1s costly, unless some shortcuts are made
« see Berger & DPs for details

* The other way:

— use some heuristic to limit the number of features

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 66

Limiting the Number of Features

* Always
— use contexts which appear 1n the training data (lossless
selection)
* Some heuristics
— use features appearing only L-times in the data (L ~ 10)
— use w;-derived features which appear with rare words only
— do not use all combinations of context

— but then, use all of them, and compute the A, only once
using the Generalized Iterative Scaling algorithm

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 67

Feature Examples (Context)

 From A. Ratnaparkhi (EMNLP, 1996, UPenn)
— t =T, w, = X (frequency ¢ > 4):
* t.= VBG, w, = selling
— t. =T, w, contains uppercase char (rare):
* t. = NNP, tolower(w.) # w,
-t=T,t, =Y, t,=X:
. t=VBP,t,=PRP, t , =RB

* Other examples of possible features:

— ;= T, t;1s X, where j 1s the closest left position where Y
* t;=VBZ, t;=NN,Y <t € {NNP, NNS, NN}

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 68

Feature Examples (Lexical/Unknown)

 From AR:
— t. =T, suffix(w,)= X (length X <35):
« t. =JJ, suffix(w,) = eled (traveled, leveled,)
— t. =T, prefix(w,)= X (length X <5):
« t. =JJ, prefix(w,) = well- (well-done, well-received,...)
— t. =T, w. contains hyphen:
« t=1JJ, ‘> in w, (open-minded, short-sighted,...)
* Other possibility, for example:
— t. =T, w, contains X:

* t. = NounPl, w. contains umlaut (4,0,ii) (Worter, Lange,...)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 69

“Specialized” Word-based Features

 List of words with most errors (WSJ, Penn
Treebank):

— about, that, more, up, ...

* Add “specialized”, detailed features:
—-t=T,w=X,t ,=Y,t,=27:
* t.=IN, w,=about, t., =NNS, t., =DT
— possible only for relatively high-frequency words

» Slightly better results (also, problems with
inconsistent [test] data)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 70

Maximum Entropy Tagging: Results

* Base experiment (133k words, < 3% unknown):

— 96.31% word accuracy

* Specialized features added:

— 96.49% word accuracy

* Consistent subset (training + test)

— 97.04% word accuracy (97.13% w/specialized features)
* Best in 2000; for details, see the AR paper

* [Now: perceptron 97%; Deep neural networks: 98%
— Collins 2002, Raab 2009, Straka 2018 (Czech)]

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 71

Feature-Based Tagging

The Task, Again

* Recall:
— tagging ~ morphological disambiguation

— tagset V. c (C,,C,,...C))

» C. - morphological categories, such as POS, NUMBER,
CASE, PERSON, TENSE, GENDER, ...

— mapping w — {t €V} exists
« restriction of Morphological Analysis: A" — 2(L.C1.C2...Cn)
where A is the language alphabet, L is the set of lemmas

— extension to punctuation, sentence boundaries (treated
as words)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 73

Feature Selection Problems

* Main problem with Maximum Entropy [tagging]:

— Feature Selection (1f number of possible features 1s in
the hundreds of thousands or millions)

— No good way
* best so far: Berger & DP’s greedy algorithm
* heuristics (cutoff based: 1ignore low-count features)

e Goal:

— few but “good” features (“good” ~ high predictive
power ~ leading to low final cross entropy)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

74

"/ érw u/oVA O\/c/(/V...

Feature-based Tagging

e]dea:

— save on computing the weights (A.)

e are they really so important?

— concentrate on feature selection
 Criterion (training):

— error rate (~ accuracy; borrows from Brill’s tagger)
* Model form (probabilistic - same as for Maximum

Entropy):
p(y[x) = (1/Z(x)) et HHi0-)
— Exponential (or Loglinear) Model

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 75

Feature Weight (Lambda)
Approximation

* LetY be the sample space from which we predict (tags
in our case), and fi(y,x) a b.v. feature

* Define a “batch of features” and a “context feature:
B(x) = {f;; all f;’s share the same context x} = 3 4790 1%y f
fp(X') =1 <4 x ©X* (x 18 part of X°) —

 1n other words, holds wherever a context x 1s found)

wy /ﬂ% lily

« Example:
f,(y,x) =1 <4 y=JJ, left tag =JJ
6, (y,x) = 1 &4 y=NN, left tag = JJ
B(left tag = JJ) = {f,, f,} (but not, say, [y=]J, left tag = DT])

4 Lo (K <4

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 76

Estimation
cmWézé] V4 %/ cowds il Ao

. Coﬁﬁute: Tl
p(y|IB(x)) = (I/Z(B(x))) zd=l..|T|6(Yd9Y)fB(x)(Xd)

 frequency of y relative to all places where any of B(x) features holds
for some y; Z(B(x)) 1s the natural normalization factor

L Z(B(x)) = Zyy 1 T (Xa)
“compare” to uniform distribution:
7 ay,B(x)) = pyIBEX)) / (1/]Y[) =t Ll 210
o(y,B(x)) > 1 for p(y|B(x)) better than uniform; and vice versa

 If f(y,x) holds for exactly one y (in a given context x),

then we have 1:1 relation between o(y,B(x)) and f,(y,x) from B(x)

and A; = log (au(y,B(x))) NB: works 1n constant time

independent of A;, j# 1
2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 77

’m Amyf AJWS WMMHM Y V% odwé md Wps %% tha JWLWM?

What we got
We ou b oul w one AMJM %W* a 'M w H U"Mﬂ)lb!ﬂ/‘a QUingg pontex] (/Osfjﬂdﬂ, words b”({% /”’% 7/”)

o Substitute:
p(Y[x) = (1/Z(x)) e ~Mfiyx) =

= (1/z() 1L oty By
= (1/zx) L1 (Y1 pyBe) e

> & Ly M
=/ - v)4l 11
= (/20 L1 p(yiBeoyye AL

= (1/2°(x)) L Lsor. v« p(yIB(x")) .

... Naive Bayes (independence assumption)

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 78

/H/’g @Wo e %@M Vt‘/ﬂm}%/ A% IlV)Jé/)MfW?Z/ So we oun Gl W//n'ﬂ)w/n/r Wc WSL%
and V% L et i+

The Reality

 take advantage of the exponential form of the model
(do not reduce 1t completely to naive Bayes):
— vary a(y,B(x)) up and down a bit (quickly)
* captures dependence among features

— recompute using “true” Maximum Entropy

e the ultimate solution

— combine feature batches into one, with new a(y,B(x”))

 getting very specific features

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 79

Search for Features

* Essentially, a way to get rid of unimportant features:
— start with a pool of features extracted from full data
— remove Infrequent features (small threshold, < 2)

— organize the pool into batches of features

* Selection from the pool P:
— start with empty S (set of selected features)

— try all features from the pool, compute o(y,B(x)), compute
error rate over training data.

— add the best feature batch permanently; stop when no
correction made [complexity: [P| x |S| x [T|]

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 80

7 W mwosf Hirese m{;vs‘r bea' g (W(JQWWJ/MJ— — G ;l’bwab W vmlr% ‘HW ot

Adding Features in Blocks,
Avoiding the Search for the Best

o Still slow; solution: add ten (5,20) best features at a
time, assuming they are independent (1.e., the next best
feature would change the error rate the same way as 1f
no intervening addition of a feature is made).

