
EVA I
NAIL 025 – 2024

Roman Neruda
ENGLISH VERSION – -10-2024

INTRODUCTION

Topics, sources, outlines.

LITERATURE

• Eiben, A.E and Smith, J.E.: Introduction to Evolutionary
Computing, Springer, 2007.

• Michalewicz, Z.: Genetic Algorithms + Data Structures =
Evolution Programs (3ed), Springer, 1996

• Mitchell, M.: Introduction to Genetic Algorithms. MIT Press,
1996.

• Holland, J.: Adaptation in Natural and Artificial Systems, MIT
Press, 1992 (2nd ed).

• Goldberg, D.: Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, 1989.

TOPICS

• Evolution models, population, recombination, natural selection,
simulation, objective function, roulette wheel, tournament, elitism.

• Genetic algorithms. encoding, operators, selection, crossover,
mutation.

• Representational schemata, schemata theorem, building blocks
hypothesis.

• Prisoner's dilemma, strategies, equilibria, evolutionary stability.

• Evolution strategies, cooperation, meta-parameters, differential
evolution, CMA-ES.

• EA and combinatorial problems, NP-hard tasks, TSP, ...

• Machine learning and data mining, evolution of rule-based systems,
learning classifier systems, bucket brigade algorithm, Q-learning.

EVOLUTIONARY
ALGORITHMS

Biological motivation, basic parts

DARWIN EVOLUTION THEORY

• 1859 – On the origin of species

• Limited environment resources

• Reproduction is the key to life

• Better fitted (adapted) individuals have
bigger chances to reproduce

• Successful phenotype traits are reproduced,
modified, recombined

MENDEL GENETICS

• 1856 - Versuche über Pflanzenhybriden

• Gene as a basic hereditary unit

• Every diploid individual has two pairs of alleles, one
is transmitted to offspring independently of others.

• It‘s complicated:

• Polygeny – more genes influence one trait

• Pleiotropy – one gene influences more traits

• Mitochondrial DNA

• Epigenetics

DNA

• 1953 – Watson and Crick – double helix structure of
DNA

• Molecular-biological view:
• How is the genetic information stored in a living organism

• How is it inherited

• DNA consists of 4 nucleotides/bases – adenine,
guanin, cytosine, thymine

• Codon – a triplet of nucleotides encoding 1 out of
23 amino acids (redundancy)

• These 23 amino acids are the basic building structure
of carbohydrates in all living organisms

MOLECULAR GENETICS

• Crossover, Mutation

• Transcription: DNA->RNA

• Translation: RNA->protein

• GENOTYPE->PHENOTYPE

• One-direction, complex mapping

• Lamarckism:

• There is an inverse mapping from phenotype to
genotype

• Acquired traits can be inherited

EA - SUMMARY

• Natural evolution: environment, individuals, fitness

• Artificial evolution: problem, candidate solutions, quality of
a solution measure

• EAs are population-based stochastic search algorithms

• Recombination and mutation create variability

• Selection leads the search in the right direction

GENERAL EA

• EAs are robust meta-algorithms

• No free lunch theorem

• “There is no one best algorithm that outperforms them all.”

• Wolpert, Macready, 1995 (search), 1996 (learning), 1997
(optimization)

• It pays to create domain-specific variants of EAs

• Representation

• Operators

GENERAL EA

• Create initial population P(0) at
random

• In a cycle create P(t+1) from
P(t):

• Parental selection

• Recombination, and mutation

• New individuals P’(t+1) are
created

• Environmental selection chooses
P(t+1) based on P(t) a P’(t+1)

INITIALIZATION

PARENTAL
SELECTION

RECOMBINATION

MUTATION

ENVIRONMENTAL
SELECTION

EVALUATION

TERMINATION
CONDITION

EVALUATION

R
ESUL

T

GENETIC ALGORITHMS

• 1975 - Holland

• Binary encoded individuals

• Roulette-wheel selection

• 1-point crossover

• Bitwise mutations

• Inversion

• Schemata theory to explain the mechanism how GAs work

EVOLUTIONARY PROGRAMMING

• 1965 – Fogel, Owens a Walsh

• Evolution of finite automata

• No distinction between genotype and phenotype

• Focus on mutations

• No crossover, usually

• Tournament selection

EVOLUTIONARY STRATEGIES

• 1964 - Rechenberg, Schwefel

• Optimization of real number vectors in difficult
computational math problems

• Floating point encoding of individuals

• Mutation is the basic operator

• The mutation step is heuristically controlled or undergoes
an adaptation (evolving)

• Deterministic environmental selection

GENETIC PROGRAMMING

• 1992 – Koza

• Evolution of individuals representing (LISP) trees

• Used (not only) to evolve computer programs

• Specific operators of crossover, mutation, initialization

• Further applications (neuroevolution, evolving hardware,
evolution of graph structures, …)

SIMPLE GENETIC
ALGORITHM

Holland SGA, binary representation, operators
and their variants

GA

• Genetic algorithms – 70s USA, Holland, DeJong, Goldberg,
…

• The original proposal is nowadays called SGA (simple GA)

• Minimal set of operators, the simplest individual encoding,
research of theoretical properties

• Gradually, the SGA has been enriched of – or transformed
to – further operators, encodings, ways of dealing with
populations, etc.

SGA - BASICS

• t=0; Generate at random initial population P(0) of n l-bit
genes (individuals)

• Step from P(t) to P(t+1):

• Compute f(x) for each x from P(t)

• Repeat n/2 times:

• Select a pair x, y from P(t)

• Cross over x, y with probability pC

• Mutate every bit of x and y with probability pM

• Insert x, y to P(t+1)

SGA – BASICS

P(t) P(t+1)

PARENTAL SELECTION
ROULETTE WHEEL

CROSSOVER
1-POINT

MUTATION
BIT-FLIP

ENVIRONMENTAL SELECTION
P(t+1) REPLACES P(t)

SELECTION

• Roulette wheel selection:

• Selection mechanism is based on the individual fitness value

• It is a selection with replacement – each individual can be
selected more times

• Expected number of individual selections should be
proportional on the ratio of its fitness and an average fitness of
the population

• Each individual has an allocated slice of a roulette wheel
corresponding to its fitness, the wheel is spun n-times

CROSSOVER

• Crossover is the main operator in GA

• It recombines (good?) properties of parents

• It expresses our hope that recombination can lead to
better fitness

• One-point crossover:

• Choose crossover point at random

• Exchange corresponding parts of individuals

• Probability of crossover pC typically in the range of tenths

MUTATION

• In simple GA, mutation operator is less important,

• It acts as a mechanism against stuck in local extrema

• (On the contrary, in EP or early ES, mutation is the only
source of variability)

• Bit-string mutation:

• With probability pM, every bit of the individual is changed

• pM is small (e.g. to change 1 bit in individual on average)

INVERSION AND OTHERS

• The original Holland’s SGA proposal contains another
genetic operator – inversion

• Inversion

• Reversing a part of the bit string

• BUT with keeping the meaning of bits

• More complicated technically

• Inspiration in nature

• Did not proven to be beneficial (but wait for permutations)

SCHEMA THEORY

Schema theorem, building blocks hypothesis,
implicit parallelism, k-arm bandit

actuallydoes not verywell describe geneticalgorithms

schema theory is very limited

SCHEMATA

• Individual is a word in alphabet {0, 1}

• Schema is a word in alphabet {0, 1,*}

• (* = don't care)

• Schema represents a set of individuals

• Schema with r * represents 2r individuals

• Individual with length m is represented by 2m schemata

• There is 3m schemata of length m

• In population of n individuals there is between 2m and n.2m
schemata represented

2 setofindividuals
oneschema example THE 114

my 1 441
Wecan compare schemata between populations Pt andPan where Ptn

p
2 andthenbeinterestedwhataregoodproperties ofschema
to beselectedinthenextpopulation

PROPERTIES OF SCHEMATA

• Order of schema S: o(S)

• Number of 0 and 1 (fixed positions)

• Defining length of schema S: d(S)

• Distance between the first and the last fixed position

• Fitness of the schema S: F(S)

• Average fitness of the individuals in a population that
correspond to the schema S

• Note that fitness of S depends on the context of a population.

