
Introduction to
Natural Language Processing II
[Statistické metody zpracování

přirozených jazyků]
(NPFL068)

prof. RNDr. Jan Hajič, Dr.
Mgr. Jindřich Helcl, Ph.D.

ÚFAL MFF UK
{hajic,helcl}@ufal.mff.cuni.cz

http://ufal.mff.cuni.cz or SIS

Mon, S9, 09:00-10:30

Tagging, Tagsets, and Morphology

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The task of (Morphological) Tagging

• Formally: A+  T
• A is the alphabet of phonemes (A+ denotes any non-empty

sequence of phonemes)
– often: phonemes ~ letters

• T is the set of tags (the “tagset”)

• Recall: 6 levels of language description:
• phonetics ... phonology ... morphology ... syntax ... meaning ...

- a step aside:

• Recall: A+  2(L,C1,C2,...,Cn)  T
morphology tagging: disambiguation (~ “select”)



3

thecontext ishavingthemajor voiceisthe decisionofthe finaltag

Weusuallysay
them on bejustone

thyforawordgivenall requiredcontext

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Tagging Examples

• Word form: A+  2(L,C1,C2,...,Cn)  T
– He always books the violin concert tickets early.

• MA: books  {(book-1,Noun,Pl,-,-),(book-2,Verb,Sg,Pres,3)}
• tagging (disambiguation): ...  (Verb,Sg,Pres,3)

– ...was pretty good. However, she did not realize...
• MA: However  {(however-1,Conj/coord,-,-,-),(however-2,Adv,-,-,-)}
• tagging: ...  (Conj/coord,-,-,-)

– [æ n d] [g i v] [i t] [t u:] [j u:] (“and give it to you”)
• MA: [t u:]  {(to-1,Prep),(two,Num),(to-2,Part/inf),(too,Adv)}
• tagging: ...  (Prep)

4

ithelpsm todeterminethe correctform

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Tagsets

• General definition:
– tag ~ (c1,c2,...,cn)
– often thought of as a flat list

T = {ti}i=1..n

with some assumed 1:1 mapping
T  (C1,C2,...,Cn)

• English tagsets (see MS):
– Penn treebank (45) (VBZ: Verb,Pres,3,sg, JJR: Adj. Comp.)

– Brown Corpus (87), Claws c5 (62), London-Lund (197)

5

tagownbe a setofcategories

hasmorphologicalfeaturesaswell

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Other Language Tagsets

• Differences:
– size (10..10k)
– categories covered (POS, Number, Case, Negation,...)
– level of detail
– presentation (short names vs. structured (“positional”))

• Example:

– Czech: AGFS3----1A----
POS

SUBPOS

GENDER

NUMBER

CASE

POSSG

POSSN
PERSON

TENSE
DCOMP

NEG
VOICE

VAR

6

onecheck corpus has 6000 distincttag

eachletteris on
taggingcategory

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Tagging Inside Morphology

• Do tagging first, then morphology:
• Formally: A+  T (L,C1,C2,...,Cn)
• Rationale:

– have |T| < |(L,C1,C2,...,Cn)| (thus, less work for the tagger)
and keep the mapping A+ xT (L,C1,C2,...,Cn) unique.

• Possible for some languages only (“English-like”)
• Same effect within “regular” A+  2(L,C1,C2,...,Cn)  T:

– mapping R : (C1,C2,...,Cn) Treduced,
then (new) unique mapping U: A+  Treduced  (L,T)

7

Morphology only givesallpossiblechoices

agging
decides whichis correct

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Lemmatization

• Full morphological analysis:
MA: A+  2(L,C1,C2,...,Cn)

(recall: a lemma l L is a lexical unit (~ dictionary entry ref)
• Lemmatization: reduced MA:

– L: A+  2L: w  {l; (l,t1,t2,...,tn) MA(w)}
– again, need to disambiguate (want: A+  L)

(special case of word sense disambiguation, WSD)
– “classic” tagging does not deal with lemmatization

(assumes lemmatization done afterwards somehow)

8

books book are bewere_ be

lemmatiantion

helpsto understand thetextor correctly modify thetext or helps in search

youdon'tevenknowall
usedformsinthedatabase

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Morphological Analysis: Methods

• Word form list
• books: book-2/VBZ, book-1/NNS

• Direct coding
• endings: verbreg:s/VBZ, nounreg:s/NNS, adje:er/JJR, ...
• (main) dictionary: book/verbreg, book/nounreg,nic/adje:nice

• Finite state machinery (FSM)
• many “lexicons”, with continuation links: reg-root-lex  reg-end-lex
• phonology included but (often) clearly separated

• CFG, DATR, Unification, ...
• address linguistic rather than computational phenomena
• in fact, better suited for morphological synthesis (generation)

9

Usingclassmodelling is something liketaggingas thealy is hiddenly creating taggroups
butthealy isnotabletonamethosegroups

C2 25M forms EN AM FINN100M GER8M forms Annotatorsmustdoit byhand
C computationallyhenry toomuchspaceneeded

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Word Lists

• Works for English
– “input” problem: repetitive hand coding

• Implementation issues:
– search trees
– hash tables (Perl!)
– (letter) trie:

• Minimization? t

t

a

n

d
at,Prep

a,Art

a,Artv

ant,NNand,Conj

10

R priN has faireEiiii pri N pre

loss v prit
N hose hositho

sometimes even lemmus are notunique andweneedtoaddindexes

stit 1 ansemi
studytoprotomusinwidelitstat 2 penéz

stat 3 stalose
stat 4 ER

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Word-internal1 Segmentation (Direct)
• Strip prefixes: (un-, dis-, ...)
• Repeat for all plausible endings:

– Split rest: root + ending (for every possible ending)
– Find root in a dictionary, keep dictionary information

• in particular, keep inflection class (such as reg, noun-irreg-e, ...)

– Find ending, check inflection+prefix class match
– If match found:

• Output root-related info (typically, the lemma(s))
• Output ending-related information (typically, the tag(s)).

1Word segmentation is a different problem (Japanese, speech in general)

11

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Finite State Machinery

• Two-level Morphology
– phonology + “morphotactics” (= morphology)

• Both components use finite-state automata:
– phonology: “two-level rules”, converted to FSA

• e:0 _ +:0 e:e r:r

– morphology: linked lexicons
• root-dic: book/”book” end-noun-reg-dic
• end-noun-reg-dic: +s/”NNS”

• Integration of the two possible (and simple)

12

phonology napi it min tomato tomatoes tedgzeneaobeaspridinimlubim.in

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Finite State Transducer

• FST is a FSA where
– symbols are pairs (r:s) from a finite alphabets R and S.

• “Checking” run:
– input data: sequence of pairs, output: Yes/No (accept/do not)
– use as a FSA

• Analysis run:
– input data: sequence of only s  S (TLM: surface);
– output: seq. of r  R (TLM: lexical), + lexicon “glosses”

• Synthesis (generation) run:
– same as analysis except roles are switched: S R, no gloss

13

dobingtobylopro
Finstinn jelihotuytwiriujanumdomshlidininmnohnsuffixi.lterrjestémajinichethingpodle hostexts

unitydophitexternal
constants morphodiet

FSAcanbeminimized a lotandthen thetrie is very efficient abychneuraioralnemoine
varianty

buttheyare exponentialforxel

this is one symbolforFSA

itsays the
complete thesecondhalfofthesequence

whenwewantjustone output

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

FST Example
• German umlaut (greatly simplified!):

u ü if (but not only if) c h e r follows (Buch  Bücher)
rule: u:ü c:c h:h e:e r:r

FST:
Buch/Buch:

F1 F3 F4 F5
Bucher/Bucher:

F1 F3 F4 F5 F6 N1
Buch/Buck:

F1 F3 F4 F1

u:ü

u:oth c:c

h:h e:e

r:r

u:oth

u:ü oth

oth

oth

u:oth

u:oth u:oth

oth

oth

any

F1

F2

F3
F4

F5

F6

N1
oth

14

10th other

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Parallel Rules, Zero Symbols

• Parallel Rules:
– Each rule ~ one FST
– Run in parallel
– Any of them fails  path fails

• Zero symbols (one side only, even though 0:0 o.k.)
– behave like any other

e:0

+:0

F5

F6

15

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Lexicon

• Ordinary FSA (“lexical” alphabet only)
• Used for analysis only (NB: disadvantage of TLM):

– additional constraint:
• lexical string must pass the linked lexicon list

• Implemented as a FSA; compiled from lists of strings
and lexicon links

• Example:

b o o k

ka n
+ s

“bank”

“book”

“NNS”

16

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

TLM: Analysis

1. Initialize set of paths to P = {}.
2. Read input symbols, one at a time.
3. At each symbol, generate all lexical symbols possibly

corresponding to the 0 symbol (voilà!).
4. Prolong all paths in P by all such possible (x:0) pairs.
5. Check each new path extension against the

phonological FST and lexical FSA (lexical symbols
only); delete impossible paths prefixes.

6. Repeat 4-5 until max. # of consecutive 0 reached.
17

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

TLM: Analysis (Cont.)

7. Generate all possible lexical symbols (get from all
FSTs) for the current input symbol, form pairs.

8. Extend all paths from P using all such pairs.
9. Check all paths from P (next step in FST/FSA).

Delete all outright impossible paths.
10. Repeat from 3 until end of input.
11. Collect lexical “glosses” from all surviving

paths.

18

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

TLM Analysis Example
• Bücher:

• suppose each surface letter corresponds to the same symbol at the lexical
level, just ü might be ü as well as u lexically; plus zeroes (+:0), (0:0)

• Use the FST as before.
• Use lexicons:

root: Buch “book”  end-reg-uml
Bündni “union”  end-reg-s

end-reg-uml: +0 “NNomSg”
+er “NNomPl”

B:B  Bu:Bü  Buc:Büc  Buch:Büch  Buch+e:Büch0e  Buch+er:Büch0er
 Bü:Bü  Büc:Büc

u

ü
19

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

TLM: Generation

• Do not use the lexicon (well you have to put the
“right” lexical strings together somehow!)

• Start with a lexical string L.
• Generate all possible pairs l:s for every symbol in L.
• Find all (hopefully only 1!) traversals through the FST

which end in a final state.
• From all such traversals, print out the sequence of

surface letters.

20

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

TLM: Some Remarks
• Parallel FST (incl. final lexicon FSA)

– can be compiled into a (gigantic) FST
– maybe not so gigantic (XLT - Xerox Language Tools)

• “Double-leveling” the lexicon:
– allows for generation from lemma, tag
– needs: rules with strings of unequal length

• Rule Compiler
– Karttunen, Kay

• PC-KIMMO: free version from www.sil.org (Unix,too)

21

Tagging: An Overview

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Rule-based Disambiguation
• Example after-morphology data (using Penn tagset):

I watch a fly .