« Still slow [(|P| x |S| x |T])/10, or 5, or 20]; solution:

* Add all features improving the error rate by a certain
threshold; then gradually lower the threshold down to
the desired value; complexity [|P| x log|S| x |T|] 1if

/ @?MM KMW\VX Hie, o by 04 Dalpnbion®

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 81

Types of Features

e Position:
— current
— previous, next

— defined by the closest word with certain major POS

 Content:

— word (w), tag(t) - left only, “Ambiguity Class” (AC) of a

subtag (POS, NUMBER, GENDER, CASE, ...) >

/éﬂ{: e, é& /V/
/k%y»MqA&a e

» Up to three combinations of (position,content)

* Any combination of position and content

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 82

Ambiguity Classes (AC)

* Also called “pseudowords” (MS, for word sense
disambiguationi task), here: “pseudotags”

* AC (for tagging) 1s a set of tags (used as an indivisible
token).

— Typically, these are the tags assigned by a morphology to a
given word:
 MA(books) [restricted to tags] = { NNS, VBZ }:
AC =NNS VBZ
* Advantage: deterministic
— looking at the ACs (and words, as before) to the right allowed

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 83

Subtags

Inflective languages: too many tags — data sparseness

Make use of separate categories (remember morphology):

— tagset V. c (C,,C,,...C))

* C. - morphological categories, such as POS, NUMBER, CASE,
PERSON, TENSE, GENDER, ...

Predict (and use for context) the individual categories

Example feature:

— previous word 1s a noun, and current CASE subtag 1s genitive

Use separate ACs for subtags, too (ACpos =N _V)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 84

Combining Subtags

Apply the separate prediction (POS, NUMBER) to
— MA(books) = { (Noun, PI), (VerbPres, Sg)}

Now what 1f the best subtags are
— Noun for POS
— Sg for NUMBER

* (Noun, Sg) 1s noft possible for books
Allow only possible combinations (based on MA)
Use independence assumption (Tag = (C,, C,, ..., C))):
(bCSt) Tag - argmaXTag e MA(w) Hi=1..|Categ0ries| p(Ci|W9X)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 85

Smoothing

* Not needed 1n general (as usual for exponential
models)

— however, some basic smoothing has an advantage of
not learning unnecessary features at the beginning

— very coarse: based on ambiguity classes

« assign the most probable tag for each AC, using MLE
e e.g. NNS for AC=NNS VBZ

— last resort smoothing: unigram tag probability
— can be even parametrized from the outside
— also, needed during training

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 86

Overtraining

* Does not appear 1n general
— usual for exponential models

— does appear 1n relation to the training curve:

— but does not go down until very late in the training
(singletons do cause overtraining)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

87

Parsing: Introduction

Context-free Grammars

* Chomsky hierarchy
— Type 0 Grammars/Languages

» rewrite rules a — [3; o3 are any string of terminals and nonterminals

— Context-sensitive Grammars/Languages

 rewrite rules: aXp — ayP, where X 1s nonterminal, o3,y any string of
terminals and nonterminals (y must not be empty)

— Context-free Grammars/Lanuages

 rewrite rules: X — vy, where X 1s nonterminal, y any string of terminals and
nonterminals

— Regular Grammars/Languages

 rewrite rules: X — o Y where X,Y are nonterminals, a string of terminal
symbols; Y might be missing

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 89

Parsing Regular Grammars

 Finite state automata

— Grammar <> regular expression <> finite state
automaton

* Space needed:

— constant

* Time needed to parse:
— linear (~ length of 1nput string)

« Cannot do e.g. a"b" , embedded recursion (context-
free grammars can)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 90

Parsing Context Free Grammars

* Widely used for surface syntax description (or
better to say, for correct word-order specification)
of natural languages

* Space needed:

— stack (sometimes stack of stacks)

 1n general: items ~ levels of actual (1.e. in data) recursions
« Time: in general, O(n?)

e Cannot do: e.g. a"b"c" (Context-sensitive
grammars can)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 91

Example Toy NL Grammar

S
» #1S>NP 7 /\
« #2S SNPVP 2 .7 WS
+ #3 VP - VNP NP ﬁﬂ’
« #ANP > N ‘ ‘

e #5N — flies NV N
* #6 N — saw ‘ ‘ ‘
e #7V — flies flies saw saw

o #8 V > §awW C(//Zlcm a/x/'s/%/a L0 V@fl /)/hqw do /IQIZD 5%14%/7%,

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 92

Shift-Reduce Parsing in Detail

Grammar Requirements

e Context Free Grammar with
— no empty rules (N — ¢€)

 can always be made from a general CFG, except there might
remain one rule S — ¢ (easy to handle separately)

— recursion OK

e Jdea:

— go bottom-up (otherwise: problems with recursion)

— construct a Push-down Automaton (non-deterministic in
general, PNA)

— delay rule acceptance until all of a (possible) rule parsed

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 94

PNA Construction -
Elementary Procedures

 Initialize-Rule-In-State(q,A — o) procedure:
— Add the rule (A — o) 1nto a state q.
— Insert a dot 1n front of the R[ight]H[and]S[1de]: A — . a

* Initialize-Nonterminal-In-State(q,A) procedure:

— Do “Initialize-Rule-In-State(q,A — a)” for all rules having
the nonterminal A on the L[eft]H[and]|S[1d¢]

* Move-Dot-In-Rule(q,A — a . Zp) procedure:

— Create a new rule in state q: A - aoZ . 3, Z term. or not

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 95

PNA Construction

* Put 0 into the (FIFO/LIFO) list of incomplete states,
and do Initialize-Nonterminal-In-State(0,S)

« Until the list of incomplete states 1s not empty, do:
1. Get one state, 1 from the list of incomplete states.

2. Expand the state:

* Do recursively Initialize-Nonterminal-In-State(1,A) for all
nonterminals A right after the dot in any of the rules in state 1.

3. If the state matches exactly some other state already in the
list of complete states, renumber all shift-references to it to
the old state and discard the current state.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 96

PNA Construction (Cont.)

4. Create a set T of Shift-References (or, transition/continuation
links) for the current state 1 {(Z,x)}:

* Suppose the highest number of a state in the incomplete state list 1s n.
* For each symbol Z (regardless if terminal or nonterminal) which appears
after the dot in any rule in the current state q, do:
— 1ncrease n to n+1
—add (Zn)to T

* NB: each symbol gets only one Shift-Reference, regardless of how
many times (i.e. in how many rules) it appears to the right of a dot.

— Add n to the list of incomplete states
— Do Move-Dot-In-Rule(n,A — o . Zf3) Jru\AL Wt 30 WWHM A\,bmlm Uﬁ/bpb W MMEM'/J,
5. Create Reduce-References for each rule in the current state 1:

* For each rule of the form (A — o .) (i.e. dot at the end) in the current
state, attach to it the rule number r of the rule A — o from the grammar.

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 97

Using the PNA (Initialize)

* Maintain two stacks, the input stack I and the state
stack Q.

« Maintain a stack B[acktracking] of the two stacks.

» Initialize the I stack to the input string (of terminal
symbols), so that the first symbol 1s on top of it.

 Initialize the stack Q to contain state 0.
* Inmitialize the stack B to empty.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 08

Using the PNA (Parse)

* Do until you are not stuck and/or B 1s empty:
— Take the top of stack Q state (“‘current” state 1).

— Put all possible reductions 1n state 1 on stack B, including
the contents of the current stacks I and Q.

— Get the symbol from the top of the stack I (symbol 7).

— If (Z,x) exists in the set T associated with the current state
1, push state x onto the stack Q and remove Z from I.
Continue from beginning. | .

W%\vg o\\mWW Pass,

— Else pop the first possibility from B, remove n symbols
from the stack Q, and push A to [, where A — Z,...Z_ 1s the
rule according which you are reducing.