Fitnessof ascheme avg f x where S scheme and EPt someschemasmightbe
It isalso expensive to evaluatefitnessofinindigni

thismightbetheproblem

veryunderrepresented

numberof fixedpositions

howmuchfixedpositions span

THE SCHEMA THEOREM

• Short (w.r.t. defining length), above-average (w.r.t. fitness), low-
order schemata increase exponentially in successive generations
of GA. (Holland)

• Building blocs hypothesis:

• GA seeks suboptimal solution of the given problem by
recombination of short, low-order above-average schemata
(called building blocks).

• “just as a child creates magnificent fortress through
arrangement of simple blocks of wood, so does a GA seek near
optimal performance ...”

drawnfromselection

notgettingdestroyedbycrossover

PROOF OF TST

• Population P(t), P(t+1), ... n individuals of length m

• What happens to a particular schema S during:

• Selection

• Crossover

• Mutation

• C(S,t) ... Number of individuals representing schema S in
population P(t)

• We will estimate C(S,t+1) in three steps

Cs thisestimationdecideswhatschemataaregood

PROOF OF TST

• Selection:

• An individual probability of selection is:

ps(v) = F(v) / F(t), where F(t) = Σ F(u), {u in P(t)}

• Probability of selection od schema S:

ps(S) = F(S) / F(t)

• Thus: C(S,t+1) = C(S,t) n ps(S)

• Or equivalently: C(S,t+1)=C(S,t) F(S)/Favg(t)

Where Favg(t)=F(t)/n … is the average fitness in P(t)

previousgepr
probofselecting a scheme

Batselectionfornindividuals
thebetterthanavg the
morewillbechosen

thisgives expectednumberofindividualsin population

PROOF OF TST

• ... Still selection:

• So, we have: C(S,t+1)=C(S,t) F(S)/Favg(t)

• If the schema were “above-average” of e%:

• F(S,t)=Favg(t) + e Favg(t), for t=0, ...

• C(S,t+1)=C(S,t) (1+e)

• C(S,t+1)=C(S,0) (1+e)t

• I.e., the number of above-average schemata grows exponentially
(in consecutive populations (and with selection only)).

sthisholdsonlywhensituationisverystatic

PROOF OF TST

• Crossover:

• Probability that a schema will be destroyed / survive a
crossover:

• pd(S) = d(S)/(m-1)

• ps(S) = 1 – d(S)/(m-1)

• Crossing over with probability pc:

• ps (S) >= 1 – pc . d(S) / (m-1)

• Selection and crossover together:

• C(S,t+1) >= C(S,t) . F(S)/Favg(t) [1- pc . d(S) / (m-1)]

any arenot damaged bycrossover

m sizeofanindividual havingonlym 1 borderstobit

crossoverhappens onlysometimes

PROOF OF TST

• Mutation:

• 1 bit will not survive: pm

• 1 bit will survive: 1 – pm

• A schema will survive (pm<<1):

• ps(S) = (1 – pm)o(S)

• ps(S) = … roughly estimate … = 1 – pm.o(S), for small pm

• Selection, crossover and mutation together:

• C(S,t+1)>=C(S,t).F(S)/Fprum(t) [1-pc.d(S)/(m-1)-pm.o(S)]

• QED.

ifmutation hits

Gothing
happens

Ors isnumberoffixedpositions

selection crossover mutation

above
average

short loworder

CONSEQUENCES OF TST AND
BBH

• Encoding matters

• Size matters

• Premature convergence harms

• When GA sucks:

• (111*******), (********11) are above-average

• But F(111*****11) << F(000*****00)

• The ideal is (1111111111); GA has hard times finding it

• The selection condition might be improved

fitnessfunction canplayouropponent

IMPLICIT PARALLELISM

• GA works with individuals, but implicitly it evolves much
more schemata: something between 2m and n.2m.

• But how many schemata is processed efficiently:

• Holland (and others): (Under certain circumstances, such as n =
2m , schemata stay above-average, ...) Number of schemata that
really grow exponentially is in the order of n3.

• It was jokingly commented as the only case where
combinatorial explosion is on our side.

EXPLORATION VS.
EXPLOITATION

• Original Holland motivation:

• GA is an “adaptive plan” looking for equilibrium between:

• exploration (finding new areas for search)

• exploitation (utilizing current knowledge)

• Just exploration: random walks, not utilizing previous
knowledge

• Just exploitation: stuck in local optima, rigidity

import decisionaboutanysearchaly

1-ARMED BANDIT

2-ARMED BANDIT

• N coins, 2-armed bandit (arms payoffs have expected values
m1, m2 and variances s1, s2). N-n coins is allocated to the
better arm, n coins to the worse one.

• Goal: to maximize outcome / to minimalize loss.

• Analytical solution: to allocate exponentially more trials to
the currently winning arm

• N-n* = O(exp(c n*));

• c depends on m1, m2, s1, s2; and n* is the optimal value

eacharmtrial costs something butalsotellsmeaboutthepayoff

ReinforcementLearning problem

BANDIT AND SGA

• GA also allocates exponentially more trials (slots in
population) to the more successful schemata

• It thus solves the exploration vs. exploitation problem in
the optimal way

• Schemata plays many multi-armed bandit games

• The winning prize is number of slots in popuplation

• It is hard to estimate the fitness of a scheme

• First people thought that SGA plays 3m –armed bandit,

• Where all schemata are competing arms …

… BUT IT’S COMPLICATED

• Actually, much more games is played in parallel

• Schemata “compete” for “conflicting” fixed positions in a
gene

• Schemata of order k always compete for those k fixed
positions – they play 2k –armed bandit

• So, the best of those games get the exponential slots in
population

• But, it depends if we can estimate the fitness of a scheme in
a particular population well (which can be a problem)

THUS, A BAD TASK FOR SGA IS .. .

• f(x) =

• = 2; for x ~ 111*... *

• = 1; for x ~ 0*...*

• = 0; otherwise.

• For schemata we now have:

• F(1*...*) = 1/2 ;

• F(0*...*) = 1

• But, the SGA estimates F(1*...*) ~ 2,

• Because schemata 111*...* will be much more common in a population

• SGA here does not sample schemata independently, so it does not estimate
their real fitness.

definedtofoolSGA

Iget 2 0 0to 4
fromdefinition

PROBLEMS

• The arms in bandit are independent, but the SGA does not
sample schemata independently

• Selection does not work ideally, as in the TST, it is dynamic,
and it has statistical errors.

• SGA maximizes its on-line performance; they should be
suitable for adaptive tasks

• It is a pity to stop a running SGA ;-)

• (Paradoxically, maybe) the most common application of GA is to
let them “only” find the one best solution.

STATIC BBH

• Grafenstette, 91: People consider that GA converges to solutions
with actual statistic average fitness; and not (as it really
happens) to those that exist in populations, i.e. with the best
observed fitness

• Then, people can be disappointed:

• Collateral convergence

• Large fitness variance

COLLATERAL CONVERGENCE

• When GA converges somewhere, the schemata are no
longer sampled uniformly, but with a bias

• If, e.g. a sheme 111***...* is good, it will spread in a
population after few generations, i.e. almost all individuals
will have this prefix.

• But then, almost every sample of a scheme ***000...* are
also samples of a scheme 111000*...*.

• Thus, the GA will not estimate F(***000*...*) correctly.

LARGE FITNESS VARIANCE

• GA will not estimate fitness of a scheme well in the case if
the static average fitness has a large variance.

• Such as the scheme 1*...* from our evil example.

• The variance of its fitness is large, so the GA will probably
converge to those parts of a search space where the fitness
is big.

• Which in turn will bias further sampling of the scheme. So,
the static fitness is not estimated well, again.

TST WRAP-UP

• TST was an important first attempt to formalize GAs

• Now, more exact results exist

• The weak points of TST:

• Populations are finite and small – the theoretical exponential
increase from one generation to the next one is harmed by
factors such as sampling errors, and dynamic representation of
schema in populations – the longer run predictions do not hold.

• The competition of schemata is much more complex and not
independent at all.

• TST ignores the constructive effect of operators.

REPRESENTATION AND
OPERATORS IN GA

Integer and floating point representations
operators, selection

ENCODING

• Binary

• Classic (Holland)

• There are nice theoretical results (better than schemata theory, we
will see next semester)

• Holland argument: binary strings of length 100 are better than decimal of
leghth 30 because they encode roughly the same information but have
more schemata (2100>230).