NN NN DT NN .

PRP VB NN VB

VBP VBP

• Rules using
– word forms, from context & current position
– tags, from context and current position
– tag sets, from context and current position
– combinations thereof

23

N inCLE wordsareambiguos

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Example Rules
I watch a fly

NN NN DT NN

PRP VB NN VB

VBP VBP

• If-then style:
• DTeq,-1,Tag 

(implies NNin,0,Set as a condition)
• PRPeq,-1,Tag and DTeq,+1,Tag  VBP
• {DT,NN}sub,0,Set  DT
• {VB,VBZ,VBP,VBD,VBG}inc,+1,Tag  not DT

• Regular expressions:
• not(<*,*,DTnot
• not(<*,*,PRP>,<*,*,notVBP>,<*,*,DT>)
• not(<*,{DT,NN}sub,notDT
• not(<*,*,DT>,<*,*,{VB,VBZ,VBP,VBD,VBG}>)

24

stayonpreviouspositionis equal

eachrule is oneFABe

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Implementation

• Finite State Automata
– parallel (each rule ~ automaton);

• algorithm: keep all paths which cause all automata say yes

– compile into single FSA (intersection)
• Algorithm:

– a version of Viterbi search, but:
• no probabilities (“categorical” rules)
• multiple input:

– keep track of all possible paths

25

thebiggest problem isnottimenorspace but that therules arecreatedbyhand

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Example: the FSA
• R1: not(<*,*,DTnot
• R2: not(<*,*,PRP>,<*,*,notVBP>,<*,*,DT>)
• R3: not(<*,{DT,NN}sub,DT
• R4: not(<*,*,DT>,<*,*,{VB,VBZ,VBP,VBD,VBG}>)

• R1:

• R3:

<*,*,DT not
F1 F2 N3

anything
else

anything else

anything

<*,{DT,NN}sub,notDT
F1 N2

anything
else

anything

26

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Applying the FSA
• R1: not(<*,*,DTnot
• R2: not(<*,*,PRP>,<*,*,notVBP>,<*,*,DT>)
• R3: not(<*,{DT,NN}sub,DT
• R4: not(<*,*,DT>,<*,*,{VB,VBZ,VBP,VBD,VBG}>)

• R1 blocks: remains: or

• R2 blocks: remains e.g.: and more

• R3 blocks: remains only:
• R4 R1!

I watch a

NN DT

PRP VB

a fly

DT

VB

VBP

a fly

DT NN

a fly

NN

NN VB

VBP

I watch a

DT

PRP

VBP

a

NN

a

DT

I watch a fly

NN NN DT NN

PRP VB NN VB

VBP VBP

27

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Applying the FSA (Cont.)

• Combine:

• Result:

a fly

DT NN

a fly

NN

NN VB

VBP

I watch a

DT

PRP

VBP

a

DT

I watch a fly .

PRP VBP DT NN .

I watch a fly

NN NN DT NN

PRP VB NN VB

VBP VBP

28

Whyis it useful in ageofLLMs
forcheckingannotatingerrorswith
already verysimplemles

deeplearningisnotalwayshaving

100 accuracy sosometimes

youcan find errorseasily Thisjustchecks whether
itshouldbeinthelanguage
or not

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Tagging by Parsing

• Build a parse tree from the multiple input:

• Track down rules: e.g., NP  DT NN: extract (a/DT fly/NN)
• More difficult than tagging itself; results mixed

NP

VP

S

I watch a fly

NN NN DT NN

PRP VB NN VB

VBP VBP

29

Linervaiprochizentnestatiprototeliditakyparsupjaighsofishloans

Linguisticbydaleho vic
privetiré informatichydatcho

tézsi

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Statistical Methods (Overview)
• “Probabilistic”:

• HMM
– Merialdo and many more (XLT)

• Maximum Entropy
– DellaPietra et al., Ratnaparkhi, and others

• Rule-based:
• TBEDL (Transformation Based, Error Driven Learning)

– Brill’s tagger
• Example-based

– Daelemans, Zavrel, others

• Feature-based (inflective languages)
• Classifier Combination (Brill’s ideas)

30

bestneighbour

HMM Tagging
cf. NPFL067 slides 170-190

HMM in general: NPFL067 slides 155-169

inexamas
well

Transformation-Based Tagging

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Task, Again

• Recall:
– tagging ~ morphological disambiguation
– tagset VT  (C1,C2,...Cn)

• Ci - morphological categories, such as POS, NUMBER,
CASE, PERSON, TENSE, GENDER, ...

– mapping w  {t VT} exists
• restriction of Morphological Analysis: A+  2(L,C1,C2,...,Cn)

where A is the language alphabet, L is the set of lemmas

– extension to punctuation, sentence boundaries (treated
as words)

33

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Setting

• Not a source channel view
• Not even a probabilistic model (no “numbers” used

when tagging a text after a model is developed)
• Statistical, yes:

• uses training data (combination of supervised [manually annotated
data available] and unsupervised [plain text, large volume]
training)

• learning [rules]
• criterion: accuracy (that’s what we are interested in in the end,

after all!)

34

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The General Scheme
Training Tagging

Annotated
training data

Plain text
training data

LEARNER

Rules learned

TAGGER

Data
to annotate

Automatically
tagged data

training iterations

Partially an-
notated data

35

Sequentiallyselectingnowandnewrules untilthetextis correct
alwaystyingtotakethebestmle

theseunleson the

learny

model

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Learner

Annotated
training data

Remove tags

Assign initial
tags

ATD without
annotation

Interim
annotation

Interim
annotation

Interim
annotationIteration 1 Iteration 2

Iteration n

Interim
annotation

RULES

36

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The I/O of an Iteration

• In (iteration i):
– Intermediate data (initial or the result of previous iteration)
– The TRUTH (the annotated training data)
– [pool of possible rules]

• Out:
– One rule rselected(i) to enhance the set of rules learned so far
– Intermediate data (input data transformed by the rule

learned in this iteration, rselected(i))

37

Forhigh freqtexts90 daysareautomatically correct
when only assigningthemost commontryforthe

wordinthetext

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Initial Assignment of Tags

• One possibility:
– NN

• Another:
– the most frequent tag for a given word form

• Even:
– use an HMM tagger for the initial assignment

• Not particularly sensitive

38

stupidyetsimpleand working as beg of training

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Criterion
• Error rate (or Accuracy):

– beginning of an iteration: some error rate Ein

– each possible rule r, when applied at every data position:
• makes an improvement somewhere in the data (cimproved(r))
• makes it worse at some places (cworsened(r))
• and, of course, does not touch the remaining data

• Rule contribution to the improvement of the error rate:
• contrib(r) = cimproved(r) - cworsened(r)

• Rule selection at iteration i:
• rselected(i) = argmaxr contrib(r)

• New error rate: Eout = Ein - contrib(rselected(i))
39

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Stopping Criterion

• Obvious:
– no improvement can be made

• contrib(r)  0
– or improvement too small

• contrib(r)  Threshold
• NB: prone to overtraining!

– therefore, setting a reasonable threshold advisable
• Heldout?

– maybe: remove rules which degrade performance on H
40

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Pool of Rules (Templates)
• Format: change tag at position i from a to b / condition
• Context rules (condition definition - “template”):

wi-3 wi-2 wi-1 wi wi+1 wi+2 wi+3

ti-3 ti-2 ti-1 ti ti+1 ti+2 ti+3

Instantiation: w, t permitted
41

1

tin an Ad in the
future as well

win wine thatisdifferentfromHM
tip tie

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Lexical Rules

• Other type: lexical rules

• Example:
– wi has suffix -ied
– wi has prefix ge-

wi-3 wi-2 wi-1 wi wi+1 wi+2 wi+3

ti-3 ti-2 ti-1 ti ti+1 ti+2 ti+3
“look inside the word”

42

having complete wordin the rule

isnotreally convenient too
many

wordsnotgeneral atall

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Rule Application

• Two possibilities:
– immediate consequences (left-to-right):

• data: DT NN VBP NN VBP NN...
• rule: NN  NNS / preceded by NN VBP
• apply rule at position 4:

DT NN VBP NN VBP NN...
DT NN VBP NNS VBP NN...

• ...then rule cannot apply at position 6 (context not NN VBP).

– delayed (“fixed input”):
• use original input for context
• the above rule then applies twice.

43

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

In Other Words...

• 1. Strip the tags off the truth, keep the original truth
• 2. Initialize the stripped data by some simple method
• 3. Start with an empty set of selected rules S.
• 4. Repeat until the stopping criterion applies:

– compute the contribution of the rule r, for each r:
contrib(r) = cimproved(r) - cworsened(r)

– select r which has the biggest contribution contrib(r), add it
to the final set of selected rules S.

• 5. Output the set S.
44

the orderof the final rules is important

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Tagger

• Input:
– untagged data
– rules (S) learned by the learner

• Tagging:
– use the same initialization as the learner did
– for i = 1..n (n - the number of rules learnt)

• apply the rule i to the whole intermediate data, changing
(some) tags

– the last intermediate data is the output.

45

Mazumit vieprovided se stejugin IF parten sjinsmELSEparten Janintenaly 2pmidk
hebademitwe duplicitnick pmridel

protoretahoveduhiprovide
Musima portentstejingpoundivibem jle pritrininha budemithronemalon contribution

tabicse animytort Nebu
opmunjechybyjinhoprovide a phtam bride i s vellion contribution

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

N-best & Unsupervised Modifications

• N-best modification
– allow adding tags by rules
– criterion: optimal combination of accuracy and the

number of tags per word (we want: close to 1)
• Unsupervised modification

– use only unambiguous words for evaluation criterion
– work extremely well for English
– does not work for languages with few unambiguous

words

46

Maximum Entropy
Procmux mistmin

Udyhychmat vienmodeki literésplinjiconstraints th filosofiely ten

model s max entropymnnejritstsancimehgt biased sregular
bonhreti

featura letersmizebit upenaminpour pritreason

tomax entropy mipush nejméné anvinduere u purtludi laterjsenjesterneuided
2ham

miatelivetsentropy dophim

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 48

Maximum?? Entropy
• Why maximum entropy?
• Recall: so far, we always “liked”

– minimum entropy...
= minimum uncertainty
= maximum predictive power

.... distributions
– always: relative to some “real world” data
– always: clear relation between the data, model and

parameters: e.g., n-gram language model
• This is still the case! But...

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 49

The Maximum Entropy Principle
• Given some set of constraints (“relations”, “facts”),

which must hold (i.e., we believe they correspond to the
real world we model):
What is the best distribution among those available?