2024/25 LS NPFLO68/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 99

Small Example

7774 %é/ é//? /k@ a po Lo ﬁéé s

s Siguls) 7
41'S' 5 NP VP M1s>Ne.vp VP5 |
#2 NP > N o VP - .V NP Vo6
#3 VP - V NP g no ambig}lity, [— V> . saw saw 7
#AN —>a cat | g [Rorecursion 2 NP — N|. I egpursie #2 — Zys
#5 N — a dog A 3N—>acat. ~— #4 I~
#6 V — saw 4N —>a dog. I- #S5 I
Tables: <symbol> <state>: shift | 5S> NP VP, #1
#<rule>: reduction /x« 6 VP > V. NP _ﬁP_S

0S—.NP VP NP 1 W | NP> N IN2| 2

NP - . N N 2 3\\ '?’ofﬁ\u. N — .a cat a cat3

N —.a cat a cat3 i;%ﬁ b ﬁ“’M N —.a dog a_dog4

N —.a dog a dog 4 7V —> saw . #6
NB: dotted rules in states need not be kept SVP >V NP. #3
2024/25 LS NPFLO68/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 100

. [p
“N1 b(X Ogtrmineg e Guetnz of He /%‘C,L
/.)
Lol Aud | el el ol | subheh of i
7 d (o / /
244 - renya, , ny Fvzamsionn C FF gdobprmrppes how yoll oon we
Ny 122 7% L 2_ , , YR, / /
/ gz /%‘;V v we Yottws —uy 4 ’L,'/’— o
{ 2\ l \ \ t | \
Wekh e quser e b o] e G
| , , -
é 4 L‘/ (e /’/Jé’// i 73 F é—gé/u Mz Py, éfwé
Ay At s o :;/ et e pEus Y r.
2 ,/7/07‘” nouze plo (LR (0) ﬂ;ﬁ%?z%j/b Dneolmh
AR y : / / , i)
l/&l/ e /i/ we /h1) wa/ ot Py ’Zy eyt s .

Small Example: Parsing(1)

 To parse: a dog saw a_cat
Input stack (top on the left) Rule State stack (top on the left) Comment(s)

 a dogsaw a cat 0

 sawa cat 40 shift to 4 over a dog

« Nsawa cat #5 0 reduce #5: N — a dog
 saw a cat 20 shift to 2 over N

e NPsawa cat #2 0 reduce #2: NP — N
 saw a_cat 10 shift to 1 over NP

 a cat 710 shift to 7 over saw

e Va cat #6 10 reduce #6: V — saw

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 101

Small Example: Parsing (2)

« ..still parsing: a dog saw a_cat

[V a cat

a cat

N

NP

VP

S

#6

#4

#2

#3

#1

1 0] «— Previous parser configuration

610
3610
610
2610
610
8610
10
510
0

shift to 6 over V

empty input stack (not finished though!)
N 1nserted back

...again empty input stack

...and again
two states removed (|JRHS(#3)|=2)

again, two items removed (RHS: NP VP)

Success: S/0 alone in input/state stack; reverse right derivation: 1,3,2,4,6,2,5

2024/25 LS

NPFLO68/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl 102

Big Example:
Ambiguous and Recursive Grammar

2024/25 LS

e #1 S > NP VP #9 N — a cat
 #2 NP —> NP REL VP #10 N — a dog
« #3 NP > N #11 N — a hat
« #4 NP — N PP #12 PREP — 1n
e #5 VP - V NP #13 REL — that
« #6 VP — V NP PP #14 V — saw

« #7 VP —»> V PP #15 V — heard
 #8 PP —» PREP NP

NPFLO68/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl 103

Big Example: Tables (1)

0S—.NPVP NP 1
NP — . NP REL VP
NP —> . N N 2
NP —» . N PP
N —.a cat a cat 3
N — .a dog a dog 4
N — . a mirror a hat 5
1S—> NP.VP VP 6
NP — NP . REL VP REL 7
VP - .V NP \Y 8
VP — . V NP PP
VP —» .V PP
REL — . that that 9
V > . saw saw 10
V — . heard heard 11

2NP —>N. #3
NP —- N . PP PP 12
PP — . PREP NP PREP 13
PREP — . in in 14
3N —>a cat. #9
4 N — a dog. #10
5N — a hat. #11
6S—> NPVP. #1

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl

104

Big Example Tables (2)

7 NP — NP REL . VP VP
VP —» .V NP \Y 8
VP — .V NP PP
VP > . VPP
V — . saw saw 10
V — . heard heard 11
8 VP - V. NP NP 16
VP - V. NP PP
VP —-> V . PP PP 17
NP — . NP REL VP
NP - .N N 2
NP — . N PP
N —.a cat a cat 3
N —.a dog a dog 4
N — .a hat a hat 5
PP — . PREP NP PREP 13
PREP — . in in 14

9 REL — that . #13

10 V— saw . #14

11 V — heard . #15

12 NP —- NP PP #4

13 PP - PREP . NP NP 18
NP — . NP REL VP
NP —>.N N 2
NP —» . N PP
N — .a cat a cat 3
N — .a dog a dog 4
N — . a hat a hat 5

2024/25 LS

NPFLO68/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

105

Big Example: Tables (3)

14 PREP — in. #12 19 VP —-> VNP PP. #6
15 NP - NP REL VP #H2
Comments:
16 VP > VNP #5 - states 2, 16, 18 have shift-reduce
VP —- V NP . PP PP 19 conflict
NP — NP . REL VP REL 7 | -no states with reduce-reduce
PP — . PREP NP PREP 13 conflict
PREP — . in in 14} - also, again there is no need to store
REL — . that that 9 the dotted rules in the states for
parsing. Simply store the pair
17 VP - V PP .. #7 input/goto-state, or the rule number.
18 PP - PREP NP . #8
NP — NP . REL VP REL 7
REL — . that that 9

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 106

Big Example: Parsing (1)

 Toparse: a dog heard a catin a_ hat

—_ e

Input stack (top on the left) State stack (top on the left)

Rule Backtrack Comment(s)
a dog heard a cat in a hat 0 shifted to 4 over a dog
heard a catin a hat 40 shift to 4 over a dog
N hearda catina hat #10 O reduce #10: N — a_dog
heard a_cat in a_hat 20 shift to 2 over N!
NP heard a catina hat #3 0 reduce #3: NP - N
heard a cat in a hat 10 shift to 1 over NP
a catina hat 1110 shift to 11 over heard
V a catina hat #15 10 reduce #15: V — heard
a catina hat 810 shift to 8 over V

see also next slide, last comment

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 107

Big Example: Parsing (2)

« ..still parsing: a _dog heard a catin a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)
 [a catina hat 8 1 0] « [previous parser configuration]
 ina hat 3810 shift to 3 over a_cat
« Nina hat #9 810 reduce #9: N — a_cat
 1ina hat 2810 ® shift to 2 over N; see

why we need the state
stack? we are 1n 2 again,
but after we return, we
will be 1n 8 not 0;

also save for backtrack!!

1the whole input stack, state stack, and [reversed] list of rules used for reductions so far must be saved on the backtrack stack

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 108

Big Example: Parsing (3)

« ..still parsing: a _dog heard a_catin a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)
e [ina hat 2810 ®] <« [previous parser configuration]
* a hat 142810 shift to 14 over in
« PREP a hat #12 2810 reduce #12: PREP — in!
e a hat 132810 shift to 13 over PREP
. 5132810 shift to 5 over a_hat
N #11 132810 reduce #11: N — a_hat
. 2132810 shift to 2 over N
« NP #3 132810 shift not possible; reduce
#3: NP — Nlons.19
. 18132810 shift to 18 over NP
1 \hen coming back to an ambiguous state [here: state 2] (after some reduction), reduction(s) are nof considered: nothing put on backirk stack
2024/25 LS PFLO638/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl

Big Example: Parsing (4)

» _.still parsing: a _dog heard a_catin a hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

e | 18 13 2 8 1 0] « [previous parser config.]