• But we know schemata are not that important as Holland thought

• The important factor is that binary encoding is sometimes unnatural
for a given problem.

BinnyEncoding of floatingpoint domainproblem is an
obstate

Theadvice Dont useany unnatural encodings

OTHER ENCODINGS

• Alphabets with more symbols

• Integers

• Floating point

• Permutations,

• Trees (programs),

• Matrices,

• Neural networks (different
ways),

• Finite automata

• Graphs,

• A-life agents …

Pilat a Nemda potholisea pion

SELECTION - OVERVIEW

• Roulette-wheel selection

• traditional, fitness-proportional

• SUS (stochastic universal sampling)

• Just one random position in a roulette wheel, other
positions are shifts over angle 1/n

• „more fair roulette“ – why?

1
theproblem whenthepopulation is small

someindividualsaretoobigand
taketoomuchselections dices

thishas
menup
exploitation

firstgood
solutionwill 2
starttobe an individualhaving shouldhavebeenchosen twicemorethantheonewith 14

moreandmove Thisworkswhen shiftingover In nehshiftsselected

1

SELECTION - OVERVIEW

• Tournament

• k-tournament – comparing k randomly selected
individuals, the winner is chosen by selection

• Typically, k is a small number, like 2, 3, 5

• Can be used in cases where fitness is not explicitly given
(a game is played, or a simulation is involved)

hereevenwhenhavingoneverystrongindividual Igivechancetothe
weakones

INTEGER ENCODING

• Mutation:
• „unbiased“ – new random value from the whole domain

• „biased“ – new value represents a random shift (normal
distribution) from the original value

• Crossover:
• One-point, multiple-point, …

• Uniform – in every gene we throw a coin from which parent the
value is chosen

• Beware of ordinal representations in cases where the order does
not make sense (then, probably, the biased mutation does not make
sense)

whendoingmutation onan integer
codeofa countyTherethebiased shift

mutation doesn'tmakesensesincethecodes
doesnotrepresentorderdistance

FLOATING POINT ENCODING

• Historically, the first attempts were encoding real numbers
into bit-string representations

• Not used often today, except for the cases when a limited
precision makes good sense (compression of a search
space, explicit control over the accuracy of the
representation)

• Common practice today is to encode real values as floating
point representation, and the operators take this into
account

FLOATING POINT OPERATORS

• Mutation

• Biased

• Unbiased

• Crossover

• Structural

• One-point, uniform, ...

• Arithmetic

• Combination of values

ARITHMETIC CROSSOVER

• Simple average of parents‘ values

• Variants:

• Some other convex combination:

• z = a*x + (1-a)*y, where 0<a<1

• How many values from an individual to cross over:

• Typically all of them

• Sometimes just one chosen at random

• Sometimes a combination with 1-point crossover

EVOLUTION OF
COOPERATION

Prisoners and their dilemma, Nash, von Neumann,
Axelrod, Dawkins

ALTRUISM VS. DARWINISM ?

• Darwinism is inherently competitive – survival of the fittest

• Social Darwinism – backing the laissez-faire („let it be“) capitalism

• Andrew Carnegie, The Gospel of Wealth, 1900 While the law of competition may
be sometimes hard for the individual, it is best for the race, because it ensures the
survival of the fittest in every department. We accept and welcome, therefore, as
conditions to which we must accommodate ourselves, great inequality of
environment; the concentration of business, industrial and commercial, in the hands
of the few; and the law of competition between these, as being not only beneficial,
but essential to the future progress of the race.

• But there is a lot of cooperation both in nature and society

• The main problem of evolutionary (social) biology:

• How can altruistic behavior be evolved, when it (by definition)
decreases a fitness of an individual?

THEORIES OF EVOLUTION OF
ALTRUISM

• Group selection

• Evolution can work on groups of individuals (Darwin)

• How to explain individuals who cheat and do not help

• Kin selection

• Preservation of almost identical genes in close relatives

• How to explain altruism of strangers, even other species

• Dawkins, selfish gene

• The unit of evolution is a gene, not an individual

• Wilson: „the organism is only DNA's way of making more DNA.“

• Trivers, 1971: reciprocal altruism

• Mutual benefits for both organisms (even different species)

• Shadow of the future, parallel with iterated prisoner's dilemma

PRISONER’S DILEMMA

i/j C D

C -1 / -1 -3 / 0

D 0 / -3 -2 / -2

i/j C D

C R / R S / T

D T / S P / P

•Temptation > Reward > Penalty >
Suckers payoff
• R>P: mutual cooperation is better
than mutual deception
•T>R and P>S: deception is a
dominant strategy for both players
• (50s - RAND corp.)

NASH

• A strategy s is dominant for agent i, if it gives better or the
same result than any other strategy of an agent i against all
strategies of agent j

• Strategies si and sj are in Nash equilibrium, if:

• If agent i plays strategy si, agent j does best with strategy sj

• If j plays sj, i does best with si

• Or, si and sj are the best mutual answers to each other

• These are called pure strategies

NASH IN MIXED STRATEGIES

• Mixed strategies – random
selection among pure
strategies

• Nash theorem: Every game
with finite number of
strategies have Nash
equilibrium in mixed
strategies.

• Example: Rock-Paper-Scissors

NASH AND PARETO

• The solution is Pareto-
optimal/efficient

• If there is no other strategy
which would improve agent
outcome without worsening
some other agent outcome

• The solution is not Pareto-
efficient: if an outcome of one
agent can be improved without
decreasing other agent‘s
outcome

THUS …

• For rational agents there is no dilemma/or is there?

• DD is Nash equilibrium

• DD is the only solution that is not Pareto-optimal

• CC is a solution maximizing common outcome

• Tragedy of the commons

• What is rational, and are people rational?

• Shadow of future – iterated version – Axelrod

ITERATED PRISONER‘S DILEMMA

• Players play more games, they
remember the results/actions of the
opponent, and can modify their
strategies according to the history

• T>R>P>S,

• 2R>T+S – it does not pay off to
alternate C and D

• If the game is played N-times (and
the players know the N) it can be
proved by induction, the best
strategy is „deceive all the time“.

a
shadowofa future wedon'tknowhowmanyroundswillbeplayed

2 in thelastmove
youcanbetmy itsthelastThenforthe n1 youcanbetray again

you knowyougonnabetrayinthenstep
Andyou

don'tfearbetmybecauseyouarenotpunishedatthe d

AXELROD TOURNAMENTS

• The first tournament:

• 14 strategies plus RANDOM, 200 games, everybody played with everybody (ncludit
itself), 5x repeat

• TFT = Tit For Tat strategy

• Start cooperate, then copy opponent's moves

• The second tournament:

• 62 strategies– everybody knew the results of previous tournament –TFT wins again

• The third „ecological“ tournament

• Resembling the generations of GA, initial population was the second tournament
strategies, there were 1000 generations

• The number of individuals in the next generation was proportional to number of
victories in the previous generation

• Aaaaand, the TFT wins again!

aslongas botharenielyyouplaynicely

movenewstrategiesbut
I

WHAT DOES IT MEAN FOR
STRATEGIES?

• 4 important properties of successful strategies:

• Niceness – do not deceive first

• Provocability – quickly punish deception

• Forgiveness – but quickly calm down

• Clarity – be simple, so others understand you

• There is not a single strategy that would win against all strategies

• It is necessary to be successful against very diverse strategies (ALL-D,
TFTT, RANDOM, TRIGGER)

• It is also good to learn play well against itself

• Attempts to beat TFT by more deception did not help

thisproofsthat cooperationmighthelpevenforevolution
butnotalways

Evolutionary stablestrategy strategywinsinallpopulationsofstrategies

WHAT DOES IT MEAN FOR
COOPERATION?