• Answer: the one with maximum entropy
(of such distributions satisfying the constraints)

• Why? ...philosophical answer:
– Occam’s razor; Jaynes, ...:

• make things as simple as possible, but not simpler;
• do not pretend you know something you don’t

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 50

Example
• Throwing the “unknown” die

– do not know anything we should assume a fair die
(uniform distribution ~ max. entropy distribution)

• Throwing unfair die
– we know: p(4) = 0.4, p(6) = 0.2, nothing else
– best distribution?
– do not assume anything

about the rest:
• What if we use instead:

1 2 3 4 5 6
0.1 0.1 0.1 0.4 0.1 0.2

1 2 3 4 5 6
0.25 0.05 0.05 0.4 0.05 0.2 ?

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 51

Using Non-Maximum Entropy
Distribution

• ME distribution: p:

• Using instead: q:

• Result depends on the real world:
– real world ~ our constraints (p(4) = 0.4, p(6) = 0.2), everything

else no specific constraints:
• our average error: D(q||p) [recall: Kullback-Leibler distance]

– real world ~ orig. constraints + p(1) = 0.25:
• q is best (but hey, then we should have started with all 3 constraints!)

1 2 3 4 5 6
0.1 0.1 0.1 0.4 0.1 0.2

1 2 3 4 5 6
0.25 0.05 0.05 0.4 0.05 0.2

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 52

Things in Perspective: n-gram LM

• Is an n-gram model a ME model?
– yes if we believe that trigrams are the all and only

constraints
• trigram model constraints: p(z|x,y) = c(x,y,z)/c(x,y)

– no room for any “adjustments”
• like if we say p(2) = 0.7, p(6) = 0.3 for throwing a die

• Accounting for the apparent inadequacy:
– smoothing
– ME solution: (sort of) smoothing “built in”

• constraints from training, maximize entropy on training + heldout

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 53

Features and Constraints
• Introducing...

– binary valued selector functions (“features”):
• fi(y,x)  {0,1}, where

– y  Y (sample space of the event being predicted: words, tags, ...),
– x  X (space of contexts, e.g. word/tag bigrams, unigrams, weather

conditions, of - in general - unspecified nature/length/size)

– constraints:
• Ep(fi(y,x)) = E’(fi(y,x)) (= empirical expectation)

• recall: expectation relative to distribution p: Ep(fi) = y,xp(x,y)fi(y,x)

• empirical expectation: E’(fi) = y,xp’(x,y)fi(y,x) = 1/|T| t=1..Tfi(yt,xt)
• notation: E’(fi(y,x)) = di: constraints of the form Ep(fi(y,x)) = di

generallythese features can
modelanythingwe choose Theycan

lookleftright tothewordetc

they am alsoacceptinputsthatareformed by
anotherpreprocessing component

Ieowrwi Wi
eachfeaturemustreturn a prob value predictedispartoftheinput

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 54

Additional Constraint (Ensuring
Probability Distribution)

• The model’s p(y|x) should be probability distribution:
– add an “omnipresent” feature f0(y,x) = 1 for all y,x
– constraint: Ep(f0(y,x)) = 1

• Now, assume:
– We know the set S = {fi(y,x), i=0..N} (|S| = N+1)
– We know all the constraints

• i.e. a vector di, one for each feature, i=0..N

• Where are the parameters?
– ...we do not even know the form of the model yet

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 55

The Model

• Given the constraints, what is the form of the model
which maximizes the entropy of p?

• Use Lagrangian Multipliers:
– minimizing some function (z) in the presence of N

constraints gi(z) = di means to minimize

(x) - i=1..Ni(gi(x) - di) (w.r.t. all i and x)
– our case, minimize

A(p) = -H(p) - i=1..Ni(Ep(fi(y,x)) - di) (w.r.t. all i and p!)
– i.e. (z) = -H(p), gi(z)= Ep(fi(y,x)) (variable z ~ distribution p)

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 56

Loglinear (Exponential) Model

• Maximize: for p, derive (partial derivation) and solve
A’(p) = 0:
[H(p)  i=0..Ni(Ep(fi(y,x)) - di)]/p = 0

[ p log(p)  i=0..Ni(( p fi) - di)]/p = 0
...

1 + log(p)  i=0..Ni fi = 0

1 + log(p)  i=1..Ni fi + 0

p = ei=1..Ni fi + 0 - 1

• p(y,x) = (1/Z) ei=1..Nifi(y,x) (Z = e 1-0, the normalization factor)

thisis whatyouwant
to use

7
therecanbepotentially
unlimitednumberof
featurestherefore

it isnotgoodideathisishowthe constraintswork to enumenteoverall

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 57

Getting the Lambdas: Setup
• Model: p(y,x) = (1/Z) ei=1..Nifi(y,x)

• Generalized Iterative Scaling (G.I.S.)
– obeys form of model & constraints:

• Ep(fi(y,x)) = di

– G.I.S. needs, in order to work, y,x i=1..N fi(y,x) = C
• to fulfill, define additional constraint:

• fN+1(y,x) = Cmax -i=1..N fi(y,x), where Cmax = maxx,y i=1..N fi(y,x)

– also, approximate (because xAll contexts is not (never) feasible)

• Ep(fi) = y,xp(x,y)fi(y,x) 1/|T| t=1..TyYp(y|xt)fi(y,xt)
(use p(y,x)=p(y|x)p’(x), where p’(x) is empirical i.e. from data T)

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 58

Generalized Iterative Scaling

• 1. Initialize i
(1) (any values, e.g. 0), compute di, i=1..N+1

• 2. Set iteration number n to 1.
• 3. Compute current model distribution expected values

of all the constraint expectations
Ep(n)(fi) (based on p(n)(y|xt))

– [pass through data, see previous slide;
at each data position t, compute p(n)(y,xt), normalize]

• 4. Update i
n+1) = i

n) + (1/C) log(di/Ep(n)(fi))
• 5. Repeat 3.,4. until convergence.

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 59

Comments on Features

• Advantage of “variable” (~ not fixed) context in f(y,x):
– any feature o.k. (examples mostly for tagging):

• previous word’s part of speech is VBZ or VB or VBP, y is DT
• next word: capitalized, current: “.”, and y is a sentence break (SB detect)
• y is MD, and the current sentence is a question (last w: question mark)
• tag assigned by a different tagger is VBP, and y is VB
• it is before Thanksgiving and y is “turkey” (Language modeling)
• even manually written „rules,“ e.g. y is VBZ and there is ...

– remember, the predicted event plays a role in a feature:
• also, a set of events: f(y,x) is true if y is NNS or NN, and x is ...
• x can be ignored as well (“unigram” features)

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 60

Feature Selection
• Advantage:

– throw in many features
• typical case: specify templates manually (pool of features P), fill in

from data, possibly add some specific manually written features

– let the machine select
• Maximum Likelihood ~ Minimum Entropy on training data
• after, of course, computing the i’s using the MaxEnt algorithm

• Naive (greedy of course) algorithm:
– start with empty S, add feature at a time (MLE after ME)
– too costly for full computation (|S| x |P| x |ME-time|)
– Solution: see Berger & DellaPietras

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

References
• Manning-Schuetze:

– Section 16.2
• Jelinek:

– Chapter 13 (includes application to LM)
– Chapter 14 (other applications)

• Berger & DellaPietras in CL, 1996, 1997
– Improved Iterative Scaling (does not need i=1..N fi(y,x) = C)
– “Fast” Feature Selection!

• Hildebrand, F.B.: Methods of Applied Math., 1952

61

With max entropy alg I obtain the future setand its weight
And then I look forsuch combinatinof featuresand weights
such that it gives the lowest entropy thisdealswith overtwining

tyingall possible features adding them to thetemp pool

pooloffeatures
pry x H

o 2 iry.TT
stheentonywithmnx.ent.aly

ryx Janymin cyberregiment

entropy

this ismytemppoolof futures

Attheend theentropy is decreasing tooslowlyandweonlyadd
too specialisedrules

and therefore theywould onlylittledecrease
theentropyand very likely onlyon thetrainingset

H
heldout

hittingthe
where

1 ofthe tmining set

Maximum Entropy Tagging

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Task, Again

• Recall:
– tagging ~ morphological disambiguation
– tagset VT  (C1,C2,...Cn)

• Ci - morphological categories, such as POS, NUMBER,
CASE, PERSON, TENSE, GENDER, ...

– mapping w  {t VT} exists
• restriction of Morphological Analysis: A+  2(L,C1,C2,...,Cn)

where A is the language alphabet, L is the set of lemmas

– extension to punctuation, sentence boundaries (treated
as words)

63

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Maximum Entropy Tagging Model

• General
p(y,x) = (1/Z) ei=1..Nifi(y,x)

Task: find i satisfying the model and constraints
• Ep(fi(y,x)) = di

where
• di = E’(fi(y,x)) (empirical expectation i.e. feature frequency)

• Tagging
p(t,x) = (1/Z) ei=1..Nifi(t,x) (0 might be extra: cf.  in AR)

• t  Tagset,
• x ~ context (words and tags alike; say, up to three positions R/L)

64

predict

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Features for Tagging

• Context definition
– two words back and ahead, two tags back, current word:

• xi = (wi-2,ti-2,wi-1,ti-1,wi,wi+1,wi+2)

– features may ask any information from this window
• e.g.:

– previous tag is DT
– previous two tags are PRP$ and MD, and the following word is “be”
– current word is “an”
– suffix of current word is “ing”

• do not forget: feature also contains ti, the current tag:
– feature #45: suffix of current word is “ing” & the tag is VBG  f45 = 1

65

weneedonlyreasonable offeatures

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Feature Selection
• The ritght data-based way:

– (try to) test all possible feature combinations
• features may overlap, or be redundant; also, general or specific

- impossible to select manually

– greedy selection:
• add one feature at a time, test if (good) improvement:

– keep if yes, return to the pool of features if not

– even this is costly, unless some shortcuts are made
• see Berger & DPs for details

• The other way:
– use some heuristic to limit the number of features

66

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Limiting the Number of Features

• Always
– use contexts which appear in the training data (lossless

selection)
• Some heuristics

– use features appearing only L-times in the data (L ~ 10)
– use wi-derived features which appear with rare words only
– do not use all combinations of context
– but then, use all of them, and compute the i only once

using the Generalized Iterative Scaling algorithm

67

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Feature Examples (Context)

• From A. Ratnaparkhi (EMNLP, 1996, UPenn)
– ti = T, wi = X (frequency c > 4):

• ti = VBG, wi = selling

– ti = T, wi contains uppercase char (rare):
• ti = NNP, tolower(wi)  wi

– ti = T, ti-1 = Y, ti-2 = X:
• ti = VBP, ti-2 = PRP, ti-1 = RB

• Other examples of possible features:
– ti = T, tj is X, where j is the closest left position where Y

• ti = VBZ, tj = NN, Y  tj  {NNP, NNS, NN}

68

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Feature Examples (Lexical/Unknown)

• From AR:
– ti = T, suffix(wi)= X (length X < 5):

• ti = JJ, suffix(wi) = eled (traveled, leveled,)

– ti = T, prefix(wi)= X (length X < 5):
• ti = JJ, prefix(wi) = well- (well-done, well-received,...)