« PP #8 2810 shift not possible;
reduce #81 ons-19;
PP — PREP NP!.prevslide

. 122810 shift to 12 over PP

« NP #4 810 reduce #4: NP — N PP

. 16810 shift to 16 over NP

« VP #5 10 shift not possible,

reduce #5!: VP > V NP

1no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#5) in state 16

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 110

Big Example: Parsing (5)

« ..still parsing: a _dog heard a catin a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)
« [VP #5 1 0] < [previous parser configuration]|
. 610 shift to 6 over VP
e S #1 0 reduce #1: S — NP VP

first solution found:
1,5,4,8,3,11,12,9,15,3,10
backtrack to previous & :

e ina hat 2810 was: shift over in, now!:
« NPina hat #3 810 reduce #3: NP - N
 1ina hat 16810& shift to 16 over NP

a hat 1416810 shift, but put on backtrk

R]

no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#3) in state 2

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 111

Big Example: Parsing (6)

« ..still parsing: a _dog heard a_catin a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

e [a hat 14 16 8 1 0 ®] « [previous parser config.]
« PREP a hat #12 16810 reduce #12: PREP — in
e a hat 1316810 shift over PREP! ons-17
. 51316810 shift over a_hat to 5
N #11 1316810 reduce #11: N — a_hat
. 2131610 shift to 2 over N
« NP #3 131610 shift not possible! ons-1%
. 18131610 shift to 18
« PP #8 1610 shift not possible!, red.#8
. 191610 shift to 191 ons17

no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#8) in state 18

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 112

Big Example: Parsing (7)

...still parsing: a_dog heard a_catin a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)
| 19 16 8 1 0] « [previous parser config.]
VP #6 10 red. #6: VP — V NP PP
610 shift to 6 over VP
S #1 0 next (2" solution:

1,6,8,3,11,12,3,19,15,3,10
backtrack to previous & :

in a_hat 16810 was: shift over in! o019,

VP in a_hat #5 10 now red. #5: VP — V NP

in a_hat 610 shift to 6 over VP

S in a hat #1 0 error?; backtrack empty: stop

continue list of rules at the orig. backtrack mark (s.16,line 3) 2S (the start symbol) not alone in input stack when state stack = (0)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 113

Treebanks, Treebanking and Evaluation

Phrase Structure Tree

° EXample: f%WGKA(V%WS \'5 m\wﬂ%s Wg@lb/ﬂ/ /}z /5 /@%}f //fc
6%'3 NUM
DaimlerChrysler's shares rose

NUMCARD NUMFRACS PREP NUM

three eights

DaimlerChrysler's shares rose three eightsto 22
((DaimlerChrysler’s shares)yp (rose (three eights) ume (10 22)ppnum)ve)s

2024/25 LS NPFLO68/Intro to statistical NLP |lI/Jan Hajic and Jindrich Helcl 115

Dependency Tree

@U/& \/méL@ \/)m> ‘\&ﬁ \/\/01/$

—ﬁéo cun e s /'7% /MWZ gj?j/

« Example:

rose
Pred

—OPCJW/ s ”\v\ %@,dﬁ\ \/wk &\vuwwé

Z"7 0VC/M’Crd 94 soug /5"

NNS NUMFRACS \PREP Ydded opretrines
shares eights

Sh Adv AuxP
NNPOSS NUMCARD NUM
DaimlerChrysler's three 22
Atr Atr Adv

DaimlerChrysler's shares rose three eights to 22

10sep,4(sharesq (DaimlerChrysler’s,,.),eights , 4 (three , .),t0 4 xp(22 A 4y))

2024/25 LS NPFLO68/Intro to statistical NLP |lI/Jan Hajic and Jindrich Helcl 116

Parser Development

» Use training data for learning phase
— segment as needed (e.g., for heldout)

— use all for
« manually written rules (seldom today)
 automatically learned rules/statistics

* Occasionally, test progress on Development Test Set

— (simulates real-world data)
 When done, test on Evaluation Test Set

 Unbreakable Rule #1: Never look at Evaluation Test
Data (not even indirectly, e.g. performance numbers)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 117

Evaluation

* Evaluation of parsers (regardless of whether
manual-rule-based or automatically learned)

* Repeat: Test against Evaluation Test Data

* Measures:
— Dependency trees:
* Dependency Accuracy, Precision, Recall

— Parse trees:
e Crossing brackets
» Labeled precision, recall [F-measure]

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 118

Dependency Parser Evaluation

* Dependency Recall:
— Ry = Correct(D) / |S]
e Correct(D): number of correct dependencies

— correct: word attached to its true head
— Tree root 1s correct if marked as root

* |S| - size of test data in words (since |dependencies| = |[words|)

* Dependency precision (if output not a tree, partial):
— P, = Correct(D) / Generated(D)

e Generated(D) 1s the number of dependencies output
— some words without a link to their head

— some words with several links to (several different) heads

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 119

- 1 Sooe mof W/M%/ 15 W om e i, e ofe P pordk
Phrase Structure (Parse Tree)

Evaluation (il vt

* Crossing Brackets measure o

\}JV\)VH%

— Example “truth” (evaluation test set):
* ((the ((New York) - based company)) (announced (yesterday)))

— Parser output - 0 crossing brackets:

* ((the New York - based company) (announced yesterday)) b i
. e Ntiormig
— Parser output - 2 crossing brackets: %)K sl %W:

* (((the New York) - based) (company (announced (yesterday)))) A

 [abeled Precision/Recall:

— Usual computation using bracket labels (phrase markers)
T: ((Computers)yp (are down)yp)g <> P: ((Computers),p (are (down)NP)VP)@
* Recall = 100%, Precision = 75% Mﬁ/7

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 120

Probabilistic CFG (Introduction)

Context-free Grammars

* Chomsky hierarchy

— Context-free Grammars/Lanuages

 rewrite rules: X — vy, where X 1s nonterminal, y any string of terminals and
nonterminals

2024/25 LS NPFLO68/Intro to statistical NLP |lI/Jan Hajic and Jindrich Helcl 122

Another NLP Example

#1 S — NP VP S VP

#2 VP — V NP PP 7

#3 VP — V NP " X

#4 NP — N VP T

#5 NP — N PP T~ N
NP NP PP V N

#6 PP - PREP N

#7N — a_dog ‘ PREP N

#8 N — a_cat N V N PREP N s

#9 N — a_telescope “ W/Z(

#10 V — saw el o /M‘

#11 PREP — with a dog saw a_cat with a_telescope J 7l 7%/3 chon.

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 123

Dependency Style Example

« Same example, dependency representation

saw
with
a_dog a cat a telescope a dog a_telescope
Sb Obj Sb

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 124

Probability of a Derivation Tree

* Both phrase/parse/derivational “grammatical”
 Different meaning: which 1s better [in context]?