• In environments that support cooperation …

• Payoffs favor cooperation,

• There is a big probability of iterated PD (shadow of the future)

• … the cooperation is usually evolved

• But not always, such as in the ALL-D world

• Rationality, intelligence, consciousness, … is not necessary for
cooperation, just bigger fitness values

• Initial cooperation can emerge at random, and then it can
survive

TWENTY YEARS AFTER

• In environments with noise, the Pavlov strategy (win-stay, lose-
shift) is successful

• If the payoff R or P => C,

• if T or S => D

• After 20 years the tournament was repeated with more
strategies from each team

• The winning strategies were cooperating as a team

• Few moves (10) to recognize the opponent, then all strategies
helped one father strategy from the team to get better score

• The teams were even fighting the organizers (false teams to get
more slots in the tournament …)

EVOLUTIONARY STRATEGIES

Motivation, population cycle, floating point
mutations, meta-evolution

thesearethemostused evolutionary
solutions

EVOLUTIONARY STRATEGIES

• Rechenberg, Schwefel, 60s

• Optimization of real function of many parameters

• 'evolution of evolution'

• Evolved individual:

• Genetic parameters - affecting the behavior

• Strategic, endogenous parameters - affecting evolution

• New individual is accepted only if it is better

• More individuals as parents

• Todays most successful (and complex) CMA-ES (correlation matrix
adaptation-ES)

noanyspecialcoding
justtherealnumbers

wecan
controltheevolutionwithit

alwaysjustoneoffspring

ES NOTATION

• Important parameters:

• M number individuals in population

• L number of new individuals

• R number of ‘parents'

• Special selection related notation:

• (M+L) ES – M individuals to a new generation is selected from M+L old
and new individuals

• (M,L) ES – M individuals to a new generation is selected only from L new
individuals

strategy

parentsarekilledalways
strategy

SIMPLEST ES EXAMPLE

• Minimize f: Rn->R

• Individuals are vectors

• (x1, …, xn)

• Population is just one individual

• One offspring is created

• Mutations are drawn from normal
distribution

• Variance of the distribution (step size)
is changed by simple heuristics to
balance exploration/exploitation

Initialize x(0) = (x1, …, xn), t = 0

Repeat

y(t) = x(t) + N(0,s)

If f(x(t))< f(y(t)) then x(t+1) := x(t)

 else x(t+1) := y(t)

Keep track of p … % of successful mutations

Every k iterations modify s based on p:

If p>1/5 then s := s/c // explore more

If p<1/5 then s := s.c // exploit more

If p=1/5 then s := s // 0.8 <= c <= 1

t++, Until x(t) is good enough

Themutation isjust away howtomove inthe space andsample f x

Thisisactually likewhenSGD
is tmining guidient

thisisjust asimple hillclimb vacing
The bigger jumpthemoreweexploreotherwise exploiting

ES SELECTIONS

• Parental selection: random – does not depend on fitness

• Environmental selection:

• Deterministic – choose M best from the pool:

• (M,L) – the pool is just L offspring

• Better for real-valued domains

• Avoids local optima better

• M<L, otherwise the selection provides no useful information

• (M+L) – the pool is M parents and L offspring

• Faster convergence

• Recommended for discrete optimization

• M>L or M=L possible, special case L=1 is called steady-state ES

iii
F l fun wecanmove easilystuckin

localoptimn

becausewejustget lesssamplesto
choosefromandalsoheaptheprevious good

ones

ES INDIVIDUAL

• The individual: C(i)=[Xn(i),Sk(i)], k=1, or n,
or 2n, or n(n+1)/2

• Sk are endogenous parameters
(such as standard deviations of biased
floating point mutations)

• k=1: One common std dev for all
evolved parameters X’s

• k=n: Non-correlated mutations, n
individual normal distributions

• Each parameter has its own std dev

• Geometrically, the mutations are
within an ellipse parallel to axes

• k=n(n+1)/2: Rotations are also
included, the ellipses are not parallel
to axes

• correlated mutations, they
correspond to mutations from n-
dimensional normal distribution

• Thus, Sk correspond to the
covariance matrix C that is a (non-
diagonal) product of rotation matrix
M: C = M’M

 cii = si
2

 cij = 1/2(si
2 – sj

2) tan(2aij)

thesepammarebeinggutted
first

7
individualnewlycontainssomepummeterstocontrolmutation

1
martiling

4 1Noo
k n

s.int
Udemiemezidaty

nejlepst2puisob

Eachpartoftheindividualmight
contribute

differentlytotheresult moreless therefore it helpstochange
themseparately

ES MUTATIONS

• Endogenous parameters: - always mutate first

• Standard deviations:

• Increase or decrease according to the success of the mutation (Originally,
the so-called 1/5 rule (heuristic - „the best case is when the mutation has
20% success rate“), thus, the std dev is increased for lower success rates,
and decreased when the success rate is higher

• Now, multiply by a random number drawn from N(0,1)

• Rotations:

• Add a random number drawn from N(0,1)

• Genetic parameters:

• Adding random number from normal distribution with corresponding
deviation, and rotation, respectively

ES INDIVIDUAL AND MUTATION

Image source: Baeck, Hoffmeister, Schwefel: A survey of
Evolution Strategies (1991)

ES CROSSOVER (CALLED
RECOMBINATION HERE)

• „Gang bang“ of more parents -> one offspring

• Local (R=2)

• Global (R=M)

• Two versions (often combined together):

• Uniform (dominant)– the value of a gene is selected at random
from parents' genes at a particular position

• Arithmetic (intermediate) – average of all parents’ values on a
particular position

traditionalfamily

gangbang

comeshandywhenhaving a parents

SUMMARY – ES CYCLE

• n=0; Initialize at random a population Pn of M individuals

• Evaluate the fitness values of individuals in Pn

• Until the solution is good enough:

• Repeat L times:

• choose R parents from Pn at random,

• Cross them over -> one new individual [x,s],

• Mutate endogenous parameters s of [x,s]

• Mutate genetic parameters x of [x,s]

• Evaluate [x,s] and put it to set of candidate solutions Cn+1

• For (M,L)-ES: choose M best individuals from Cn+1 the to Pn+1

• For (M+L)-ES: choose M best individuals from Pn U Cn+1 the to Pn+1

• ++n

DIFFERENTIAL EVOLUTION

Alternative, geometrically motivated EVA

DIFFERENTIAL EVOLUTION

• R. Storn and K. Price (1997)

• Powerful algorithm designed for black-box optimization (or
derivative-free optimization).

• Find the minimum of a function f(x): Rn→R, if we do not
know its analytical form.

• Relatively simple algorithm

• Used in many applications

• European Space Agency – optimal spaceships trajectories

Pablo R. Mier: A tutorial on Differential Evolution with Python,
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/

DIFFERENTIAL EVOLUTION

• Initialization: random parameter values

• Mutation: „shift“ according to the others

• Crossover: uniform „with a safeguard“

• Parental selection: all individuals in a population

• Environmental selection: comparison and possible
replacement by a better offspring

MUTATION

• Every individual in a population undergoes mutation,
crossover, and selection

• For an individual xi,p we choose three different individuals
xa,p, xb,p, xc,p at random

• Define a donor v: vi,p+1 = xa,p + F.(xb,p-xc,p)

• F is a mutation parameter, a value from interval <0;2>

forall replace iffbetter

CROSSOVER

• Uniform crossover of original individual with a donor

• Parameter C controls the probability of a change

• At least one element must come from a donor

• Probe vector ui,p+1 :

• uj,i,p+1 = vj,i,p+1 ; iff randji <= C or j=Irand

• uj,i,p+1 = xj,i,p+1 ; iff randji > C and jǂIrand

• randji is pseudorandom number from <0;1>

• Irand pseudorandom integer from <1;2; ... ; D>

ENV. SELECTION

• Compare fitness of x and v, select the better:

• xi,p+1 = ui,p+1 ; iff f(ui,p+1) <= f(xi,p)

• xi,p+1 = xi,p ; otherwise

• for i=1,2, ... , N

• Mutation, crossover, and selection is repeated until some
termination criterion is satisfied (typically, the fitness of the
best individual is good enough)

Mutation generates doner_ crossed with original if better thensaved

MUTATION VARIANTS

• The described mutation is denoted as rand/1

• Xa is chosen at random, Xb – Xc create one difference vector

• rand/2:

• we choose Xb, Xc, Xd, Xe, and create two difference vectors:

• V = Xa + F(Xb - Xc + Xd –Xe)

• best/1:

• Xa is not random, but the best Xbest in population

• best/2: - homework

wayofselect numberof differences

PARTICLE SWARM
OPTIMIZATION

Individual is a particle floating in a swarm in the
fitness landscape

PSO

• Population-based search heuristic, Eberhart, Kennedy, 1995

• Inspiration of swarms of insect/fish

• Individual is typically a floating point vector, called a particle

• No crossover, no mutation as we know it

• Individuals are moving in a swarm through their parameter
space

• The algorithm is using local and global memory:

• pBest – each particle remembers a position with the best fitness

• gBest – best pBest among all particles

XER

r
ithasalso
its velocity

Xn Xn maxp
Bests

Un Un eachparticlehasmemoryofits position inhistory

PSO ALGORITHM

• Initialize each particle
• Do
• Foreach particle
• Compute fitness of particle
• If the fitness is better than the best fitness seen so far (pBest)
• pBest := fitness;
• End

• Set gBest to the best pBest
• Foreach particle
• compute the speed of particle by equation (a)
• update position of particle by equation (b)
• End
• While maximum iterations or minimum error not satisfied

PSO MOVEMENT EQUATIONS

• v : = v +
 + c1 * rand() * (pbest - present) +

 + c2 * rand() * (gbest - present) (a)

• present = present + v (b)

• v is particle speed, present is particle position

• pbest best position of a particle in history

• gbest best global position in history

• rand() random number from (0,1).