– ti = T, wi contains hyphen:
• ti = JJ, ‘-’ in wi (open-minded, short-sighted,...)

• Other possibility, for example:
– ti = T, wi contains X:

• ti = NounPl, wi contains umlaut (ä,ö,ü) (Wörter, Länge,...)

69

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

“Specialized” Word-based Features

• List of words with most errors (WSJ, Penn
Treebank):
– about, that, more, up, ...

• Add “specialized”, detailed features:
– ti = T, wi = X, ti-1 = Y, ti-2 = Z:

• ti = IN, wi = about, ti-1 = NNS, ti-2 = DT

– possible only for relatively high-frequency words
• Slightly better results (also, problems with

inconsistent [test] data)

70

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Maximum Entropy Tagging: Results

• Base experiment (133k words, < 3% unknown):
– 96.31% word accuracy

• Specialized features added:
– 96.49% word accuracy

• Consistent subset (training + test)
– 97.04% word accuracy (97.13% w/specialized features)

• Best in 2000; for details, see the AR paper

• [Now: perceptron 97%; Deep neural networks: 98%
– Collins 2002, Raab 2009, Straka 2018 (Czech)]

71

Feature-Based Tagging

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Task, Again

• Recall:
– tagging ~ morphological disambiguation
– tagset VT  (C1,C2,...Cn)

• Ci - morphological categories, such as POS, NUMBER,
CASE, PERSON, TENSE, GENDER, ...

– mapping w  {t VT} exists
• restriction of Morphological Analysis: A+  2(L,C1,C2,...,Cn)

where A is the language alphabet, L is the set of lemmas

– extension to punctuation, sentence boundaries (treated
as words)

73

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Feature Selection Problems

• Main problem with Maximum Entropy [tagging]:
– Feature Selection (if number of possible features is in

the hundreds of thousands or millions)
– No good way

• best so far: Berger & DP’s greedy algorithm
• heuristics (cutoff based: ignore low-count features)

• Goal:
– few but “good” features (“good” ~ high predictive

power ~ leading to low final cross entropy)

74

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Feature-based Tagging

• Idea:
– save on computing the weights (i)

• are they really so important?

– concentrate on feature selection
• Criterion (training):

– error rate (~ accuracy; borrows from Brill’s tagger)
• Model form (probabilistic - same as for Maximum

Entropy):
p(y|x) = (1/Z(x)) ei=1..Nifi(y,x)

Exponential (or Loglinear) Model
75

Prodestine in téihéstwjoverodis.it d a bpaid freewordorder

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Feature Weight (Lambda)
Approximation

• Let Y be the sample space from which we predict (tags
in our case), and fi(y,x) a b.v. feature

• Define a “batch of features” and a “context feature”:
B(x) = {fi; all fi’s share the same context x}
fB(x)(x’) = 1 df x  x’ (x is part of x’)

• in other words, holds wherever a context x is found

• Example:
f1(y,x) = 1 df y=JJ, left tag = JJ
f2(y,x) = 1 df y=NN, left tag = JJ

B(left tag = JJ) = {f1, f2} (but not, say, [y=JJ, left tag = DT])

76

fryx by

mizeponce nabjntjednehodn.tv
wunosti

Daby
todymoblo

bitfanfil 1

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Estimation
• Compute:

p(y|B(x)) = (1/Z(B(x))) d=1..|T|(yd,y)fB(x)(xd)
• frequency of y relative to all places where any of B(x) features holds

for some y; Z(B(x)) is the natural normalization factor
� Z(B(x)) = d=1..|T| fB(x)(xd)

“compare” to uniform distribution:
� (y,B(x)) = p(y|B(X)) / (1 / |Y|)

(y,B(x)) > 1 for p(y|B(x)) better than uniform; and vice versa

• If fi(y,x) holds for exactly one y (in a given context x),
then we have 1:1 relation between (y,B(x)) and fi(y,x) from B(x)
and i = log ((y,B(x))) NB: works in constant time

independent of j, j i
77

counting itforearlssingletag

havetheformofthecontext is
givenbythe batch itgroupedallthe

samecontextsalmost likePII

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

What we got

• Substitute:
p(y|x) = (1/Z(x)) ei=1..Nifi(y,x) =

= (1/Z(x)) i=1..N(y,B(x))fi(y,x)

= (1/Z(x)) i=1..N (|Y| p(y|B(x)))fi(y,x)

= (1/Z’(x)) i=1..N (p(y|B(x)))fi(y,x)

= (1/Z’(x)) B(x’); x’  x p(y|B(x’))
... Naive Bayes (independence assumption)

78

Infact thisapproximation is verygoodandhelps testingmanyfintures

Wecanhave onlyonefeature thatis time inthe completelysame context position
wordsbeforeafter

7
fits x 291

8 Happing

itmustbeonly approx sinen independenceassumption doesnotgenerallyholdsinbetweenfeatures

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Reality

• take advantage of the exponential form of the model
(do not reduce it completely to naive Bayes):
– vary (y,B(x)) up and down a bit (quickly)

• captures dependence among features

– recompute using “true” Maximum Entropy
• the ultimate solution

– combine feature batches into one, with new (y,B(x’))
• getting very specific features

79

The featuresarethen treatedas independent sowecaneven manipulate
theweights

andtryto boost it

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Search for Features
• Essentially, a way to get rid of unimportant features:

– start with a pool of features extracted from full data
– remove infrequent features (small threshold, < 2)
– organize the pool into batches of features

• Selection from the pool P:
– start with empty S (set of selected features)
– try all features from the pool, compute (y,B(x)), compute

error rate over training data.
– add the best feature batch permanently; stop when no

correction made [complexity: |P| x |S| x |T|]

80

l

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Adding Features in Blocks,
Avoiding the Search for the Best

• Still slow; solution: add ten (5,20) best features at a
time, assuming they are independent (i.e., the next best
feature would change the error rate the same way as if
no intervening addition of a feature is made).

• Still slow [(|P| x |S| x |T|)/10, or 5, or 20]; solution:
• Add all features improving the error rate by a certain

threshold; then gradually lower the threshold down to
the desired value; complexity [|P| x log|S| x |T|] if

threshold(n+1) = threshold(n) / k, k > 1 (e.g. k = 2)

81
wefirstgettheverystrongfeatures efficiently loweringthenumberofevaluations

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Types of Features

• Position:
– current
– previous, next
– defined by the closest word with certain major POS

• Content:
– word (w), tag(t) - left only, “Ambiguity Class” (AC) of a

subtag (POS, NUMBER, GENDER, CASE, ...)
• Any combination of position and content
• Up to three combinations of (position,content)

82

thiscanreduced ofoptionsALOT

III sties

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Ambiguity Classes (AC)

• Also called “pseudowords” (MS, for word sense
disambiguationi task), here: “pseudotags”

• AC (for tagging) is a set of tags (used as an indivisible
token).
– Typically, these are the tags assigned by a morphology to a

given word:
• MA(books) [restricted to tags] = { NNS, VBZ }:

AC = NNS_VBZ

• Advantage: deterministic
looking at the ACs (and words, as before) to the right allowed

83

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Subtags

• Inflective languages: too many tags  data sparseness
• Make use of separate categories (remember morphology):

– tagset VT  (C1,C2,...Cn)
• Ci - morphological categories, such as POS, NUMBER, CASE,

PERSON, TENSE, GENDER, ...

• Predict (and use for context) the individual categories
• Example feature:

– previous word is a noun, and current CASE subtag is genitive
• Use separate ACs for subtags, too (ACPOS = N_V)

84

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Combining Subtags

• Apply the separate prediction (POS, NUMBER) to
– MA(books) = { (Noun, Pl), (VerbPres, Sg)}

• Now what if the best subtags are
– Noun for POS
– Sg for NUMBER

• (Noun, Sg) is not possible for books

• Allow only possible combinations (based on MA)
• Use independence assumption (Tag = (C1, C2, ..., Cn)):

(best) Tag = argmaxTag MA(w) i=1..|Categories| p(Ci|w,x)

85

morpho analysis

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Smoothing

• Not needed in general (as usual for exponential
models)
– however, some basic smoothing has an advantage of

not learning unnecessary features at the beginning
– very coarse: based on ambiguity classes

• assign the most probable tag for each AC, using MLE
• e.g. NNS for AC = NNS_VBZ

– last resort smoothing: unigram tag probability
– can be even parametrized from the outside
– also, needed during training

86

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Overtraining

• Does not appear in general
– usual for exponential models
– does appear in relation to the training curve:

– but does not go down until very late in the training
(singletons do cause overtraining)

87

Parsing: Introduction

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Context-free Grammars
• Chomsky hierarchy

– Type 0 Grammars/Languages
• rewrite rules   ;  are any string of terminals and nonterminals

– Context-sensitive Grammars/Languages
• rewrite rules: X where X is nonterminal,  any string of

terminals and nonterminals ( must not be empty)

– Context-free Grammars/Lanuages
• rewrite rules: X where X is nonterminal,  any string of terminals and

nonterminals

– Regular Grammars/Languages
• rewrite rules: X Y where X,Y are nonterminals,  string of terminal

symbols; Y might be missing

89

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Parsing Regular Grammars

• Finite state automata
– Grammar regular expression finite state

automaton
• Space needed:

– constant
• Time needed to parse:

– linear (~ length of input string)
• Cannot do e.g. anbn , embedded recursion (context-

free grammars can)
90

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Parsing Context Free Grammars

• Widely used for surface syntax description (or
better to say, for correct word-order specification)
of natural languages

• Space needed:
– stack (sometimes stack of stacks)

• in general: items ~ levels of actual (i.e. in data) recursions

• Time: in general, O(n3)
• Cannot do: e.g. anbncn (Context-sensitive

grammars can)
91

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Example Toy NL Grammar

• #1 S  NP
• #2 S NP VP
• #3 VP V NP
• #4 NP N
• #5 N flies
• #6 N saw
• #7 V flies
• #8 V saw

flies saw saw

N V N

NP NP

VP

S

92

2 véty
8vet

Celhemexistage 10vet patricich do letoguantily

Shift-Reduce Parsing in Detail

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Grammar Requirements

• Context Free Grammar with
– no empty rules (N )

• can always be made from a general CFG, except there might
remain one rule S  (easy to handle separately)

– recursion OK
• Idea:

– go bottom-up (otherwise: problems with recursion)
– construct a Push-down Automaton (non-deterministic in

general, PNA)
– delay rule acceptance until all of a (possible) rule parsed

94

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

PNA Construction -
Elementary Procedures

• Initialize-Rule-In-State(q,A ) procedure:
– Add the rule (A ) into a state q.
– Insert a dot in front of the R[ight]H[and]S[ide]: A 

• Initialize-Nonterminal-In-State(q,A) procedure:
– Do “Initialize-Rule-In-State(q,A )” for all rules having

the nonterminal A on the L[eft]H[and]S[ide]
• Move-Dot-In-Rule(q,A ) procedure:

– Create a new rule in state q: A , Z term. or not

95

Dotserves as aplace holder to markwherethe gimmmer currently is

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

PNA Construction

• Put 0 into the (FIFO/LIFO) list of incomplete states,
and do Initialize-Nonterminal-In-State(0,S)

• Until the list of incomplete states is not empty, do:
1. Get one state, i from the list of incomplete states.
2. Expand the state:

• Do recursively Initialize-Nonterminal-In-State(i,A) for all
nonterminals A right after the dot in any of the rules in state i.

