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INTRODUCTION

Topics, sources, outlines.



LITERATURE

• Eiben,  A.E and Smith, J.E.: Introduction to Evolutionary 
Computing, Springer, 2007.

• Michalewicz, Z.: Genetic Algorithms + Data Structures = 
Evolution Programs (3ed), Springer, 1996

• Mitchell, M.: Introduction to Genetic Algorithms. MIT Press, 
1996.

• Holland, J.: Adaptation in Natural and Artificial Systems, MIT 
Press, 1992 (2nd ed).

• Goldberg, D.: Genetic Algorithms in Search, Optimization and 
Machine Learning, Addison-Wesley, 1989.



TOPICS

• Evolution models, population, recombination, natural selection, 
simulation, objective function, roulette wheel, tournament, elitism.

• Genetic algorithms. encoding, operators, selection, crossover, 
mutation.

• Representational schemata, schemata theorem, building blocks 
hypothesis.

• Prisoner's dilemma, strategies, equilibria, evolutionary stability.

• Evolution strategies, cooperation, meta-parameters, differential 
evolution, CMA-ES.

• EA and combinatorial problems, NP-hard tasks, TSP, ...

• Machine learning and data mining, evolution of rule-based systems, 
learning classifier systems, bucket brigade algorithm, Q-learning.



EVOLUTIONARY 
ALGORITHMS

Biological motivation, basic parts



DARWIN EVOLUTION THEORY

• 1859 – On the origin of species

• Limited environment resources

• Reproduction is the key to life

• Better fitted (adapted) individuals have 
bigger chances to reproduce

• Successful phenotype traits are reproduced, 
modified, recombined



MENDEL GENETICS

• 1856 - Versuche über Pflanzenhybriden

• Gene as a basic hereditary unit

• Every diploid individual has two pairs of alleles, one 
is transmitted to offspring independently of others.

• It‘s complicated:

• Polygeny – more genes influence one trait

• Pleiotropy – one gene influences more traits

• Mitochondrial DNA

• Epigenetics 



DNA

• 1953 – Watson and Crick – double helix structure of 
DNA

• Molecular-biological view:
• How is the genetic information stored in a living organism

• How is it inherited

• DNA consists of 4 nucleotides/bases – adenine, 
guanin, cytosine, thymine

• Codon – a triplet of nucleotides encoding 1 out of  
23 amino acids (redundancy)

• These 23 amino acids are the basic building structure 
of carbohydrates in all living organisms



MOLECULAR GENETICS

• Crossover, Mutation

• Transcription: DNA->RNA

• Translation: RNA->protein

• GENOTYPE->PHENOTYPE

• One-direction, complex mapping

• Lamarckism: 

• There is an inverse mapping from phenotype to 
genotype

• Acquired traits can be inherited



EA - SUMMARY

• Natural evolution: environment, individuals, fitness

• Artificial evolution: problem, candidate solutions, quality of 
a solution measure

• EAs are population-based stochastic search algorithms

• Recombination and mutation create variability 

• Selection leads the search in the right direction



GENERAL EA

• EAs are robust meta-algorithms 

• No free lunch theorem 

• “There is no one best algorithm that outperforms them all.”

• Wolpert, Macready, 1995 (search), 1996 (learning), 1997 
(optimization)

• It pays to create domain-specific variants of EAs 

• Representation

• Operators



GENERAL EA

• Create initial population P(0) at 
random

• In a cycle create P(t+1) from 
P(t):

• Parental selection

• Recombination, and mutation

• New individuals P’(t+1) are 
created

• Environmental selection chooses 
P(t+1) based on P(t) a P’(t+1)
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GENETIC ALGORITHMS

• 1975 - Holland

• Binary encoded individuals

• Roulette-wheel selection

• 1-point crossover 

• Bitwise mutations

• Inversion 

• Schemata theory to explain the mechanism how GAs work



EVOLUTIONARY PROGRAMMING

• 1965 – Fogel, Owens a Walsh

• Evolution of finite automata

• No distinction between genotype and phenotype

• Focus on mutations

• No crossover, usually

• Tournament selection



EVOLUTIONARY STRATEGIES

• 1964 - Rechenberg, Schwefel

• Optimization of real number vectors in difficult 
computational math problems

• Floating point encoding of individuals

• Mutation is the basic operator

• The mutation step is heuristically controlled or undergoes 
an adaptation (evolving)

• Deterministic environmental selection



GENETIC PROGRAMMING

• 1992 – Koza

• Evolution of individuals representing (LISP) trees

• Used (not only) to evolve computer programs

• Specific operators of crossover, mutation, initialization

• Further applications (neuroevolution, evolving hardware, 
evolution of graph structures, …)



SIMPLE GENETIC 
ALGORITHM

Holland SGA, binary representation, operators 
and their variants



GA

• Genetic algorithms – 70s USA, Holland, DeJong, Goldberg, 
…

• The original proposal is nowadays called SGA (simple GA)

• Minimal set of operators, the simplest individual encoding, 
research of theoretical properties

• Gradually, the SGA has been enriched of – or transformed 
to – further operators, encodings, ways of dealing with 
populations, etc.