• c1, c2 constants (learning rates) often c1 = c2 = 2.

direction towards itsbest

towardstheglobalminimum

thepartialsarestillmoving but hopefully
towardsoption

PSO DISCUSSION

• Common with GA:

• Start with random configuration, have a fitness, use stochastic
update methods

• Different from GA:

• No genetic operators

• Particles have memories

• The exchange of information goes only from the better
particles to the rest

EVOLUTIONARY MACHINE
LEARNING

Michigan vs. Pittsburg, machine learning,
reinforcement learning

MACHINE LEARNING – A SUBSET

• Learn rules based on the training examples

• Data mining

• Expert systems

• Agent, robots learning (reinforcement learning)

• Basic evolutionary approaches:

• Michigan (Holland): individual is one rule

• Holland LCS: learning classifier systems

• Pittsburgh: individual is a set of rules

like simple geneticalgorithm

this is used forRLmostlysinceit ismove suitable

CLASSIFICATION

Predicted/
Real

Positive Negative

Positive TP FP

Negative FN TN

• Accuracy

• = number of correct answers /
number of all answers

• = (TN+TP)/(TN+TP+FN+FP)

• Specificity

• = TN/(TN+FP)

• Sensitivity

• = TP/(TP+FN)

FtiPrecision vs Recall

ETPYFPEp.IO
hjsekehlweewnt

MICHIGAN

• Holland in 80s: learning classifier systems

• The individual is a rule

• The whole population works as an expert or control system

• The rules are simple:
• Left-hand side: feature is true/not/don‘t care (0/1/*)

• Right-hand side: action code or classification category

• Rules have weights (reflecting their success)

• The weight makes their fitness

• The evolution does not have to be generational

strength is actually an accumay ofallthe rulesgiven someinput

2 strenghtwhenmovemlesonnbe

applied thestrongestwillapply

thisisonerule

Eachslot whatweexpect fromthefeaturetobeTrue False

MICHIGAN - LCS

• Evolution happens only from time to time and/or on part of
population

• The problem of reactivness (lack of inner memory)

• The right-hand side of the rule contains – besides the
action/classification code – other inner features, called
„messages“

• The left-hand side of the rule has special features to intercept
the messages, called „receptors“

• The system has a buffer of messages and it has to realize an
algorithm to distribute a reward among chains of rules

LCS – BUCKET BRIGADE

• Only some rules lead to actions that trigger reward from the
environment,

• The reward should be distributed to the chain of successful
rules leading to the reward

• Rules have to give up part of their strength (like paying money
to take part in the action) if they compete for a chance to be
applied

• The technical way it is done is called Bucket brigade
algorithm

• In practice it is difficult to balance the economy of rules, hardly
used today

easyto getinflation involved

BUCKET BRIGADE ALGORITHM

E
N
V
I
R
O
N
M
E
N
T

DETECTORS

EFFECTORS

MESSAGE BUFFER

BUCKET
BRIGADE GA

MATCHING
RULES

POPULATION OF RULES

SET OF
ACTIONS

EXTERNAL | INTERNAL | ACTION EXTERNAL | INTERNAL | ACTION | STRENGTH

REWARD

A S
C E
T L
I E

O C
N T

leftsideofthemln whatisthis outputofthewileisextendedbytheinternalmessage
the conditioning is alsoextendedbythismessagespace
Itshouldthereforebereactivesineitcanstore environmentbasedinfo
leanforexampleholdmyremainingenergytodecidewhattodonext

rightsideofthemle

CURRENT LCS SCHEME

© R. Urbanowicz, J.Moore: LCS: A complete introduction, review and roadmap, 2009

setofrules

time t actionset
changesthe matching

population
matchset
weperformthe
actionandthe
environmentchanges

2 thisiswhenreward is requested

Z(ERO)CS

• (Wilson, 1994) simplify LCS

• No internal messages

• No complicated mechanism of reward redistribution

• Rules are just bitmap (and *) representations:

• IF(inputs) THEN (outputs)

• Cover operator:

• If there is no rule for current situation/example, it is generated
ad hoc

• Randomly some * are added and a random output is selected

ExtendedfromMichiganapproach

this isthefirstextended

nomessages bucketbrigadeetc toocomplextoimplementwell

Cowitheachnew wearehavinghigherchanceofmatchingsomething

ZCS – ACTION SELECTION

• P – population – set of all rules

• Detector presents an input x

• M – match set

• rules with condition satisfied compared to input x

• Action a is selected from M

• by roulette wheel mechanism

• based on strengths of rules from M

• A – action set – all members of M that advocated action a
Jumps

thesameactions sumstheirstrength

ZCS – REINFORCEMENT

• How the reward is distributed / the strength of rules is
modified – operate on current A and previous A-1

• Create a bucket B by reducing each rule from A strength by
0<b<=1 (and adding those numbers – denote B the sum)

• If the system receives reward r from environment after action a:

• Add (b*r) / |A| to strength of each rule in A

• Add (g*B) / |A-1| to all members of A-1 (0<g<=1)

• The strength of the rules in the set M – A (matching but
advocating different action than a) are reduced by 0<“tax”<=1

essentially you
rememberthepreviousrulesandrewardonlythosethat
ledtothecurrentreward

rewardedwinners

rewarded helpersfrom
inflationsecurity previous step

welowerthosethatweregivingotheraction than ya
even though their leftsidesmatchedtheinput

XCS – IMPROVED ZCS

• Cons of ZCS:

• ZCS does not tend to evolve a complete rule system covering all cases

• Rules at the beginning of the chains are seldom rewarded and they are
not surviving

• Rules leading to actions with small rewards can die off too, although they
are important

• The previous LCS were “strength-based” - both a measure of fitness for
GA, and to control which rules “fire”

• “Wilson’s intuition was that prediction should estimate how much
reward might result from a certain action, but that the evolution learning
should be focused on most reliable classifiers, that is, classifiers that give a
more precise (accurate) prediction” (P. Lanzi, 2000)

LCSworkswellbut ithasjustnonebach action rewarding Sometimes
youalsoneedtoreward themoveprevious

actions

Also 215 is usually takingverygeneralrulesbutsometimes it is necessary
to piksome veryspecializedrules which255throwsaway

Rule isnot as good as manytimes Ican use it buthowwell it workswhenused

XCS - PROPERTIES

• Rule is a tuple (c, a, p, e, f)

• c – condition

• a – action

• p – payoff prediction

• e – prediction error

• f – fitness used in GA

• Fitness is based on accuracy of the rule:

• Accuracy k = h * (e / e0)-v ; h, e0 and v are parameters

• Payoff and error estimates are updated by Q-learning

FITNESS ACCURACY

thisbecomes Q learning

XCS – ALGORITHM SKETCH

• Based on input, form a match set M

• M is subdivided into action sets Ai based on actions

• We keep track of previous step action set as well

• For each action in A, predict the payoff pa as average of
payoffs of rules in the action set weighted by fitness values

• Choose the winning action a either as max pa , or
stochastically (roulette wheel). Perform the action.