3. If the state matches exactly some other state already in the
list of complete states, renumber all shift-references to it to
the old state and discard the current state.

96

Ce remove redundancy

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

PNA Construction (Cont.)
4. Create a set T of Shift-References (or, transition/continuation

links) for the current state i {(Z,x)}:
• Suppose the highest number of a state in the incomplete state list is n.
• For each symbol Z (regardless if terminal or nonterminal) which appears

after the dot in any rule in the current state q, do:
– increase n to n+1
– add (Z,n) to T

• NB: each symbol gets only one Shift-Reference, regardless of how
many times (i.e. in how many rules) it appears to the right of a dot.

– Add n to the list of incomplete states
– Do Move-Dot-In-Rule(n,A )

5. Create Reduce-References for each rule in the current state i:
• For each rule of the form (A  (i.e. dot at the end) in the current

state, attach to it the rule number r of the rule A from the grammar.

97

tollanameni ieymmat.hndoloncilaprepisnatermian

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Using the PNA (Initialize)

• Maintain two stacks, the input stack I and the state
stack Q.

• Maintain a stack B[acktracking] of the two stacks.
• Initialize the I stack to the input string (of terminal

symbols), so that the first symbol is on top of it.
• Initialize the stack Q to contain state 0.
• Initialize the stack B to empty.

98

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Using the PNA (Parse)
• Do until you are not stuck and/or B is empty:

– Take the top of stack Q state (“current” state i).
– Put all possible reductions in state i on stack B, including

the contents of the current stacks I and Q.
– Get the symbol from the top of the stack I (symbol Z).
– If (Z,x) exists in the set T associated with the current state

i, push state x onto the stack Q and remove Z from I.
Continue from beginning.

– Else pop the first possibility from B, remove n symbols
from the stack Q, and push A to I, where A Z1...Zn is the
rule according which you are reducing.

99

tryinganotherpass

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Small Example
#1 S  NP VP 1 S  NP . VP VP 5
#2 NP  VP V NP V 6
#3 VP V NP V saw saw 7
#4 N a_cat 2 NP  #2
#5 N a_dog 3 N a_cat . #4
#6 V saw 4 N a_dog . #5
Tables: <symbol> <state>: shift 5 S  NP VP . #1

#<rule>: reduction 6 VP V . NP NP 8
0 S  NP VP NP 1 NP  

NP   N a_cat a_cat 3
N a_cat a_cat 3 N a_dog a_dog 4
N a_dog a_dog 4 7 V saw . #6

NB: dotted rules in states need not be kept 8 VP V NP . #3

G
ram

m
ar

no ambiguity,
no recursion

100

tadyismetotrochnzjednodu.sii
realuetenstate cytworm sof9 a at poadejihosm.tn onestate btwthereis no samesttingionkdyz2jistinJe ie shoding s 3

expansion

hair
noexpansior linked

4 1h

4 itIiiiiiiiii
a

Parsing determines the structure of thestring

task E L is only a subtash ofpausing

left recursion rightreanusion CFG determines howwellcan we

parse them 2 and if to use bottomup topdown

Shift reduce purser one part of the exam

LR h Ineed atmost bsteps lookaheadback
to deterministically choose therewriterule

protopouzepro Ro nepotichughdisobnik

Nextweek wewilltryconstruct one table by ourselves

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Small Example: Parsing(1)

• To parse: a_dog saw a_cat
Input stack (top on the left) Rule State stack (top on the left) Comment(s)
• a_dog saw a_cat 0
• saw a_cat 4 0 shift to 4 over a_dog
• N saw a_cat #5 0 reduce #5: N a_dog
• saw a_cat 2 0 shift to 2 over N
• NP saw a_cat #2 0 reduce #2: NP 
• saw a_cat 1 0 shift to 1 over NP
• a_cat 7 1 0 shift to 7 over saw
• V a_cat #6 1 0 reduce #6: V saw

101

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Small Example: Parsing (2)

• ...still parsing: a_dog saw a_cat
• [V a_cat #6 1 0]  Previous parser configuration
• a_cat 6 1 0 shift to 6 over V
• 3 6 1 0 empty input stack (not finished though!)
• N #4 6 1 0 N inserted back
• 2 6 1 0 ...again empty input stack
• NP #2 6 1 0
• 8 6 1 0 ...and again
• VP #3 1 0 two states removed (|RHS(#3)|=2)
• 5 1 0
• S #1 0 again, two items removed (RHS: NP VP)
Success: S/0 alone in input/state stack; reverse right derivation: 1,3,2,4,6,2,5

102

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example:
Ambiguous and Recursive Grammar

• #1 S  NP VP #9 N  a_cat
• #2 NP NP REL VP #10 N  a_dog
• #3 NP N #11 N  a_hat
• #4 NP N PP #12 PREP  in
• #5 VP V NP #13 REL  that
• #6 VP V NP PP #14 V  saw
• #7 VP V PP #15 V  heard
• #8 PP PREP NP

103

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Tables (1)
0 S  . NP VP NP 1

NP  . NP REL VP
NP  . N N 2
NP  . N PP
N  . a_cat a_cat 3
N  . a_dog a_dog 4
N  . a_mirror a_hat 5

1 S  NP . VP VP 6
NP  NP . REL VP REL 7
VP  . V NP V 8
VP  . V NP PP
VP  . V PP
REL  . that that 9
V  . saw saw 10
V  . heard heard 11

2 NP  N . #3
NP  N . PP PP 12
PP  . PREP NP PREP 13
PREP  . in in 14

3 N  a_cat . #9

4 N  a_dog . #10

5 N  a_hat . #11

6 S  NP VP . #1

104

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Tables (2)
7 NP  NP REL . VP VP 15

VP  . V NP V 8
VP  . V NP PP
VP  . V PP
V  . saw saw 10
V  . heard heard 11

8 VP  V . NP NP 16
VP  V . NP PP
VP  V . PP PP 17
NP  . NP REL VP
NP  . N N 2
NP  . N PP
N  . a_cat a_cat 3
N  . a_dog a_dog 4
N  . a_hat a_hat 5
PP  . PREP NP PREP 13
PREP  . in in 14

9 REL  that . #13

10 V  saw . #14

11 V  heard . #15

12 NP  NP PP . #4

13 PP  PREP . NP NP 18
NP  . NP REL VP
NP  . N N 2
NP  . N PP
N  . a_cat a_cat 3
N  . a_dog a_dog 4
N  . a_hat a_hat 5

105

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Tables (3)
14 PREP  in . #12

15 NP  NP REL VP . #2

16 VP  V NP . #5
VP  V NP . PP PP 19
NP  NP . REL VP REL 7
PP  . PREP NP PREP 13
PREP  . in in 14
REL  . that that 9

17 VP  V PP . #7

18 PP  PREP NP . #8
NP  NP . REL VP REL 7
REL  . that that 9

19 VP  V NP PP . #6

Comments:
- states 2, 16, 18 have shift-reduce

conflict
- no states with reduce-reduce

conflict
- also, again there is no need to store

the dotted rules in the states for
parsing. Simply store the pair
input/goto-state, or the rule number.

106

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Parsing (1)

• To parse: a_dog heard a_cat in a_hat
Input stack (top on the left) State stack (top on the left)

Rule Backtrack Comment(s)
• a_dog heard a_cat in a_hat 0 shifted to 4 over a_dog
• heard a_cat in a_hat 4 0 shift to 4 over a_dog
• N heard a_cat in a_hat #10 0 reduce #10: N a_dog
• heard a_cat in a_hat 2 0 shift to 2 over N1

• NP heard a_cat in a_hat #3 0 reduce #3: NP 
• heard a_cat in a_hat 1 0 shift to 1 over NP
• a_cat in a_hat 11 1 0 shift to 11 over heard
• V a_cat in a_hat #15 1 0 reduce #15: V heard
• a_cat in a_hat 8 1 0 shift to 8 over V
1see also next slide, last comment

107

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Parsing (2)

• ...still parsing: a_dog heard a_cat in a_hat
Input stack (top on the left) State stack (top on the left)

Rule Backtrack Comment(s)
• [a_cat in a_hat 8 1 0]  [previous parser configuration]
• in a_hat 3 8 1 0 shift to 3 over a_cat
• N in a_hat #9 8 1 0 reduce #9: N a_cat
• in a_hat 2 8 1 0  shift to 2 over N; see

why we need the state
stack? we are in 2 again,
but after we return, we
will be in 8 not 0;
also save for backtrack1!