SGA - BASICS

• t=0; Generate at random initial population P(0) of n l-bit 
genes (individuals)

• Step from P(t) to P(t+1):

• Compute f(x) for each x from P(t)

• Repeat n/2 times:

• Select a pair x, y from P(t)

• Cross over x, y with probability pC

• Mutate every bit of x and y with probability pM

• Insert x, y to P(t+1)



SGA – BASICS

P(t) P(t+1)

PARENTAL SELECTION
ROULETTE  WHEEL

CROSSOVER
1-POINT

MUTATION
BIT-FLIP

ENVIRONMENTAL SELECTION
P(t+1) REPLACES P(t)



SELECTION

• Roulette wheel selection:

• Selection mechanism is based on the individual  fitness value

• It is a selection with replacement – each individual can be 
selected more times

• Expected number of individual selections should be 
proportional on the ratio of its fitness and an average fitness of 
the population

• Each individual has an allocated slice of a roulette wheel 
corresponding to its fitness, the wheel is spun n-times



CROSSOVER

• Crossover is the main operator in GA

• It recombines (good?) properties of parents

• It expresses our hope that recombination can lead to 
better fitness

• One-point crossover:

• Choose crossover point at random

• Exchange corresponding parts of individuals

• Probability of crossover pC typically in the range of tenths 



MUTATION

• In simple GA, mutation operator is less important, 

• It acts as a mechanism against stuck in local extrema

• (On the contrary, in EP or early ES, mutation is the only 
source of variability)

• Bit-string mutation:

• With probability pM, every bit of the individual is changed

• pM is small (e.g. to change 1 bit in individual on average)



INVERSION AND OTHERS

• The original Holland’s SGA proposal contains another 
genetic operator – inversion

• Inversion 

• Reversing a part of the bit string

• BUT with keeping the meaning of bits

• More complicated technically

• Inspiration in nature

• Did not proven to be beneficial (but wait for permutations)



SCHEMA THEORY

Schema theorem, building blocks hypothesis, 
implicit parallelism, k-arm bandit

actuallydoes not verywell describe geneticalgorithms

schema theory is very limited



SCHEMATA

• Individual is a word in alphabet {0, 1}

• Schema is a word in alphabet {0, 1,*} 

• (* = don't care)

• Schema represents a set of individuals

• Schema with r * represents 2r individuals

• Individual with length m is represented by 2m schemata

• There is 3m schemata of length m

• In population of n individuals there is between 2m and n.2m 
schemata represented

2 setofindividuals
oneschema example THE 114

my 1 441
Wecan compare schemata between populations Pt andPan where Ptn

p
2 andthenbeinterestedwhataregoodproperties ofschema
to beselectedinthenextpopulation



PROPERTIES OF SCHEMATA

• Order of schema S: o(S)

• Number of 0 and 1 (fixed positions)

• Defining length of schema S: d(S)

• Distance between the first and the last fixed position

• Fitness of the schema S: F(S)

• Average fitness of the individuals in a population that 
correspond to the schema S

• Note that fitness of S depends on the context of a population.

Fitnessof ascheme avg f x where S scheme and EPt someschemasmightbe
It isalso expensive to evaluatefitnessofinindigni

thismightbetheproblem

veryunderrepresented

numberof fixedpositions

howmuchfixedpositions span



THE SCHEMA THEOREM

• Short (w.r.t. defining length), above-average (w.r.t. fitness),  low-
order schemata increase exponentially in successive generations 
of GA. (Holland)

• Building blocs hypothesis:

• GA seeks suboptimal solution of the given problem by 
recombination of short, low-order above-average schemata 
(called building blocks).