* “Internal context”: relations among phrases, words
* Probabilistic CFG:

— relations among a mother node & daughter nodes
— 1n terms of expansion [rewrite,derivation] probability

— define probability of a derivation (1.e. parse) tree:

P(T) =11, , p(r(i))

r(1) are all rules of the CFG used to generate the sentence W of which T is a parse

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 125

e Independ

e Independ

e Independ

Assumptions

ence of context (neig

ence assumptions (very strong!)

hboring subtrees)

 Place-1nd

ence of ancestors (up;

ver levels)

ependence (regardless where 1n tree it

appears) ~ time nvariance in HMM

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 126

Probability of a Rule

 Ruler(1): A — a;
* Let R, be the set of all rules 1(j), which have
nonterminal A at the left-hand side:

* Then define probability distribution on R ,:
2, PO =1,0<p(r) <1
* Another point of view:
p(a|A) =p(r), wherer=A — a, o € (NUT)"

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 127

Estimating Probability of a Rule

 MLE from a treebank following a CFG grammar
e Let’'sr=A—> a,a,..0,:
— p(r) = c(r) / c(A)

— Counting rules (c(r)): how many times /A\

: oy o, Oy
appears 1n the treebank.

— Counting nonterminals c(A):

just count’em (in the treebank)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 128

Using Probabilistic CFG

Probability of a Derivation Tree

 Probabilistic CFG:

— relations among a mother node & daughter nodes
— 1n terms of expansion [rewrite,derivation] probability

— define probability of a derivation (1.e. parse) tree:

P(T) = Hi=1..n p(r(1))

r(1) are all rules of the CFG used to generate the sentence W of which T is a parse
* Probability of a string W = (w, w,, ..., w,) ?

* Non-trivial, because there may be many trees T, as a
result of parsing W.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 130

Probability of a String

* Input string: W

* Parses: {T } = Parse(W).

j=l..n

* Impossible to use the naive method.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 131

Inside Probability

4 W%V/ 4?} /f»m@/d @

° BN(p q) P(N:> qu) %7//4 yivi = 720 priag] //

. /W/ 7 of i

/MMAMA Pt

N

7&%%// % WM//i//Mf wol ﬂﬁ/g
%%4 s 5/?/‘%///%6/

7

W Wa —2wods 05 gutine

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 132

Formula for Inside Probability

° BN(paq) —

N Ay wé% ’r(ﬂ A@%Wf
-y ’

z:A,B Zd=p..q—1 P(N_)ADB)BA(pad)BB(d+ 1 9q)

assuming the grammar G has rules of the form
N-—-> o (terminal string only)
/| N —> ABj (two nonterminals) /. . I;M/W%/ W@
only (Chomsky Normal Form). ¢ 7 o % 4

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 133

Example PCFG

#1 S —> NP VP 1.0 S L
#2 VP — V NP PP 0.4 5 // NP
#3 VP —> V NP 0.6 ~
#4 NP —> N 0.7 o '
#5 NP — N PP 0.3 NP NP PP V N
46 PP — PREP N 1.0 ‘ 0.7 0.7 \
#7 N — a dog 0.3 '

N V N PREP N
#8 N — a_cat 0.5 03 11.0 105,10 02
#9 N — a_telescope 0.2 ‘ ‘ ‘
#10V —> saw 1.0
#11 PREP — with 1.0 P(a dog saw a cat with a_ telescope) =

1°'7°4° 371511 2+...°6...3...=.00588 +.00378 = .00966

2024/25 LS

NPFLO68/Intro to statistical NLP |lI/Jan Hajic and Jindrich Helcl

134

flO\’\\W il l“j/" H’La v X(/TA'M

Computing String Probabilty

« a dogsaw a cat with a telescope

1 2 3 4 5
from\to 1 2 3 4 5 |
1 NP .21 S .0441 S .00966
N .3
2 V1 VP .21 VP .046
3 NP .35 NP .03
N .5
4 PREP 1 PP .2
5 N .2

e Create table n x n (n = length of string). Cells might have more “lines”.

e Initialize on diagonal, using N — o rules.

« Recursively compute along the diagonal towards the upper right

corne
2024/25 LS

I.

NPFLO68/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl

135

Statistical Parsing

Language Model vs. Parsing Model

e Language model:
— 1nterested 1n string probability:
P(W) = probability definition using a formula such as

= Hi=1..n P(W;| Wi, W, ;) trigram language model

=2._p(Ws)=2 _ 11 _r PCFG;r~rule used in parse tree

SES

* Parsing model

— conditional probability of tree given string:
P(s|W)=P(W,s)/ P(W) =P(s) / P(W) ! P(W,s) =P(s) !!
— for argmax, just use P(s) (P(W) 1s constant)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 137

Once again, Lexicalization

* Lexicalized parse tree (~ dependency tree+phrase labels)

* EX. subtree: fuckan vods e e et
PP(Wlth) 12 /7%75/% (wmd//a

N

PREP(with) N(telescope)

with a_telescope

* Pre-terminals (above leaves): assign the word below
* Recursive step (step up one level): (a) select node, (b) copy word up.

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 138

— e %UA&%/ MWCVB move %M%/S

4o Iy ﬂfss/ JJ/WM// /M/S o g@”") o A 5@”/”4/
Lexicalized Tree Example

¢ #1S—>NPVP __»VP(saw)
S(saw) -

e #2 VP —> V NPPP e

-7 NP(a cat)

« #3 VP> VNP e -
: VP(saw) %
AP N ~_ PP(with)
« #5 NP —> N PP VN ¢
NP(a_dog)NP(a cat)PP(with) (a_cat)
« #6 PP > PREPN ‘

« #7N —a dog PREP N
« #8 N —>a cat N V N PREP N

« #9 N — a telescope

* #10V — saw ‘ ‘ ‘

* #l1 PREP > with 3 dogsaw a cat with a_telescope

2024/25 LS NPFLO68/Intro to statistical NLP |lI/Jan Hajic and Jindrich Helcl 139

* Head ~ word,tag

2024/25 LS

Using POS Tags

S(saw,V)

VP(saw,V)

T~

NP(a dog,N) NP(a cat,N)PP(with,PREP)

N V N PREP N

a dog saw a_cat with a_telescope

NPFLO68/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl

140

Conditioning

* Original PCFG: P(aByDe...|A)
— No “lexical” units (words)

 Introducing words:
P(a B(heady) y D(head,) ¢ ... |A(head,))
where head, 1s one of the heads on the left

E.g. rule VP(saw) — V(saw) NP(a cat):
P(V(saw) NP(a cat) | VP(saw))

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 141

\K/i\\w'/\x '}\/'V @E‘FCM\I'M\/WI W, awtm\(bd th &’%W’W” ﬂ)ﬁ/ M//ﬂ/ it how, d s /7;;04&%2&7 Iz
W/" M | ,L/ wl, M mg {qwggé %/ //ﬂ V(’/Mmé/& /s Wa/ /Mm/&li& 4/ 7//.