1the whole input stack, state stack, and [reversed] list of rules used for reductions so far must be saved on the backtrack stack

108

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Parsing (3)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [in a_hat 2 8 1 0 ]  [previous parser configuration]
• a_hat 14 2 8 1 0 shift to 14 over in
• PREP a_hat #12 2 8 1 0 reduce #12: PREP in1

• a_hat 13 2 8 1 0 shift to 13 over PREP
• 5 13 2 8 1 0 shift to 5 over a_hat
• N #11 13 2 8 1 0 reduce #11: N a_hat
• 2 13 2 8 1 0 shift to 2 over N
• NP #3 13 2 8 1 0 shift not possible; reduce

#3: NP N1 on s.19

• 18 13 2 8 1 0 shift to 18 over NP
1when coming back to an ambiguous state [here: state 2] (after some reduction), reduction(s) are not considered; nothing put on backtrk stack

109

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Parsing (4)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [18 13 2 8 1 0]  [previous parser config.]
• PP #8 2 8 1 0 shift not possible;

reduce #81 on s.19:
PP PREP NP1,prev.slide

• 12 2 8 1 0 shift to 12 over PP
• NP #4 8 1 0 reduce #4: NP N PP
• 16 8 1 0 shift to 16 over NP
• VP #5 1 0 shift not possible,

reduce #51: VP V NP
1no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#5) in state 16

110

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Parsing (5)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [VP #5 1 0]  [previous parser configuration]
• 6 1 0 shift to 6 over VP
• S #1 0 reduce #1: S NP VP

first solution found:
1,5,4,8,3,11,12,9,15,3,10
backtrack to previous 

• in a_hat 2 8 1 0 was: shift over in, now1:
• NP in a_hat #3 8 1 0 reduce #3: NP N
• in a_hat 16 8 1 0  shift to 16 over NP
• a_hat 14 16 8 1 0 shift, but put on backtrk
1no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#3) in state 2

111

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Parsing (6)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [a_hat 14 16 8 1 0 ]  [previous parser config.]
• PREP a_hat #12 16 8 1 0 reduce #12: PREP in
• a_hat 13 16 8 1 0 shift over PREP1 on s.17

• 5 13 16 8 1 0 shift over a_hat to 5
• N #11 13 16 8 1 0 reduce #11: N a_hat
• 2 13 16 1 0 shift to 2 over N
• NP #3 13 16 1 0 shift not possible1 on s.19

• 18 13 16 1 0 shift to 18
• PP #8 16 1 0 shift not possible1, red.#8
• 19 16 1 0 shift to 191 on s.17
1no need to keep the item on the backtrack stack; no shift possible now and there is only one reduction (#8) in state 18

112

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Big Example: Parsing (7)
• ...still parsing: a_dog heard a_cat in a_hat

Input stack (top on the left) State stack (top on the left)
Rule Backtrack Comment(s)

• [19 16 8 1 0]  [previous parser config.]
• VP #6 1 0 red. #6: VP V NP PP
• 6 1 0 shift to 6 over VP
• S #1 0 next (2nd) solution:

1,6,8,3,11,12,3,19,15,3,10
backtrack to previous 

• in a_hat 16 8 1 0 was: shift over in1 on s.19,
• VP in a_hat #5 1 0 now red. #5: VP V NP
• in a_hat 6 1 0 shift to 6 over VP
• S in a_hat #1 0 error2; backtrack empty: stop
1continue list of rules at the orig. backtrack mark (s.16,line 3) 2S (the start symbol) not alone in input stack when state stack = (0)

113

Treebanks, Treebanking and Evaluation

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Phrase Structure Tree
• Example:

((DaimlerChrysler’s shares)NP (rose (three eights)NUMP (to 22)PP-NUM)VP)S

115

bracketing is always possible it is projective free

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Dependency Tree
• Example:

rosePred(sharesSb(DaimlerChrysler’sAtr),eightsAdv(threeAtr),toAuxP(22Adv))

116

every
node has its word

also every node has itsparent except
orderis inyearl notpreserved

ut

orderingofsonsis
addedsometimes

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Parser Development
• Use training data for learning phase

– segment as needed (e.g., for heldout)
– use all for

• manually written rules (seldom today)
• automatically learned rules/statistics

• Occasionally, test progress on Development Test Set
– (simulates real-world data)

• When done, test on Evaluation Test Set
• Unbreakable Rule #1: Never look at Evaluation Test

Data (not even indirectly, e.g. performance numbers)
117

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Evaluation

• Evaluation of parsers (regardless of whether
manual-rule-based or automatically learned)

• Repeat: Test against Evaluation Test Data
• Measures:

– Dependency trees:
• Dependency Accuracy, Precision, Recall

– Parse trees:
• Crossing brackets
• Labeled precision, recall [F-measure]

118

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Dependency Parser Evaluation

• Dependency Recall:
– RD = Correct(D) / |S|

• Correct(D): number of correct dependencies
– correct: word attached to its true head
– Tree root is correct if marked as root

• |S| - size of test data in words (since |dependencies| = |words|)

• Dependency precision (if output not a tree, partial):
– PD = Correct(D) / Generated(D)

• Generated(D) is the number of dependencies output
– some words without a link to their head
– some words with several links to (several different) heads

119

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Phrase Structure (Parse Tree)
Evaluation

• Crossing Brackets measure
– Example “truth” (evaluation test set):

• ((the ((New York) - based company)) (announced (yesterday)))

– Parser output - 0 crossing brackets:
• ((the New York - based company) (announced yesterday))

– Parser output - 2 crossing brackets:
• (((the New York) - based) (company (announced (yesterday))))

• Labeled Precision/Recall:
– Usual computation using bracket labels (phrase markers)

T: ((Computers)NP (are down)VP)S  P: ((Computers)NP (are (down)NP)VP)S

• Recall = 100%, Precision = 75%

120

Fl scorenotapplicable as there can be random tree above the words

inNewxouk
golden

wrong

2jahihu beterminn

byobsallvytor

i
Owasitingids

Probabilistic CFG (Introduction)

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Context-free Grammars
• Chomsky hierarchy

– Type 0 Grammars/Languages
• rewrite rules   ;  are any string of terminals and nonterminals

– Context-sensitive Grammars/Languages
• rewrite rules: X where X is nonterminal,  any string of

terminals and nonterminals ( must not be empty)

– Context-free Grammars/Lanuages
• rewrite rules: X where X is nonterminal,  any string of terminals and

nonterminals

– Regular Grammars/Languages
• rewrite rules: X Y where X,Y are nonterminals,  string of terminal

symbols; Y might be missing

122

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Another NLP Example

• #1 S  NP VP
• #2 VP V NP PP
• #3 VP V NP
• #4 NP N
• #5 NP N PP
• #6 PP PREP N
• #7 N a_dog
• #8 N a_cat
• #9 N a_telescope
• #10 V saw
• #11 PREP with a_dog saw a_cat with a_telescope

N V N PREP N

NP NP PP

VP

S VP

NP

PP
V N

PREP N

123

cathad

doghad telescope

telescope

decisiononly
basedon prob
from trainingdata

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Dependency Style Example

• Same example, dependency representation
saw saw

a_dog a_doga_cat

a_catwith
with

a_telescope a_telescope
Sb Sb Attr

Obj

Obj Adv_Tool

124

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Probability of a Derivation Tree
• Both phrase/parse/derivational “grammatical”
• Different meaning: which is better [in context]?
• “Internal context”: relations among phrases, words
• Probabilistic CFG:

– relations among a mother node & daughter nodes
– in terms of expansion [rewrite,derivation] probability
– define probability of a derivation (i.e. parse) tree:

P(T) = i=1..n p(r(i))

r(i) are all rules of the CFG used to generate the sentence W of which T is a parse

125

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Assumptions

• Independence assumptions (very strong!)
• Independence of context (neighboring subtrees)
• Independence of ancestors (upper levels)
• Place-independence (regardless where in tree it

appears) ~ time invariance in HMM

126

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Probability of a Rule

• Rule r(i): A ;
• Let RA be the set of all rules r(j), which have

nonterminal A at the left-hand side;
• Then define probability distribution on RA:

rRA
p(r) = 1, 0 p(r) 1

• Another point of view:
p(|A) = p(r), where r = A   (NT)+

127

vidy so todefining podminentpro
neterminal dew any to relyseitedodo 1
Udybyeh to butpwcely

strom tak neteter
Gombinace bynemably wibeemustat a jibych

nesoitaldo1

i
basic approach

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Estimating Probability of a Rule

• MLE from a treebank following a CFG grammar
• Let’s r = A k 

– p(r) = c(r) / c(A)
– Counting rules (c(r)): how many times

appears in the treebank.
– Counting nonterminals c(A):

just count’em (in the treebank)

A

1 2 k

128

Using Probabilistic CFG

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Probability of a Derivation Tree
• Probabilistic CFG:

– relations among a mother node & daughter nodes
– in terms of expansion [rewrite,derivation] probability
– define probability of a derivation (i.e. parse) tree:

P(T) = i=1..n p(r(i))
r(i) are all rules of the CFG used to generate the sentence W of which T is a parse

• Probability of a string W = (w1, w2, ..., wn) ?
• Non-trivial, because there may be many trees Tj as a

result of parsing W.

130

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Probability of a String

• Input string: W
• Parses: {Tj}j=1..n = Parse(W).

P(W) =  j=1..n P(Tj) !
• Impossible to use the naive method.

131

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Inside Probability

• N(p,q) = P(Nwpq) N

wp ... wq

132

p
everything geneatedby
sigle non terminal N

probability ofthis
decimtion tree

couldbe multilevel notonly

like this singlelad

words in sentence

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Formula for Inside Probability

• N(p,q) =

A,B d=p..q-1 P(NA,B)A(p,d)B(d+1,q)

assuming the grammar G has rules of the form
N terminal string only)
N  A B (two nonterminals)

only (Chomsky Normal Form).
133

basedon independence

splitting anywhere in
between

this is importantwhy
we are doing it

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Example PCFG
• #1 S  NP VP 1.0
• #2 VP V NP PP 0.4
• #3 VP V NP 0.6
• #4 NP N 0.7
• #5 NP N PP 0.3
• #6 PP PREP N 1.0
• #7 N a_dog 0.3
• #8 N a_cat 0.5
• #9 N a_telescope 0.2
• #10 V saw 1.0
• #11 PREP with 1.0 P(a_dog saw a_cat with a_telescope) =

N V N PREP N

NP NP PP

VP

S VP

NP

PP
V N

PREP N

1.0

0.4

0.7

0.3 1.0 0.5 1.0 0.2

0.7
1.0

0.6

0.3

1.0

1´.7´.4´.3´.7´1´.5´1´1´.2 + ... ´.6... ´.3... = .00588 + .00378 = .00966

134

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Computing String Probabilty

• a_dog saw a_cat with a_telescope
1 2 3 4 5

• Create table n x n (n = length of string). Cells might have more “lines”.
• Initialize on diagonal, using N  rules.
• Recursively compute along the diagonal towards the upper right

corner.

from \to 1 2 3 4 5
1 N P .21

N .3
S .0441 S .00966

2 V 1 V P .21 V P .046
3 N P .35

N .5
N P .03

4 P R E P 1 P P .2
5 N .2

135

Toble mizehittiny u
tester

III III me
7ampast
tobostroma

Statistical Parsing

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Language Model vs. Parsing Model

• Language model:
– interested in string probability:

P(W) = probability definition using a formula such as

= i=1..n p(wi|wi-2,wi-1) trigram language model

= sS p(W,s) = sS rsr PCFG; r ~ rule used in parse tree

• Parsing model
– conditional probability of tree given string:

P(s|W) = P(W,s) / P(W) = P(s) / P(W) !! P(W,s) = P(s) !!
– for argmax, just use P(s) (P(W) is constant)

137

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Once again, Lexicalization
• Lexicalized parse tree (~ dependency tree+phrase labels)
• Ex. subtree:

• Pre-terminals (above leaves): assign the word below
• Recursive step (step up one level): (a) select node, (b) copy word up.