• “just as a child creates magnificent fortress through 
arrangement of simple blocks of wood, so does a GA seek near 
optimal performance ...”

drawnfromselection

notgettingdestroyedbycrossover



PROOF OF TST 

• Population P(t), P(t+1), ... n individuals of length m

• What happens to a particular schema S during:

• Selection

• Crossover

• Mutation

• C(S,t) ... Number of individuals representing schema S in 
population P(t)

• We will estimate C(S,t+1) in three steps

Cs thisestimationdecideswhatschemataaregood



PROOF OF TST 

• Selection:

• An individual probability of selection is: 

ps(v) = F(v) / F(t), where F(t) = Σ F(u),  {u in P(t)}

• Probability of selection od schema S: 

ps(S) = F(S) / F(t)

• Thus: C(S,t+1) = C(S,t) n ps(S)

• Or equivalently: C(S,t+1)=C(S,t) F(S)/Favg(t)

Where Favg(t)=F(t)/n … is the average fitness in P(t)

previousgepr
probofselecting a scheme

Batselectionfornindividuals
thebetterthanavg the
morewillbechosen

thisgives expectednumberofindividualsin population



PROOF OF TST 

• ... Still selection:

• So, we have: C(S,t+1)=C(S,t) F(S)/Favg(t)

• If the schema were “above-average” of e%:

• F(S,t)=Favg(t) + e Favg(t), for t=0, ...

• C(S,t+1)=C(S,t) (1+e)

• C(S,t+1)=C(S,0) (1+e)t

• I.e., the number of above-average schemata grows exponentially 
(in consecutive populations (and with selection only)). 

sthisholdsonlywhensituationisverystatic



PROOF OF TST 

• Crossover:

• Probability that a schema will be destroyed / survive a 
crossover:

• pd(S) = d(S)/(m-1) 

• ps(S) = 1 – d(S)/(m-1)

• Crossing over with probability pc:

• ps (S) >=  1 – pc . d(S) / (m-1)

• Selection and crossover together:

• C(S,t+1) >= C(S,t) . F(S)/Favg(t) [1- pc . d(S) / (m-1)]

any arenot damaged bycrossover

m sizeofanindividual havingonlym 1 borderstobit

crossoverhappens onlysometimes



PROOF OF TST 

• Mutation:

• 1 bit will not survive: pm  

• 1 bit will survive: 1 – pm

• A schema will survive (pm<<1):

• ps(S) = (1 – pm)o(S) 

• ps(S) = … roughly estimate … = 1 – pm.o(S), for small pm

• Selection, crossover and mutation together:

• C(S,t+1)>=C(S,t).F(S)/Fprum(t) [1-pc.d(S)/(m-1)-pm.o(S)]

• QED.

ifmutation hits

Gothing
happens

Ors isnumberoffixedpositions

selection crossover mutation

above
average

short loworder



CONSEQUENCES OF TST AND 
BBH

• Encoding matters

• Size matters

• Premature convergence harms

• When GA sucks:

• (111*******), (********11) are above-average

• But F(111*****11) << F(000*****00)

• The ideal is (1111111111); GA has hard times finding it 

• The selection condition might be improved

fitnessfunction canplayouropponent



IMPLICIT PARALLELISM

• GA works with individuals, but implicitly it evolves much 
more schemata: something between 2m and n.2m.

• But how many schemata is processed efficiently:

• Holland (and others): (Under certain circumstances, such as n = 
2m , schemata stay above-average, ... ) Number of schemata that 
really grow exponentially is in the order of n3.  

• It was jokingly commented as the only case where 
combinatorial explosion is on our side.



EXPLORATION VS. 
EXPLOITATION

• Original Holland motivation: 

• GA is an “adaptive plan” looking for equilibrium between:

• exploration (finding new areas for search)

• exploitation (utilizing current knowledge)

• Just exploration: random walks, not utilizing previous 
knowledge

• Just exploitation: stuck in local optima, rigidity

import decisionaboutanysearchaly



1-ARMED BANDIT



2-ARMED BANDIT

• N coins, 2-armed bandit (arms payoffs have expected values 
m1, m2 and variances s1, s2). N-n coins is allocated to the 
better arm, n coins to the worse one.

• Goal: to maximize outcome / to minimalize loss.

• Analytical solution: to allocate exponentially more trials to 
the currently winning arm 

• N-n* = O(exp(c n*)); 

• c depends on m1, m2, s1, s2; and n* is the optimal value

eacharmtrial costs something butalsotellsmeaboutthepayoff

ReinforcementLearning problem



BANDIT AND SGA

• GA also allocates exponentially more trials (slots in 
population) to the more successful schemata

• It thus solves the exploration vs. exploitation problem in 
the optimal way

• Schemata plays many multi-armed bandit games

• The winning prize is number of slots in popuplation

• It is hard to estimate the fitness of a scheme

• First people thought that SGA plays 3m –armed bandit,

• Where all schemata are competing arms …



… BUT IT’S COMPLICATED

• Actually, much more games is played in parallel

• Schemata “compete” for “conflicting” fixed positions in a 
gene

• Schemata of order k always compete for those k fixed 
positions – they play 2k –armed bandit

• So, the best of those games get the exponential slots in 
population 

• But, it depends if we can estimate the fitness of a scheme in 
a particular population well (which can be a problem)



THUS, A BAD TASK FOR SGA IS .. .