XCS – ALGORITHM SKETCH

• Redistribute the payoff from environment to rules in the
previous step Action set

• Update accuracies using errors

• Update fitness using accuracies

• Update payoffs using previous step payoff and max payoff from
action set

• Run GA (only) on previous Action set

youareprovidingnewrulesonlyfromthegood
mles

XCS – WRAPUP

• Accuracy based fitness

• Niche GA operating on action set A

• Q-learning algorithm as credit assignment

• Bridging the gap between RL and LCS

• Great applications in practice

PITT

• Individuals are sets of rules, complete systems

• The evaluation is more complicated

• Rule priorities, conflicts

• False positives, false negatives

• Genetic operators are more complicated

• Typically, dozen or more operators working of sets of rules,
individual rules, terms in the rules, ...

• Emphasis on rich domain representation (sets,
enumerations, intervals, ...)

Complexhowtodomutation crossover when Ihavemoremiles inan individual

GIL, EXAMPLE OF THE PITT
APPROACH

• Binary classification tasks

• The individual classifies implicitly to one class (no right-hand
side of the rules)

• Each individual is a disjunction of complexes

• Complex is conjunction of selectors (from 1 variable)

• Selector is a disjunction of values from the variable domain

• Representation by a bitmap:

• ((X=A1)AND(Z=C3)) OR((X=A2)AND(Y=B2))

• [001|11|0011 OR 010|10|1111]

whatallcomplexesdescribeshim

A 21
C Cz 3

Wedon'thaverighthandmles sincewearedoingonly classification

GIL CONTD.

• Operators on the individual level:

• Swap of rules, copy of rules, generalization of rule, deletion of
rule, specialization of rule, inclusion of one positive example to
the rule

• Operators on the complex level:

• Split of complex on 1 selector, generalization of selector
(replacing by 11...1), specialization of generalized selector,
inclusion of one negative example

• Operators on selectors:

• Mutation 0<->1, extension 0->1, reduction 1->0,

III split I

Hot
I

MULTI-OBJECTIVE
OPTIMIZATION

Multi-Objective Evolutionary Algorithms (MOEA),
Pareto front, NSGA II

Whatcanbe theobjectives Goingfrom Ato B and
optimizingboththecostandtime

PROBLEM

• Instead of one fitness (objective function), there is a vector of them fi,
i=1...n

• For the sake of simplicity, we consider minimization case, so we try to
achieve minimal values of all fi, which is difficult

• Definitions of dominance (of individual, or a solution):

• Individual x weakly dominates individual y, iff fi(x)<=fi(y), pro i=1..n

• x dominates y, iff it weakly dominates him, and there exists j: fj(x) < fj(y)

• x and y are uncomparable, when neither x dominates y, nor y
dominates x

• x does not dominate y, if either weakly dominates x, or they are
uncomparable

PARETO FRONT

• Pareto front is a set of individuals not dominated by any
other individual 1ˢᵗ Anexample

It gives a setof you canbevery fast
solutions thatarm anditwillcost alot

ofalloptimal cannot
youcanbeveryslow

be improvedmove and it willcostalittle
and userneedsto
choosewhathewants

time

THE SIMPLE WAY

• How to solve MOEA in a simple (simplistic?) way:

• Scalarization - Aggregate the fitness:
• Linear scalarization

• i.e. weighted sum of all fi, resulting in one value of f

• And solve it as a standard one-objective optimization

• This one is sometimes, in the context of MOEA, called SOEA
(single objective EA), but is is nothing new to us, actually we were
doing only SOEA so far

• The solution of SOEA lies (somewhere) on Pareto front, but not
all Pareto front points may be found

• Nevertheless, we don’t know how to set weights for fi‘s.

THE SIMPLE WAY

• e-constraint scalarization

• Turn MOEA into SOEA with n-1 constraints

• Choose one fi, say f1

• Other f2 ... fn turn into constrains by choosing constants e2 …
en

• Minimize f1 with constraints f2<e2 … fn<en

• Problem how to find the constants

• Problem how to solve the constrain optimization

VEGA (VECTOR EVALUATED GA)

• One of the first MOEAs, 1985

• Idea:

• Population of N individuals is sorted according to each of the n
objective functions

• For each i we select N/n best individuals w.r.t. fi

• These are crossed over, mutated and selected to next generation

• This approach in fact, has lots of disadvantages:

• It is difficult to preserve a diversity of the population

• It tends to converge to optimal solutions for individual objectives fi

whenhaving 3objective functions wetake ofind withbestscoreonto
ofind withbestscoreon f

and 13ofind withbestscoreonfe

DECOMPOSITION BASED MOEA

• Trying to improve basic scalarization algorithms by
decomposing the population into several sub-populations
scalarized with different weights

• Define several weight vectors Li evenly distributed in the
search space

• Use Chebyshev distance to perform scalarization:

• D(x,y) = maxi (|xi – yi|)

• Minimize maxi (Li |fi(x) – zi|) where z is a reference point – ideal
solution estimate

MOEA/D ALGORITHM SCHEME

• input: Λ = {λ(1),...,λ(μ)} {weight vectors}
• input: z∗: reference point for Chebychev distance
• initialize P0 ⊂ X μ
• initialize neighborhoods B(i) by collecting k nearest weight vectors in Λ for each

λ(i)
• while not terminate do

• for all i ∈ {1,...,μ} do
• Select randomly two solutions x(1), x(2) in the neighborhood B(i).
• y ← Recombine x(1), x(2) by a problem specific recombination operator.
• y ← Local problem specific, heuristic improvement of y, e.g. local search, based on the

scalarized objective function g(x|λ(i), z∗) .
• if g(y |λ(i), z∗) < g(x(i)|λ(i), z∗) then x(i) ← y
• Update z∗, if neccessary, i.e, one of its component is larger than one of the

corresponding components of f(x(i)). end for
• t←t+1

• return Pt

HYPER-VOLUME

• SMS-MOEA = S-metrics
evolutionary multiobjective
optimisation algorithms

• Find some indicator that
compares two solutions, and
decides which Pareto front
approximation is better

• Usually a hypervolume (with
some reference point) is
considered as indicator, called
S-metrics

SMS-EMOA

• initialize P0 ⊂ Xµ

• while not terminate do

• {Begin variate}

• (x(1), x(2)) ← select mates(Pt) {select two parent individuals x(1) ∈ Pt and x(2) ∈ Pt}

• ct ← recombine(x(1), x(2))

• qt ← mutate(ct)

• {End variate}

• {Begin selection}
• Pt+1 ← selectf (Pt ∪ {qt}) {Select subset of size μ with maximal hypervolume indicator

• from P ∪ {qt}}
• {End selection}

• t ← t + 1

• end while

• return Pt

NSGA (NON-DOMINATED
SORTING GA)

• 1994, an idea of dominance is used for fitness

• This still does not guarantee sufficient spread of population, it
must be dealt with some other way (niching)

• Algorithm:
• Population P is divided into consequently constructed fronts F1, F2,

...

• F1 is a set of all non-dominated individuals from P

• F2 is a set of all non-dominated individuals from P-F1

• F3 … from P-(F1 disjuncted with F2)

• ...

bestapproxof pfront
2ndbestappaxofp.fm

Wecreatepareto like front fromtherest
3rd

Thereare yet 3 versions from 199h2002and2014

NSGA CONTD.

• For each individual we compute a niching factor, as a sum of sh(i,j) over all
individuals j from the same front, where:

• sh(i,j) = 1-[d(i,j)/dshare]^2, for d(i,j)<dshare

• sh(i,j) = 0 otherwise

• d(i,j) is distance i from j

• dshare is a parameter of the algorithm

• Individuals from the first front receive some „dummy“ fitness, that is divided
by a niching factor

• Individuals from the second front receive a dummy fitness smaller that the
fitness of the worst individual from the first front, and it is again divided by
their niching factor

• ... For all fronts

howTodedisthe
surroundingofan individual

NSGA II

• 2000, repairing some drawbacks of NSGA:

• Necessity to set the right dshare value

• Non-existence of elitism

• Niching

• dshare – a niche count – is replaced by a crowding distance:

• This is a sum of distances to the nearest neighbors

• The best individuals w.r.t. each fi‘s have crowding distance set to infinity

• Elitism

• Old and new populations are joined, sorted, the better part goes to next
generation

itjustsays hereit is
crowded hereit isnotso crowded

endidiandistance

Itsbettertotake theindividual whih ishavingless neighbours

NSGA II CONTD.