PP(with)

PREP(with) N(telescope)

with a_telescope

138

Nowhywith functionwordsaremoreimportant
isparsingformally

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Lexicalized Tree Example

• #1 S  NP VP
• #2 VP V NP PP
• #3 VP V NP
• #4 NP N
• #5 NP N PP
• #6 PP PREP N
• #7 N a_dog
• #8 N a_cat
• #9 N a_telescope
• #10 V saw
• #11 PREP with a_dog saw a_cat with a_telescope

N V N PREP N

NP(a_dog)NP(a_cat)PP(with)

VP(saw)

S(saw)
VP(saw)

NP(a_cat)

PP(with)
V N(a_cat)

PREP N

139

wegenerate manymore symbols

we can assign differentprobs to Ssaw thanto steatch

Cscanhelpwithfinding thecorrectpursewithmore languagedriven states

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Using POS Tags

a_dog saw a_cat with a_telescope

N V N PREP N

NP(a_dog,N) NP(a_cat,N)PP(with,PREP)

VP(saw,V)

S(saw,V)• Head ~ word,tag

140

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Conditioning

• Original PCFG: P(BD...|A)
– No “lexical” units (words)

• Introducing words:

P(B(headB) D(headD) ... |A(headA))

where headA is one of the heads on the left

E.g. rule VP(saw) V(saw) NP(a_cat):
P(V(saw) NP(a_cat) | VP(saw))

141

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Independence Assumptions

• Too many rules
• Decompose:

P(B(headB) D(headD) ... |A(headA)) =
• In general (total independence):

P(|A(headA))  P(B(headB)|A(headA)) 
 P(|A(headA))

• Too much independent: need a compromise.

142

Without the lexiculiantionwegenemlicedthe
structureperfectly buthavehard timespredictingwords

with It weareveryfocusedbutthe
structureisnotgenealing atall Z sparsedataproblem

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Decomposition

• Order does not matter; let’s use intuition (“linguistics”):
• Select the head daughter category:

PH(H(headA)|A(headA))

• Select everything to the right:
PR(Ri(ri) | A(headA),H)

• Also, choose when to finish: Rm+1(rm+1) = STOP
• Similarly, for the left direction: PL(Li(li) | A(headA),H)

H(head)

A(head)

H(head)

A(head)

R1(head1)R2(head2) STOP

143

Quinn timcomastejne prienzenislow
putjdudopmunadolen

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Example Decomposition

• Order:

• Example:

H(head)

A(head)

R1(head1)R2(head2) STOPL1(head1)STOP

1

23

V(saw)

VP(saw)

NP(a_cat) PP(with) STOPSTOP

144

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

More Conditioning: Distance

• Motivation:
– close words tend to be dependents (or phrases) more likely
– ex.: walking on a sidewalk on a sunny day without looking on...

• Words: too detailed distribution, though:
– use more sophisticated (yet more robust) distance measure dr/l:

• distinguish 0 and non-zero distance (2)
• distinguish if verb is in-between the head and the constituent in question (2)
• distinguish if there are commas in-between: 0, 1, 2, >2 commas (4).
• ...total: 16 possibilities added to the condition: PR(Ri(ri) | A(headA),H,dr)
• same to the left: PL(Li(li) | A(headA),H,dl)

145

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

More Conditioning:
Complement/Adjunct

• So far: no distinction

• ...but: time NP subject NP
• also, Subject NP cannot repeat... useful during parsing

[Must be added in training data]

VP(saw)

VP(saw)NP(a_dog)NP(yesterday)

VP(saw)

VP(saw)NP-C(a_dog)NP(yesterday)

146

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

More Conditioning:
Subcategorization

• The problem still not solved:
– two subjects:

wrong!
• Need: relation among complements.

– [linguistic observation: adjuncts can repeat freely.]
• Introduce:

– Left & Right Subcategorization Frames (multisets)

S(was)

VP(was)NP-C(the 7th-best)NP-C(Johns Hopkins)

147

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Inserting Subcategorization

• Use head probability as before:
PH(H(headA)|A(headA))

• Then, add left & right subcat frame:
Plc(LC| A(headA),H), Prc(RC| A(headA),H)

– LC, RC: list (multiset) of phrase labels (not words)
• Add them to context condition:

(left) PL(Li(li) | A(headA),H,dl,LC) [right: similar]
• LC/RC: “dynamic”: remove labels when generated

– P(STOP|.....,LC) = 0 if LC non-empty
148

1

Arming B C Dana E F

2

3

computedseriallywith Bayes rule

2 p Diana Aching p Eci Amend pFatEra p StopFr
3 obdobné

Pale byehto spoil a dostalbych cellownpast tobopride

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Smoothing

• Adding conditions... ~ adding parameters
• Sparse data problem as usual (head ~ <word,tag>!)
• Smooth (step-wise):

– Psmooth-H(H(headA)|A(headA)) =
1PH(H(headA)|A(headA)) + (1-1)Psmooth-H(H(headA)|A(tagA))

– Psmooth-H(H(headA)|A(tagA)) =
2PH(H(headA)|A(tagA)) + (1-2)PH(H(headA)|A)

• Similarly, for PR and PL.

149

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Parsing Algorithm
for a Lexicalized PCFG

• Bottom-up Chart parsing
– Elements of a chart: a pair

• <(from-position,to-position,label,head,distance), probability>
span score

– Total probability = multiplying elementary probabilities
enables dynamic programming:
• discard chart element with the same span but lower score.

• “Score” computation:
– joining chart elements: [for 2]: <e1, p1>, <e2, p2>, <en,pn>:

P(enew) = p1  p2  ...  pn  PH(...)  PR(...)  PL(...);

150

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Results (PCFG)

• English, WSJ, Penn Treebank, 40k sentences
< 40Words < 100 Words

– Labeled Recall: 88.1% 87.5%
– Labeled Precision: 88.6% 88.1%
– Crossing Brackets (avg): 0.91 1.07
– Sentences With 0 CBs: 66.4% 63.9%

• Czech, Prague Dependency Treebank, 13k sentences:
– Dependency Accuracy overall: 80.0% (MST’05: 85%)

(~ unlabelled precision/recall)

151

Dependency Parsing

• Graph-based
– Maximum Spanning Tree method (see the following

slides)
• McDonald et al., 2005, 2006

• Transition-based
– See (non-deterministic) Shift-reduce parsing +

probablistic model
• Nivre et al., MALT Parser since 2003

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl 152

Some slides in the next section are from J. Choi, Emory University

Dependency Structure
• What is a dependency?

– A syntactic or semantic (or other) relation between a pair
of tokens.

153

• Constituent vs. Dependency Structure

Thereisnoreason between syntacticor semantin
forthealy

phrasebased tree dependencytree

numberofnodes number of tokens

Dependency Structure
• Constituent structure

– Starts with the bottom level constituents (tokens).
– Group smaller constituents into bigger constituents

(phrases).
• Dependency structure

– Starts with vertices (tokens).
– Build a graph by adding edges between vertices (arcs).

154

wearetryingtocorrectly connect tokens

Dependency Graph
• For a sentence s = w1 ... wn , a dependency graph Gs

= (Vs, As)
– Vs = {w0 = root, w1, ... , wn}.
– As = {(wi, r, wj) : i ≠ j, wi Vs, wj Vs - {w0}, r Rs}.

- Rs = a subset of dependency relations in s.

• A well-formed dependency graph

155

- Root

- Single head

- Connected

- Acyclic

Dependency
Tree

Dependency Graph
• Projectivity

– A projective dependency tree has no crossing arc when
all vertices are lined up in linear order and arcs are
drawn above.

– e.g., He bought a car yesterday that is red.

156

- Regeneration of the original sentence.
- Parsing complexity: O(n) vs. O(n2).

Constituent To Dependency
• Head-finding rules (i.e., head-percolation rules,

headrules)
– Constituent trees can be converted into dependency trees.
– Apply headrules recursively to find the head of each

constituent.

157

S r VP
VP l VB*
NP r NN*;PRP;NP

Phrase type

direction

headrule

ifwehavetochoosefrommultiplebonds
weusetheserules

NNhasthehighestpriority
ibought

I bought wemalinedgesfromheadtothedependant
car s d

lead yesterday I

not alwaysmust wedraw
treeand lookfor crossing

1
sent www.g

projections the is crossing

Ifany itisnotprojectivetree

Google Search was actually using dependency
parsing for

finding common partsbetween query and responses

Graphbasedpausing anynevergo below Of2 using
Bomoha'salgorth

Constituent To Dependency

158

S r VP
VP l VB*
NP r NN*;PRP;NP
PP l IN

Dependency Parsing
• Why dependency parsing?

– Provides useful information for many NLP tasks
: information extraction, machine translation, question-
answering, sentiment analysis, etc.

– Faster than most parsing approaches (esp. Transition-based)
: about 1 milliseconds per sentence.

– More language independent
: CoNLL shared tasks 2006, 2007, and 2009
: Universal Dep tasks 2017, 2018; MRP tasks 2019, 2020

• Approaches
– Transition-based vs. graph-based.

• Important feature: whether handling projective vs. non-projective.

159

Dependency Parsing
• Transition-based parsing

– Transition: an operation searching for a dependency relation
between each pair of tokens (e.g., Shift, Reduce).

– Greedy search for local optima (locally optimized transitions)
• does better for local dependencies.

– Projective: O(n), non-projective: O(n2).
• Graph-based parsing

– Build a complete graph with directed/weighted edges and find a
tree with the highest score (sum of all weighted edges).

– Exhaustive search that finds for the global optimum (maximum
spanning tree) → do better for long-distance dependencies.

– Projective: O(n3), non-projective: O(n2).
160

startingwithcompletegraphandsequentiallyremoveedges

Transition-based Parsing

• Projective parsing: ~O(n)
– Bottom-up: Yamada & Matsumoto, 2003.
– Top-down, bottom-up: Nivre, 2003.
– Beam search: Zhang & Clark, 2008.
– Dynamic programming: Huang & Sagae, 2010.
– Selectional branching: Choi & McCallum, 2013.

• Non-projective parsing: O(n2)
– Exhaustive search: Covington, 2001.
– Reordering tokens: Nivre, 2009 (linear-time in practice).
– Selective search: Choi & Palmer, 2011 (linear-time in practice)
– Search-based “oracle”: Straka et al., 2015, TLT, Warsaw

161

Shift-reduce parsing

Transition-based Parsing
• Nivre’s arc-eager algorithm

– Projective parsing algorithm with a worst-case
complexity of O(n).

– S = stack, I = list of input tokens, A = set of arcs.

162

163

bought

He

a

car

He ← bought

a ← car

bought → car

• Shift : ‘He’

• LeftArc : ‘He’ ← ‘bought’

• RightArc: root → ‘bought’

• LeftArc : ‘a’ ← ‘car’

• RightArc: ‘bought’ → ‘car’

• Shift : ‘a’

• Reduce: ‘car’

yesterday

S

• RightArc: ‘bought’ → ‘yesterday’

bought → yes..