Independence Assumptions

* Too many rules
* Decompose:
P(a B(heady) y D(headp) ¢ ... |A(head,)) =
* In general (total independence):
P(a|A(head,)) x P(B(heady)|A(head,)) x
... X P(¢|A(head,))

* Too much independent: need a compromise.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 142

The Decomposition

Order does not matter; let’s use intuition (“linguistics™):

Select the head daughter category:

P, (H(head,)|A(head,,)) 2end)

H(head) = S
S 1 t th t th . ht° — i 74M/ WLM;M;%/« /ﬂ;:z{w, 3l
elect everything to the right: athead)™ P S

Pr(Ry(ry) | A(head,),H) /‘\

H(head)R,(head,)R,(head,) STOP
Also, choose when to finish: R, ,(r,.;) = STOP

Similarly, for the left direction: P, (L.(1.) | A(head,),H)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 143

Example Decomposition

e Order: L/ A(head)

/
/
/
/
4
/
/

STOP L,(head,) H(l}ﬁ’ad)Rl(headl)Rz(headz) STOP
R G R CE LR EEEEE LR >

« Example: VP(saw)

T

STOP V(saw) NP(a cat) PP(with) STOP

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 144

More Conditioning: Distance

* Motivation:
— close words tend to be dependents (or phrases) more likely

— eX.: walking on a sidewalk on a sunny day without looking on...
* Words: too detailed distribution, though:

— use more sophisticated (yet more robust) distance measure d_;:

« distinguish 0 and non-zero distance (2)

distinguish if verb is in-between the head and the constituent in question (2)

distinguish 1f there are commas in-between: 0, 1, 2, >2 commas (4).
...total: 16 possibilities added to the condition: Py(R.(r;) | A(head,),H.d,)
same to the left: P, (L,(L.) | A(head,),H,d))

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 145

More Conditioning:
Complement/Adjunct

* So far: no distinction VP(saw)
"

NP(yesterday) NP(a dog) VP(saw)

 ...but: time NP # subject NP

* also, Subject NP cannot repeat... useful during parsing
VP(saw)

—

NP(yesterday) NP-C(a dog) VP(saw)

[Must be added in training data]
2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 146

More Conditioning:
Subcategorization

* The problem still not solved:
S(was)

— twWO SubjeCtS:/\

NP-C(Johns Hopkins) NP-C(the 7th-best) VP(was)

wrong!
* Need: relation among complements.
— [linguistic observation: adjuncts can repeat freely.]
* Introduce:
— Left & Right Subcategorization Frames (multisets)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 147

Inserting Subcategorization

Use head probability as before:
P (H(head,)|A(head,))
Then, add left & right subcat frame:
P,.(LC| A(head,),H), P,.(RC| A(head,),H)
— LC, RC: list (multiset) of phrase labels (not words)

Add them to context condition:
(left) P, (L.(L) | A(head,),H,d,LC) [right: similar]
LC/RC: “dynamic”: remove labels when generated
— P(STOP|.....,.LC) =0 1f LC non-empty

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 148

e \ I>TOP Tr\

| s
-~ ~ T
€l ks
s =
L] —
—
N (o)
— 4=
L. e
[anitg
/ﬂ o P m
-0 =
S
ha
= Ny
() o
™Y
=)
- MA
lw/ [\
\
L ’) N
% ey
o [P
\ |-
| —_
-) ! =
- W P w
~ i —
I NS S S
s <
o =
N S €T Y
X ~ —
S —
NN —_— i =~
N = NN
= = T
X N e =
/ IU
=3 — > w
) N Q D) =
W s
<
A < =
. . \./4
) (& N
N
_ N
NS
3 N
< N
N—
=
-~

Smoothing

* Adding conditions... ~ adding parameters
* Sparse data problem as usual (head ~ <word,tag>!)
e Smooth (step-wise):

o Psmooth-H(H(heaC*A)|A(headA)) —
= M Py(H(head,)|A(head,)) + (1-A)P onn(H(head ,)|A(tag,)

- Psmooth-H(H(heaC'A)|A(tagA)) —
= M, Py(H(heady)[A(tag,)) + (1-A))Py(H(head,)|A)

* Similarly, for P, and P;.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 149

The Parsing Algorithm
for a Lexicalized PCFG

* Bottom-up Chart parsing

— Elements of a chart: a pair
» <(from-position,to-position,label,head,distance), probability>

span score
— Total probability = multiplying elementary probabilities

—> enables dynamic programming:

* discard chart element with the same span but lower score.
e “Score” computation:
— joining chart elements: [for 2]: <e,, p,>, <€,, P>, <€,.p,>"

P(€,e) =P1 X Py X .. X Py X Py(...) X HPR(...) X HPL(...);

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 150

Results (PCFG)

* English, WSJ, Penn Treebank, 40k sentences
<40Words <100 Words

— Labeled Recall: 88.1% 87.5%
— Labeled Precision: 88.6% 88.1%
— Crossing Brackets (avg): 0.91 1.07
— Sentences With 0 CBs: 66.4% 63.9%

* Czech, Prague Dependency Treebank, 13k sentences:
— Dependency Accuracy overall: 80.0% (MST’05: 85%)
(~ unlabelled precision/recall)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 151

Dependency Parsing

* Graph-based

— Maximum Spanning Tree method (see the following
slides)

 McDonald et al., 2005, 2006
 Transition-based

— See (non-deterministic) Shift-reduce parsing +
probablistic model
* Nivre et al., MALT Parser since 2003

Some slides in the next section are from J. Choi, Emory University

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 152

Dependency Structure

. What iS d dependenCY? T R }M[Wu Ea.,, oo o Qb

A
— A syntactic or semantic (or other) reqwationﬂ between a pair

of tokens.

* Constituent vs. Dependency Structure

(e -ad

S
SN
NP ?P\
| NP NP
PN |

Ile bought a car vyesterday

153

yeiche, e
bought
nsubﬁ E-::vb' tmp

&
car vesterday

dit
F
a

Z/7ma4541/0(f wocts = Hiphs SOb 0/ %/ﬂﬂ

Dependency Structure

» Constituent structure
— Starts with the bottom level constituents (tokens).

— Group smaller constituents into bigger constituents
(phrases).

* Dependency structure
— Starts with vertices (tokens).
— Build a graph by adding edges between vertices (arcs).

5 bought
i / \‘ nsub? ?jc:b' tmp
NP VP i T
\\\\ _ le car yesterday
NP NP >
AN | P

Ile bought a car vyesterday a

154

Dependency Graph

* For a sentence s = wi ... wy, a dependency graph Gy
— (Vs, AS)
— Vs={wo=root, wi, ... , Wn}.
— As={(wi, r, w)) : i £j, wi € Vs, wj € Vs - {wo}, r € Ry}.

- Rs;=a subset of dependency relations in s.

* A well-formed dependency graph

= Root roof

| Dependency
- Single head bought Tree
= Connected / \A\\A

car ye sterﬂa} evening

= Acyclic /

155

Dependency Graph

* Projectivity
— A projective dependency tree has no crossing arc when

all vertices are lined up in linear order and arcs are
drawn above.

— e.g., He bought a car yesterday that is red.

roci
i = Regeneration of the original sentence.
beught = Parsing complexity: O(n) vs. O(#?).

m/ N

car yesterday

a ..L is

/N

that red

| v |'l'| | u'r—|wl'| ¥ v vl W

rwot lle bought a car yesterday that 15 red
156

Constituent To Dependency

* Head-finding rules (1.e., head-percolation rules,
headrules)
— Constituent trees can be converted into dependency trees.

— Apply headrules recursively to find the head of each
constituent. <7 { e lme 1o Aozs (fow sanlfiple ends,

e 1e fpe smis

Phrase type
~~|s r | vp
VP 1 VB*
NP r NN* ; PRP; NP |«— headrule

' b Lo ds Jh et
. b (4 . .
M ! direction e ke @c/ﬁzs 61%1/:4 heod # e [@/m%mz ;

Coavr —> &

PRP VI?D DT NN N|N | hllr| i ¥

lle bought a car vesterday oot He bought a car yesterday
157

g_.

\\
of
>
3
N

Vot /’/‘M) :

coonly Seapelr s ﬂ/m/w/a U2 ”4‘%"/@’% %24 v

/ /m[/aﬂ O Wthrren WA %/tz//m Sl

, _ .
M%%M« ,1/9;"3 ar, o g5 b (5%, wsi, Lok

AN

Constituent To Dependency

G S r VP
VP 1 VB *
N2-5HI phrt NP r NN*; PRP; NP
: PP 1 IN
sl ANE v PRk
NNP POY ulficits ey
LN b
[Daeisl "
IR
NP 13
T XK o w

the lami - 3T KPR

1l Armmanures

[[P B ey B ey

's offices went to the land of the Ammoniies

yooi David

158

Dependency Parsing

 Why dependency parsing?