• Fitness:

• Each individual has a number of non-dominated front it is in, and
a crowding distance

• When comparing two individuals, first a front is considered
(smaller is better), and in case of the same front, their crowding
distance is considered (bigger is better)

• And in fact, no fitness is really computed, just these two
numbers are compared in a tournament selection

NSGA III

• Improving the behavior in many
dimensional problems

• Crowding distance is replaced
by a set of reference points
• Generate evenly distributed

reference points covering the
search space.

• Consider reference vectors
connecting 0 with reference
points

• Number of reference points =
population size

Image from https://pymoo.org/

NSGA III CONTD.

• Selection:
• first, the non-dominated sorting

as in NSGA-II

• then, fill up the underrepresented
reference direction first.

• If the reference direction does
not have any solution assigned,
then the solution with the
smallest distance is surviving.

• In case a second solution for this
reference line is added, it is
assigned randomly.

Image from https://pymoo.org/

f
newrepresentatives

assigned todirections

WnWsandWs Directions we a Wh mustbeassigned

REFERENCE POINTS

• Number of points grows with
dimension M.

• N = C(p+M+1, p), where p is
number of partitions, roughly
equivalent to population size

• Generate evenly distributed
points – not that easy

• Generate points reflecting the
task preferences

g notevenly
distributed

Phil

2s whentravelling from A to B
youmighthavesomelimitsfor time
or distance

COMBINATORIAL
OPTIMIZATION

EVA solves NP-hard problems, TSP, permutation
representations

EVA SOLVES HARD TASKS

• 0-1 knapsack problem

• Simple encoding

• Problematic fitness

• Standard operators

• Travelling Salesman problem (TSP)

• Simple fitness

• Problematic encoding and operators (crossover, really)

• Scheduling, planning, transportation problems ...

KNAPSACK

• Given:

• A knapsack of capacity CMAX

• N items,

• each have a price v(i)

• and a volume c(i)

• The task is to choose items such that:

• Maximize ∑ v(i)

• At the same time, we squeeze them into a knapsack, i.e.

• ∑ c(i) <= CMAX

KNAPSACK

• Encoding – a bitmap:

• 0110010 – take items 2,3 and 6

• Trivial almost

• But the individuals might not satisfy the CMAX condition

• Operators:

• Simple crossover, mutation, selection

• Fitness: has two parts:

• max [∑v(i)] vs. min [CMAX – ∑c(i)]

KNAPSACK

• So, we have a multi-objective optimization:

• Either weight ‘em and add ‘em

• Or use your favorite MOEA from previous chapter

• Or, change the encoding in a clever way:

• 1 means: PUT the item in the knapsack UNLESS the capacity
is not exceeded

• This way we achieve a nice property that with such a
decoder all strings in fact represent a valid solution

TRAVELLING SALESMAN

• N cities, tour them with minimal cost

• Fitness – the cost of the trip

• Representations are many

• Variants of vertex-based

• Edge-based, ...

• Operators are heavily dependent on representation

• Crossover allows to use heuristics we might have to solve the
TSP

ADJACENCY REPRESENTATION

• Path is a list of cities

• city j is at position i iff there is an edge from i to j

• Ex:

• (248397156) corresponds to 1-2-4-3-8-5-9-6-7

• Each path has 1 representation, some lists do not generate valid paths

• Not very intuitive

• Classical crossover does not work

• But schemata do:

• E.g. (*3*...) means all paths with 2-3 edge

• Do not use it.

this istheorderofthecities I visit
was usedwhen

weknow longer

optimalsolutions

andwantedto 248 3 9 7 1 56
connect

them
together y 2134 8 89

12 4 3 8 5 9 6 7

E I thisisgoodforschemata

1 2 theremustbepathfrom 1to2

ORDINAL (OR BUFFER)
REPRESENTATION

• Motivation was to use the standard 1-point crossover

• Let us have a buffer of vertices, maybe just ordered, the
encoding is in fact a position of a city in this buffer

• When a city is used, it is deleted from a buffer

• Ex:

• Buffer (123456789), and path 1-2-4-3-8-5-9-6-7 is represented
as (112141311)

• Do not use it either.

represent thecities relatively insteadof exactly

thereforecitiesarein abufferandoncethe
item ispopped its

removed

fromthe
buffer

Effdpursuerwas
fromdifferentbufferthereforetheyarevery

madom

But Atleasttheyareformally
correct

PATH (OR PERMUTATION)
REPRESENTATION

• Probably a first idea of most people

• Permutation representation is important and natural for many
other tasks, as well.

• path 5-1-7-8-9-4-6-2-3 is represented as (517894623)

• The crossover does not work

• So, the main problem with this representation is to propose a
crossover operator that produces correct individuals and
represents some idea about how a good solution should look
like.

• PMX, CX, OX, ...
2s thingmustbevalidpermutation

theyshouldalsohelpthesolution

PMX

• Partially mapped crossover (Goldberg)

• Preserve as many cities on their positions from the individuals
as you can.

• 2-point

• (123|4567|89) PMX (452|1876|93) :
• (...|1876|..) (...|4567|..)

• and a mapping 1-4, 8-5, 7-6, 6-7

• Can be added (.23|1876|.9) (..2|4567|93)

• According to the mapping

• (423|1876|59) (182|4567|93)

thosewere thesewerenot
taking violated

cental

mtigliqye.es

theseareour
newoffsprings

wehave
created

mapping
between them

Wecantherefore notplacedin
the

topleftbecause1h isinthe
center

OX

• Order crossover (Davis)

• Preserve relative order of cities in the individuals

• (123|4567|89) OX (452|1876|93) :

• (...|1876|..) (...|4567|..) rearrange the path from the second
crossover point

• 9-3-4-5-2-1-8-7-6

• Delete crossed over cities from 1, remains: 9-3-2-1-8

• Fill the first offspring: (218|4567|93)

• Similarly, the second offspring: (345|1876|92)

Itdoesntmatterwherewestartthetriponlytherelationsbetweencities

5451187 laz
218 4567193

Zowepreservedthe
relativeorderbetween

theremainingcities

CX

• Cyclic crossover (Oliver)

• Preserve the absolute position in the path

• (123456789) CX (412876935)

• First position at random, maybe from th first parent: P1=(1........),

• Now we have to take 4, P1=(1..4....), then 8, 3 a 2

• P1=(1234...8.), can’t continue, we fill from the second parent

• P1=(123476985)

• Similarly P2=(412856739)

2housindetatretinchatehpoho.eu

dolandtojde

ER

• Edge recombination (Whitley et al)

• Observation: all previous crossovers preserve only about
60% of edges from both parents

• The ER tries to preserve as many edges as possible.

• For each city make a list of edges

• Start somewhere (the first city),

• Choose cities with less edges,

• In case of the same number of edges, choose randomly

Wecreatean additionalstructurefor crossover

(123456789) ER (412876935)

• 1: 9 2 4

• 2: 1 3 8

• 3: 2 4 9 5

• 4: 3 5 1

• 5: 4 6 3

• 6: 5 7 9

• 7: 6 8

• 8: 7 9 2

• 9: 8 1 6 3

• Start in 1, successors are 9, 2, 4

• 9 looses, has 4 succ., from 2 and
4 choosing at random 4

• succ. of 4 are 3 and 5, take 5,

• Now we have (145......), and
continue

• ... (145678239)

• It is possible that we cannot
choose an edge and the
algorithm fails, but it is very rare
(1-1.5% cases)

wewillstartagainandchoosedifferent
startingposition

(123456789) ER2 (412876935)

• 1: 9 #2 4

• 2: #1 3 8

• 3: 2 4 9 5

• 4: 3 #5 1

• 5: #4 6 3

• 6: 5 #7 9

• 7: #6 #8

• 8: #7 9 2

• 9: 8 1 6 3

• ER2 – improving ER

• Preserving more common edges

• Mark edges that exist twice by -

• They are prioritized when
choosing where to go.

thesearecommon

O

O theseare common

O
O these are common

00 thesearecommon
letsstart with 1

A because2 haspriority sowetake it

d
andonlyafterthatwewould

countnumberof
edges

INITIALIZATION FOR TSP

• Nearest neighbors:

• Start with a random city,

• Choose next as the closest from the not chosen yet

• Edge insertion:

• To a path T (start with an edge) choose the nearest city c not in
T

• Find an edge k-j in T so it minimizes the difference between k-c-
j and k-j

• Delete k-j, insert k-c and c-j to T

Youcan evensolvetheproblem withthiseventhough itwould takeverylong

Isthisdoesn'thavetobegloballytheshortest butis usuallybetterthan completely random

I
getsreplaced

MUTATION FOR TSP

• Inversion (!)