AI
root

root → bought

He bought a yesterdayroot car

Transition-based Parsing
Wehavetransition probs
thattelluswhattochoosefrom

actions

Nivre’s Arc-eager Algorithm

164

Nivre’s Arc-eager Algorithm

165

S I

• Initialize
• Shift: ‘David’

• Right-Arc: David → ‘s

S I IS

• Reduce: ‘s

S

• Left-Arc: David ← ‘officers’

• Shift: officers

IS

• Left-Arc: officers ← went

SS

• Right-Arc: root → went

IS

• Right-Arc: went → to

S I

• Shift: the

IS

• Left-Arc: the ← land

S

• Right-Arc: to → land

IS

• Right-Arc: land → of

IS

• Shift: ‘the’

IS

• Left-Arc: the ← Ammonites

S

• Right-Arc: of → Ammonites

S

• Terminate

Graph-based Parsing

• Inspired by maximum spanning tree algorithms.
• Projective parsing: O(n3)

– CKY parsing: Eisner, 2000.
• Non-projective parsing

– Chu-Liu-Edmonds’ algorithm: McDonald et al, 2005 (O(n2)).
– 2nd-order parsing: McDonald & Pereira, 2006 (O(n3)).
– 3rd-order parsing: Koo & Collins, 2010 (O(n4)).

• Advance parsing
– Vine pruning: Rush and Petrov, 2012.

166

using MERT on trainingdata togetscores with seven handmadefeaturetemplates

younever
knowwherethewood

Canbeconnectedandtherefore
needtoassumeallcombination

Chu-Liu-Edmonds’ Algorithm

• Based on a maximum spanning tree algorithm
1. Build a complete graph with directed and weighted

edges.
2. Keep only incoming edges with the maximum scores.
3. If there is no cycle, go to #5.
4. If there is a cycle, pretend vertices in the cycle as one

vertex and update scores for all incoming edges to the
cycle; goto #2.

5. Break all cycles by removing inappropriate edges in
the cycle.

167

TosaghlemjejaboledgsBouirkspojointhomponenty souristosts

ifmoreoptions removetheleastprob weightedge

Chu-Liu-Edmonds’ Algorithm

168

1039
420

8

Feature Extraction

• Part-of-speech tagging
– Word-forms, POS tags, ambiguity classes.
– Given wi, extract features from wi ± n (usually n [0, 3]).

• Dependency parsing
– Word forms, lemmas, POS tags, dependency labels.
– Given wi and wj, extract features from

- wi ± n, wj ± n.
- The ancestors of wi and wj.
- The dependents of wi and wj.
- The siblings of wi and wj.

169

Evaluation

• Assume each node has exactly one head except
for the root.

• For each tree, count
– how many nodes found correct heads

: Unlabeled attachment score (UAS).
– how many nodes found correct labels

: Label accuracy (LS).
– how many nodes found both correct heads and labels

: Labeled attachment score (LAS).

170

Evaluation

• Unlabeled attachment score
– Mismatches: bought → a, car → yesterday (3/5 = 60%)

• Label accuracy
– Mismatches: He - csubj, yesterday - adv (3/5 = 60%)

• Labeled attachment score
– He - csubj, bought → a, car → yesterday - adv (2/5 = 40%)

171

Statistical Machine Translation

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Main Idea

• Treat translation as a noisy channel problem:
Input (Source) “Noisy” Output (target)

The channel
E: English words... (adds “noise”) F: Les mots Anglais...

• The Model: P(E|F) = P(F|E) P(E) / P(F)
• Interested in rediscovering E given F:

After the usual simplification (P(F) fixed):

argmaxE P(E|F) = argmaxE P(F|E) P(E) !
173

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Necessities

• Language Model (LM)
P(E)

• Translation Model (TM): Target given source
P(F|E)

• Search procedure
– Given F, find best E using the LM and TM distributions.

• Usual problem: sparse data
– We cannot create a “sentence dictionary” E F
– Typically, we do not see a sentence even twice!

174

We treat theforeign language as a code that isdecodedto english

Theoretically having very lanarge
datasets it would train reasonably well

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Language Model

• Any LM will do:
– 3-gram LM
– 3-gram class-based LM (cf. HW #2!)
– decision tree LM with hierarchical classes

• Does not necessarily operates on word forms:
– cf. later the “analysis” and “generation” procedures
– for simplicity, imagine now it does operate on word forms

175

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Translation Models

• Do not care about correct strings of English words
(that’s the task of the LM)

• Therefore, we can make more independence
assumptions:
– for start, use the “tagging” approach:

• 1 English word (“tag”) ~ 1 French word (“word”)

– not realistic: rarely even the number of words is the same in
both sentences (let alone there is 1:1 correspondence!)

• use “Alignment”.

176

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Alignment

0 1 2 3 4 5 6
• e0 And the program has been implemented

• f0 Le programme a été mis en application
0 1 2 3 4 5 6 7

• Linear notation:
• f0(1) Le(2) programme(3) a(4) été(5) mis(6) en(6) application(6)
• e0 And(0) the(1) program(2) has(3) been(4) implemented(5,6,7)

177

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Alignment Mapping

• In general:
– |F| = m, |E| = l (length of sent.):

•lm connections (each French word to any English word),
• 2lm different alignments for any pair (E,F) (any subset)

• In practice:
– From English to French

• each English word 1-n connections (n - empirical max.)
• each French word exactly 1 connection

– therefore, “only” (l+1)m alignments (<< 2lm)
• aj = i (link from j-th French word goes to i-th English word)

178

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Elements of Translation Model(s)

• Basic distribution:
• P(F,A,E) - the joint distribution of the English sentence,

the Alignment, and the French sentence (length m)
• Interested also in marginal distributions:

P(F,E) = A P(F,A,E)
P(F|E) = P(F,E) / P(E) = A P(F,A,E) / A,F P(F,A,E) = A P(F,A|E)

• Useful decomposition [one of possible decompositions]:
P(F,A|E) = P(m | E) j=1..m P(aj|a1

j-1,f1
j-1,m,E) P(fj|a1

j,f1
j-1,m,E)

179

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Decomposition

• Decomposition formula again:
P(F,A|E) = P(m | E) j=1..m P(aj|a1

j-1,f1
j-1,m,E) P(fj|a1

j,f1
j-1,m,E)

m - length of French sentence
aj - the alignment (single connection) going from j-th French w.
fj - the j-th French word from F
a1

j-1 - sequence of alignments ai up to the word preceding fj

a1
j - sequence of alignments ai up to and including the word fj

f1
j-1 - sequence of French words up to the word preceding fj

180

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Decomposition and
the Generative Model

• ...and again:
P(F,A|E) = P(m | E) j=1..m P(aj|a1

j-1,f1
j-1,m,E) P(fj|a1

j,f1
j-1,m,E)

• Generate:
– first, the length of the French given the English words E;
– then, the link from the first position in F (not knowing the

actual word yet) now we know the English word
– then, given the link (and thus the English word), generate the

French word at the current position
– then, move to the next position in F until m position filled.

181

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Approximations

• Still too many parameters
– similar situation as in n-gram model with “unlimited” n
– impossible to estimate reliably.

• Use 5 models, from the simplest to the most complex
(i.e. from heavy independence assumptions to light)

• Parameter estimation:
Estimate parameters of Model 1; use as an initial
estimate for estimating Model 2 parameters; etc.

182

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Model 1

• Approximations:
– French length P(m | E) is constant (small )
– Alignment link distribution P(aj|a1

j-1,f1
j-1,m,E) depends on

English length l only (= 1/(l+1))
– French word distribution depends only on the English and

French word connected with link aj.
• Model 1 distribution:

P(F,A|E) =  / (l+1)m j=1..m p(fj|eaj
)

183

Therecouldbe however
toomany alignmentsforeachwordwithout simplification

stayingtoalign
theforeignword
totheoriginalHowevernoone gives us alignment thereforeweneedto
foreachpossibleallignmenmodel statistically the alignments for each word aswell

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Models 2-5
• Model 2

– adds more detail into P(aj|...): more “vertical” links preferred
• Model 3

– adds “fertility” (number of links for a given English word is
explicitly modeled: P(n|ei)

– “distortion” replaces alignment probabilities from Model 2
• Model 4

– the notion of “distortion” extended to chunks of words
• Model 5 is Model 4, but not deficient (does not waste

probability to non-strings)
184

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

The Search Procedure

• “Decoder”:
– given “output” (French), discover “input” (English)

• Translation model goes in the opposite direction:
p(f|e) =

• Naive methods do not work.
• Possible solution (roughly):

– generate English words one-by-one, keep only n-best
(variable n) list; also, account for different lengths of
the English sentence candidates!

185

It istryingto findthe original sentencefortheencoded foreign language

d

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Analysis - Translation - Generation
(A-T-G)

• Word forms: too sparse
• Use four basic analysis, generation steps:

– tagging
– lemmatization
– word-sense disambiguation
– noun-phrase “chunks” (non-compositional translations)

• Translation proper:
– use chunks as “words”

186

Sameas looking into dictionary first I comeupwith lemonformyword
I secondlyfindtranslation forthelemmaandfinally correctly usethetarget

lemma

Idea is thatthe translation
isthehardesttherefore we
trytosimplify by tanslating
only baseforms

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Training vs. Test with A-T-G

• Training:
– analyze both languages using all four analysis steps
– train TM(s) on the result (i.e. on chunks, tags, etc.)
– train LM on analyzed source (English)

• Runtime/Test:
– analyze given language sentence (French) using identical

tools as in training
– translate using the trained Translation/Language model(s)
– generate source (English), reversing the analysis process

187

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Analysis: Tagging and Morphology

• Replace word forms by morphologically processed text:
– lemmas
– tags

• original approach: mix them into the text, call them “words”
• e.g. She bought two books. she buy VBP two book NNS.

• Tagging: yes
– but reversed order:

• tag first, then lemmatize [NB: does not work for inflective languages]
• technically easy

• Hand-written deterministic rules for tag+form  lemma
188

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Word Sense Disambiguation,
Word Chunking

• Sets of senses for each E, F word:
– e.g. book-1, book-2, ..., book-n
– prepositions (de-1, de-2, de-3,...), many others

• Senses derived automatically using the TM
– translation probabilities measured on senses: p(de-3|from-5)

• Result:
– statistical model for assigning senses monolingually based on

context (also MaxEnt model used here for each word)
• Chunks: group words for non-compositional translation

189

2024/25 LS NPFL068/Intro to statistical NLP II/Jan Hajic and Jindrich Helcl

Generation

• Inverse of analysis
• Much simpler:

– Chunks  words (lemmas) with senses (trivial)
– Words (lemmas) with senses  words (lemmas) (trivial)
– Words (lemmas) + tags  word forms

• Additional step:
– Source-language ambiguity:

• electric vs. electrical, hath vs. has, you vs. thou: treated as a single
unit in translation proper, but must be disambiguated at the end of
generation phase; using additional pure LM on word forms.

190