— Provides useful information for many NLP tasks
. iInformation extraction, machine translation, question-
answering, sentiment analysis, etc.

— Faster than most parsing approaches (esp. Transition-based)
: about 1 milliseconds per sentence.

— More language independent
: CoNLL shared tasks 2006, 2007, and 2009

: Universal Dep tasks 2017, 2018; MRP tasks 2019, 2020
» Approaches

— Transition-based vs. graph-based.

« Important feature: whether handling projective vs. non-projective.

159

Dependency Parsing

 Transition-based parsing

— Transition: an operation searching for a dependency relation
between each pair of tokens (e.g., Shift, Reduce).

— Greedy search for local optima (locally optimized transitions)

 does better for local dependencies.
— Projective: O(n), non-projective: O(n?).
* Graph-based parsing ~swhy ulh @yt gy sd spsily e s

— Build a complete graph with directed/weighted edges and find a
tree with the highest score (sum of all weighted edges).

— Exhaustive search that finds for the global optimum (maximum
spanning tree) — do better for long-distance dependencies.

— Projective: O(n%), non-projective: O(n?).

160

Transition-based Parsing

*: Projective parsing: ~O(n) Shift-reduce parsing
— Bottom-up: Yamada & Matsumoto, 2003.
— Top-down, bottom-up: Nivre, 2003.
— Beam search: Zhang & Clark, 2008.
— Dynamic programming: Huang & Sagae, 2010.
— Selectional branching: Cho1 & McCallum, 2013.
« Non-projective parsing: O(#?)
— Exhaustive search: Covington, 2001.
— Reordering tokens: Nivre, 2009 (linear-time 1n practice).
— Selective search: Choi & Palmer, 2011 (linear-time 1n practice)

— Search-based “oracle”: Straka et al., 2015, TLT, Warsaw

161

Transition-based Parsing

* N1vre’s arc-eager algorithm

— Projective parsing algorithm with a worst-case
complexity of O(n).

— S =stack, I=list of input tokens, A = set of arcs.

Initialization ndl, W.od)
Termination 5. nil, A
Left-Ilednee AT A P S Y T A R U RTINS T
Right-Iedaece fweie |50 40 Do |50 A0 Dl) hy Jaedws a1 0

Shift o Ay e BT A

162

Transition-based Parsing

Ve U, Ao (pwbs.

N
root He bought
He
bought
a
car
root yesterday
S |
¢ Shift: ‘He’ ¢
® LeftArc: ‘He’ < ‘bought’ ¢
® RightArc: root — ‘bought’ ¢
o o

Shift : ‘a’

\ doat el & whit fo drooe {VV’\
HeHoLS.

a car yesterday

bought — yes..

bought — car

a < car

root — bought

He < bought

A

LeftArc: ‘a’ « ‘car’
RightArc: ‘bought’ — “car’
Reduce: ‘car’

RightArc: ‘bought’ — ‘yesterday’

163

Nivre’s Arc-eager Algorithm

e PR N ey PN s

woi David 's officers went to the land of the Ammoniies

Initialization il W
Ternination & nil, Al
Lesfe-Ted e s | ST A he | B A s e jd Jugiwey and 00A
Might-Iedaee fweie |50 4 Do |50 A0 Dl) hy Jdaedwes a1 0

Shife PR LAY e &L A

164

Nivre’s Arc-eager Algorithm

e

~lr| ¥ I‘Irl '1" hl\l'

Right-Arc: went — to

wot David 's officers went to the land of the Ammeonites
S M S 3 3 b 3 M by 3 N
® Initialize ® Shift: the
® Shift: ‘David’ ® Left-Arc: the « land
® Right-Arc: David — ‘s ® Right-Arc: to — land
® Reduce: ‘s ® Right-Arc: land — of
® Left-Arc: David « ‘officers’ ® Shift: ‘the’
® Shift: officers ® Left-Arc: the «— Ammonites
® Left-Arc: officers < went ® Right-Arc: of — Ammonites
® Right-Arc: root — went ® Terminate
o

165

Graph-based Parsing

- M%/if& UEZT o 7/#41'(4134& c/rn[q 7/7, ggyz Seones, L//‘i% S’Wm/ éw&/—mzé Zﬂ/ﬁ/u /ﬂM / =2

* Inspired by maximum spanning tree algorithms.
* Projective parsing: O(n?)
— CKY parsing: Eisner, 2000.

— Chu-Liu-Edmonds’ algorithm: McDonald et al, 2005 (O(#?)).
— 2nd-order parsing: McDonald & Pereira, 2006 (O(#”)).
— 3rd-order parsing: Koo & Collins, 2010 (O(n?)).

* Advance parsing
\\} gu ity \Mﬂy W\AUV %\M/ \WA

— Vine pruning: Rush and Petrov, 2012. ! (i b cowenith o W"
e b rgg - orkabn

166

Chu-Liu-Edmonds’ Algorithm

70 3%4/&10 /& /’@,ﬁa ‘éc/g‘;/ /33441/4 g/pdgw/ éO/«%ﬂ%é Sepilos o

* Based on a maximum spanning tree algorithm

1. Build a complete graph with directed and weighted
edges.

2.Keep only incoming edges with the maximum scores.
3.If there 1s no cycle, go to #5.

4.1f there 1s a cycle, pretend vertices in the cycle as one
vertex and update scores for all incoming edges to the
cycle; goto #2.

5.Break all cycles by removing inappropriate edges in
the cycle.

167

Chu-Liu-Edmonds’ Algorithm

Feature Extraction

 Part-of-speech tagging
— Word-forms, POS tags, ambiguity classes.
— Given w;, extract features from w; =, (usually n € [0, 3]).
* Dependency parsing
— Word forms, lemmas, POS tags, dependency labels.

— Given w; and wj, extract features from

Witn, Wj+tn.

The ancestors of w; and w.

The dependents of w; and w;.

The siblings of w; and wy.

169

Evaluation

* Assume each node has exactly one head except
for the root.

* For each tree, count

— how many nodes found correct heads
: Unlabeled attachment score (UAS).

— how many nodes found correct labels
: Label accuracy (LS).

— how many nodes found both correct heads and labels
: Labeled attachment score (LAS).

170

Evaluation

mm d-:ub]
1|; nsubj -l ‘ dn:t

roof e bought a car yesterday

root — dobj
‘ c d
'-F 5ub1-|‘|' ‘I'dct-l _\l'l_aﬁr_‘l‘

roof e bought a car vyesterday

» Unlabeled attachment score
— Mismatches: bought — a, car — yesterday (3/5 = 60%)

 Label accuracy
— Mismatches: He - csubyj, yesterday - adv (3/5 = 60%)

e [Labeled attachment score

— He - CSllbj, bought — a, car — yesterday - adv (2/5 = 40%)
171

Statistical Machine Translation

The Main Idea

* Treat translation as a noisy channel problem:

Input (Source)
The channel
E: English words... (adds “noise”

“Noisy” Output (target)

F: Les mots Anglais...

. The Model: P(E[F) = P(F|E) P(E) / P(F)

 Interested in rediscovering E given F:

After the usual simplification (P(F) fixed):

/

argmaxy P(E|F) = argmax; P(F|E) P(E) e
E E

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 173

WZ 4\(er KHM (f;wéw /M%Wd(/ % g cﬂé /4'/’/ /s a/gmf/&/ 7Zﬁ @ﬁé
%ﬂ%% M'g oy by ditostls, F wenls in jassen Ay uell

The Necessities

* Language Model (LM)
P(E)
* Translation Model (TM): Target given source
P(F|E)
* Search procedure
— Given F, find best E using the LM and TM distributions.

e Usual problem: sparse data
— We cannot create a “sentence dictionary” E <> F

— Typically, we do not see a sentence even twice!