• Insert a city into a path

• Shift subpath

• Swap 2 cities

• Swap subpaths

• Heuristics such as 2-opt etc.

• Take two edges, four cities, choose other two edges
connecting these 4 cities

12355 89

1231762518
thisiswhatwith DNAisdoggy

thatseasy

Boptwouldbepossible
toobut2opt isusedthemost

o

Wecanalsogo throughall quadmplets of feecitiesuntilfinding

9g enhancement

ifthey
Esther

OTHER APPROACHES

• (Binary) matrix representation:

• Either 1 on position (i,j) means an edge from i to j

• Or it means that i is before j in a path (more common)

• Specific operators of matrix crossover:

• Conjunction – bitwise AND random insertion of edges

• Disjunction – dissect into quadrants, 2 of them delete, remove
contradictions, insert edges at random

• Combination with local heuristics

• Evolutionary strategy which improves paths by “smart mutations” –
heuristics like 2-opt, 3-opt

SAT

• Paradigmatic NP-complete problem of satisfiability of
Boolean formula (expressed in CNF)

• Given formula f: Bn -> B where B = {0,1}

• Find evaluation x = (x1,…xn) from Bn such that F(x) = 1

• CNF: f(x) = c1(x) & c2(x) & … & cm(x)

• conjunction of clauses

• each clause is disjunction of literals

• each literal is a variable or its negation

K-SAT

• k-SAT: each conjunction has !k literals

• 2-SAT is solved in polynomial time

• 3-SAT and more are NP-complete

• Many heuristic algorithms exist for approximate SAT
solving

• WSAT – popular local search heuristic evaluating solution
based on number of satisfied classes, smart selection of
local search direction

REPRESENTATIONS

• Straightforward bit-string - individual is Boolean vector x

• Floating-point - encode the formula as an expression

• Conjunction is *, disjunction is +,

• x is (1-y)2, non x is (1+y)2

• Boolean 1 is 1, Boolean 0 is -1

• Minimize the encoded formula

• (round negative values to -1, positive to 1)

REPRESENTATIONS II

• Clause-based – for each clause find feasible assignments of
variables
• the individual is a vector of assignments for all clauses

• The length is m*k for k-SAT with m clauses

• A special fitness is needed that reflect global inconsistencies in
assignments

• Path-based – visit clauses and select !1 variable assignments
in each that is consistent,
• not all variables are assigned, the individual represents more

solutions

• Again, a special fitness solving inconsistencies is needed

EXAMPLE

FITNESS

• f itself - not good

• Number of satisfied clauses

• Weight the problematic clauses

• Update after some iterations

• Refining function

EVAS FOR SAT

OTHER TASKS - SCHEDULING

• Scheduling is NP-hard:

• Individual is a schedule, direct matrix encoding

• Rows are teachers, columns classes, values are codes of subjects

• Mutation – mix the subjects

• Crossover – swap better rows from individuals

• Fitness

• Fitness of a row (how a teacher is satisfied)

• Other soft criteria and constrains about the schedule quality

• Hard constrains

• Must respect in operators, otherwise too many inadmissible solutions are generated

• Teachers constrains, when, where what to teach, …

OTHER TASKS – JOB SHOP
SCHEDULING

• Production planning
• products o1…oN, from parts p1…pK, for each part more plans

how to produce it on machines m1…mM, machines have
different times for setup to a different product

• Fitness – production time

• Encoding is critical:
• Permutation – plan is just a permutation of products order. Decoder

must choose plans for parts. Simple representation, can use TSP-
inspired crossovers. But shows not very efficient, decoder solves the
complicated part, TSP operators not suitable.

• Direct representation of individual as the complete plan –
specialized and complex evolutionary operators.

GENETIC PROGRAMMING

The very basics of tree-based representations of
programs

It ishardtorandomly generate legal machine code
Sourcecodeis notusedformutations etc
But treebased programming lany is possibly tomutate

manycompilers use
treestocompile therefore wecaneasilymutate

somebranches

EVOLUTION OF PROGRAMS

• 1950s – Alan Turing proposes evolution of programs

• 1980 – Forsyth – BEAGLE: A Darwinian Approach to
Pattern Recognition

• Late 1980s – Tree representations were discussed among
Holland PhD students

• 1985 Nichael Cramer – first description of tree individuals,

• 1989 – John Koza – tree based GP as we know it now
(publication, patent)

GENERAL GP

• General structure of the GP algorithm:

• Generate initial population of random programs

• Evaluate the programs by running them and test on data

• Generate new population of programs:

• Selection based on fitness

• Crossover of two programs

• Mutation of programs

• As usual, repeat until a good enough solution is found

TREE-BASED GP

• John Koza, late 80s-early 90s:

• Programs are represented as syntactic trees

• Terminals are variables and constants

• Non-terminals are operations

• Crossover is a subtree exchange, non-terminals have typically bigger
probability to be a crossover point

• Mutation replaces a subtree with random one

• Fitness is determined by running the program

• Selection is standard, often tournament

• First examples in Lisp

morningondata CG ELSE

119min an beanyother
subtrees

2s makesmoresense

in
expo

terminnls30

5 ie

MUTATIONS

• It is good (almost necessary) to use more mutation types:

• Random or systematic mutation of constants

• GP traditionally had problems fine-tuning numerical values

• Thus, a specialized mutations of constants speed-up the algorithm

• Either (any) arithmetic mutation on constants

• Or iterations of hill-climbing or other optimization methods on one or all
constant set of the tree

• Random exchange of a node for the same arity one

• Permutations

• Swap non-terminal for terminal

• Mutations that decrease the size of the tree (smaller sub-tree, new individual from a
sub-tree, …)

itsbesttoreplacesubtrees insteadofmutatingnode it requires validarityet

CROSSOVERS

• Swap two subtrees

• Uniform crossover – GPUX (Poli, Langdon)

• At early stages GPUX swaps large subtrees, as the population
converges the operator becomes more and more local.,

• Identify the common region C between two trees. Each node in
C is considered for crossover with a constant probability.

• Nodes in the interior of C are swapped without affecting the
subtrees rooted at these nodes.

• Nodes on the boundary of C - their subtrees are swapped.

thisislikeonepointcrossover

1
whatisuniform
intreesmanner

Atthe beginning swap large subtrees expontion at theend swaponlylittlesubtrees exploitations

INITIALIZATIONS

• Random procedure how to generate trees from two sets –
terminals and non-terminals

• Grow: Generate random trees from both sets till a limit on
number of nodes is reached

• Full: Generate random trees from non-terminal till certain
depths, then only terminals are added

• Ramped half-and-half: half of population by grow, half by full

Terminals Nonterminals

is C

1am stoblevynyslellloza

Igfinhodieyplignp
itu.netnamanun limitpoetsprobi

tryingtobuild complete
tree First tagMutation isactually implementit bythissameinit to use non terminals

onlyattheend use
terminals

Symbolic regression

fix
target

4
fail t

a o thess error

whysymbolic

therefore the_we shouldprovide aformula
feelwillbe represented as trees

T XC Mutationofconstants
NT 5 sincos thischangeisfasterthan hoping
indiv singleexprtren thatgreatersubtreewithnonterminals

fitness error
would generatethedesiredvalue

C
i need 7 here

Bloating

Because mudomness says whynot
Icanplace 7asconst I cantryto

limitsize randomly build

penalizesize subtrees until
Igenerate 7smaller individuals

Efshrinkingmutations

WAY DOWN – LINEAR GP

• Program is represented in a linear way, most often in some
machine/byte code

• Simpler, some claim more natural representation

• Simpler operators (crossover, mutation work on linear vectors)

• Faster emulation of the run

• But high risk of creating nonsense programs by mutations and
crossovers

• Favourite representation in artificial life, evolution of bots and
control code in games

WAY UP – GRAPH GP

• Program is not a tree, but a more general graph, often acyclic (DAG)

• First considered as extensions of tree GP to parallel programs

• Later it was discovered, that graph structures are really useful to
describe lots of things

• Evolution of circuits

• Finite automata, you guessed it

• Neural networks

• Reinforcement learning for robots, planning …

• Complicated genetic operators – how to cross over general graphs