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 174

The Language Model

 Any LM will do:
— 3-gram LM
— 3-gram class-based LM (cf. HW #2!)

— decision tree LM with hierarchical classes

* Does not necessarily operates on word forms:
— cf. later the “analysis” and “generation” procedures

— for simplicity, imagine now it does operate on word forms

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 175

The Translation Models

* Do not care about correct strings of English words
(that’s the task of the LM)

* Therefore, we can make more independence
assumptions:

— for start, use the “tagging” approach:
* 1 English word (“tag”) ~ 1 French word (“word”)

— not realistic: rarely even the number of words 1s the same in
both sentences (let alone there 1s 1:1 correspondence!)

= use “Alignment”.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 176

The Alignment

0O 1 2 3 4 5 6

* ¢, And the program has been implemented

v

* {, Le programme a €t€ mis en application
0 1 2 34 5 6 7

* Linear notation:
* f,(1) Le(2) programme(3) a(4) éte(5) mis(6) en(6) application(6)
* ¢, And(0) the(l) program(2) has(3) been(4) implemented(5,6,7)
2024/25 LS NPFLO68/Intro to statistical NLP ll/Jan Hajic and Jindrich Helcl 177

Alignment Mapping

* In general:
— |F|=m, |E| = 1 (Iength of sent.):
 Im connections (each French word to any English word),

e 211 different alignments for any pair (E,F) (any subset)

 In practice:
— From English to French

 each English word 1-n connections (n - empirical max.)

 each French word exactly 1 connection
— therefore, “only” (1+1)™alignments (<< 21m)
* a =1 (link from j-th French word goes to i-th English word)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 178

Elements of Translation Model(s)

Basic distribution:

P(F,A,E) - the joint distribution of the English sentence,
the Alignment, and the French sentence (length m)

Interested also 1n marginal distributions:

P(F,E) =X, P(F,A,E)

P(F|E) = P(F,E) / P(E) = =, P(F,A,E)/ =, . P(F,A,E) = 3, P(F,A[E)
Useful decomposition [one of possible decompositions]:

P(F,A[E) = P(m | E) [T, , P(aja !, ,m,E) P(f]aj,f;",m,E)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 179

Decomposition

* Decomposition formula again:

P(F,A|E) =P(m | E) szl_.m P(aja/ !, ,m,E) P(f|a),f),m,E)
m - length of French sentence
a; - the alignment (single connection) going from j-th French w.
f; - the j-th French word from F
a/! - sequence of alignments a; up to the word preceding f;
a;) - sequence of alignments a; up to and including the word £,
f"! - sequence of French words up to the word preceding f;

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 180

Decomposition and
the Generative Model

 ...and again:
P(F,A[E) = P(m | E) [1_, , P(ajaL,fi,m,E) P(flaj,f,7!,m,E)

* (Generate:
— first, the length of the French given the English words E;

— then, the link from the first position in F (not knowing the
actual word yet) = now we know the English word

— then, given the link (and thus the English word), generate the
French word at the current position

— then, move to the next position in F until m position filled.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 181

Approximations

 Still too many parameters
— similar situation as in n-gram model with “unlimited” n

— 1mpossible to estimate reliably.
* Use 5 models, from the simplest to the most complex
(1.e. from heavy independence assumptions to light)
e Parameter estimation:

Estimate parameters of Model 1; use as an 1nitial
estimate for estimating Model 2 parameters; etc.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 182

7%5% W///J é p %W//gyﬁ/

760 V0

Do, %
Model 1 =72 4

e Approximations:
— French length P(m | E) 1s constant (small €)
— Alignment link distribution P(ajja;"!,f)"!,m,E) depends on
English length 1 only (= 1/(1+1))

— French word distribution depends only on the English and
French word connected with link a..

. = Model 1 distribution: ey bl

P(FAE)=¢/ 1+ 11_, | p(fle,) /e domym vord
| .. j ‘
/’)lOWW h-ou(, a(/g; w w”lywmlhﬁ (]LWV‘@%&V// W pegd %7 V%c W@(\m\
W(W <9%J7'9/7ﬂ)//g) v% ﬁ”l-gwmmﬁ &V Zﬁéé WWA 9% Wd” df,/k /4% /JSQ/Z/(p;%;WMyL

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 183

Models 2-5

Model 2
— adds more detail into P(a|...): more “vertical” links preferred

Model 3

— adds “fertility” (number of links for a given English word 1s
explicitly modeled: P(nle,)

— “distortion” replaces alignment probabilities from Model 2

Model 4

— the notion of “distortion” extended to chunks of words

Model 5 1s Model 4, but not deficient (does not waste
probability to non-strings)

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 184

The Search Procedure

e “Decoder”:
— given “output” (French), discover “input” (English)
* Translation model goes 1n the opposite direction:

p(fle) =

 Naive methods do not work.

* Possible solution (roughly):

— generate English words one-by-one, keep only n-best
(variable n) list; also, account for different lengths of
the English sentence candidates!

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 185

Analysis - Translation - Generation

/Cé% /5 7%7/ 7%/ yl/fwg/aé'ae
(A'T-G) /s e %M/w// i for v

7% % 9/77//'? /?7 V%@/M'y

* Word forms: too sparse ¥ b gse”
» Use four basic analysis, generation steps:

— tagging

— lemmatization

— word-sense disambiguation

— noun-phrase “chunks” (non-compositional translations)

» Translation proper:

— use chunks as “words”

2024/25 LS NPFLOG8/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 186

Training vs. Test with A-T-G

e Training:
— analyze both languages using all four analysis steps
— train TM(s) on the result (1.e. on chunks, tags, etc.)

— train LM on analyzed source (English)

e Runtime/Test:

— analyze given language sentence (French) using identical
tools as 1n training

— translate using the trained Translation/Language model(s)

— generate source (English), reversing the analysis process

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 187

Analysis: Tagging and Morphology

» Replace word forms by morphologically processed text:
— lemmas
— tags
« original approach: mix them into the text, call them “words”
 ¢.g. She bought two books. = she buy VBP two book NNS.

* Tagging: yes
— but reversed order:

* tag first, then lemmatize [NB: does not work for inflective languages]
* technically easy

* Hand-written deterministic rules for tag+form = lemma

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 188

Word Sense Disambiguation,
Word Chunking

* Sets of senses for each E, F word:

— ¢€.g. book-1, book-2, ..., book-n

— prepositions (de-1, de-2, de-3,...), many others
» Senses derived automatically using the TM

— translation probabilities measured on senses: p(de-3|from-5)
* Result:

— statistical model for assigning senses monolingually based on
context (also MaxEnt model used here for each word)

* Chunks: group words for non-compositional translation

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 189

(Generation

e Inverse of analysis

* Much simpler:
— Chunks = words (Ilemmas) with senses (trivial)
— Words (lemmas) with senses = words (lemmas) (trivial)
— Words (lemmas) + tags = word forms

« Additional step:

— Source-language ambiguity:

« electric vs. electrical, hath vs. has, you vs. thou: treated as a single
unit in translation proper, but must be disambiguated at the end of
generation phase; using additional pure LM on word forms.

2024/25 LS NPFLO68/Intro to statistical NLP Il/Jan Hajic and Jindrich Helcl 190