• f(x) =

• = 2; for x ~ 111*... *

• = 1; for x ~ 0*...*

• = 0; otherwise.

• For schemata we now have:

• F(1*...*) = 1/2 ; 

• F(0*...*) = 1

• But, the SGA estimates F(1*...*) ~ 2, 

• Because schemata 111*...* will be much more common in a population

• SGA here does not sample schemata independently, so it does not estimate 
their real fitness.

definedtofoolSGA

Iget 2 0 0to 4
fromdefinition



PROBLEMS

• The arms in bandit are independent, but the SGA does not 
sample schemata independently

• Selection does not work ideally, as in the TST, it is dynamic, 
and it has statistical errors.

• SGA maximizes its on-line performance; they should be 
suitable for adaptive tasks 

• It is a pity to stop a running SGA ;-)

• (Paradoxically, maybe) the most common application of GA is to 
let them “only” find the one best solution.



STATIC BBH

• Grafenstette, 91: People consider that GA converges to solutions 
with actual statistic average fitness; and not (as it really 
happens) to those that exist in populations, i.e. with the best 
observed fitness

• Then, people can be disappointed: 

• Collateral convergence

• Large fitness variance



COLLATERAL CONVERGENCE

• When GA converges somewhere, the schemata are no 
longer sampled uniformly, but with a bias

• If, e.g. a sheme 111***...* is good, it will spread in a 
population after few generations, i.e. almost all individuals 
will have this prefix.

• But then, almost every sample of a scheme ***000...* are 
also samples of a scheme 111000*...*.

• Thus, the GA will not estimate F(***000*...*) correctly. 



LARGE FITNESS VARIANCE

• GA will not estimate fitness of a scheme well in the case if 
the static average fitness has a large variance.

• Such as the scheme 1*...* from our evil example.

• The variance of its fitness is large, so the GA will probably 
converge to those parts of a search space where the fitness 
is big.

• Which in turn will bias further sampling of the scheme. So, 
the static fitness is not estimated well, again.



TST WRAP-UP

• TST was an important first attempt to formalize GAs

• Now, more exact results exist

• The weak points of TST:

• Populations are finite and small – the theoretical exponential 
increase from one generation to the next one is harmed by 
factors such as sampling errors, and dynamic representation of 
schema in populations – the longer run predictions do not hold.

• The competition of schemata is much more complex and not 
independent at all.

• TST ignores the constructive effect of operators.



REPRESENTATION AND 
OPERATORS IN GA

Integer and floating point representations 
operators, selection



ENCODING

• Binary

• Classic (Holland)

• There are nice theoretical results (better than schemata theory, we 
will see next semester)

• Holland argument: binary strings of length 100 are better than decimal of 
leghth 30 because they encode roughly the same information but have 
more schemata (2100>230). 

• But we know schemata are not that important as Holland thought

• The important factor is that binary encoding is sometimes unnatural 
for a given problem.

BinnyEncoding of floatingpoint domainproblem is an
obstate

Theadvice Dont useany unnatural encodings



OTHER ENCODINGS 

• Alphabets with more symbols

• Integers

• Floating point

• Permutations, 

• Trees (programs), 

• Matrices, 

• Neural networks (different 
ways), 

• Finite automata 

• Graphs, 

• A-life agents …

Pilat a Nemda potholisea pion



SELECTION - OVERVIEW

• Roulette-wheel selection 

• traditional, fitness-proportional

• SUS (stochastic universal sampling)

• Just one random position in a roulette wheel, other 
positions are shifts over angle 1/n 

• „more fair roulette“ – why?

1
theproblem whenthepopulation is small

someindividualsaretoobigand
taketoomuchselections dices

thishas
menup
exploitation

firstgood
solutionwill 2
starttobe an individualhaving shouldhavebeenchosen twicemorethantheonewith 14

moreandmove Thisworkswhen shiftingover In nehshiftsselected

1



SELECTION - OVERVIEW

• Tournament

• k-tournament – comparing k randomly selected 
individuals, the winner is chosen by selection

• Typically, k is a small number, like 2, 3, 5 

• Can be used in cases where fitness is not explicitly given 
(a game is played, or a simulation is involved)

hereevenwhenhavingoneverystrongindividual Igivechancetothe
weakones



INTEGER ENCODING

• Mutation:
• „unbiased“ – new random value from the whole domain

• „biased“ – new value represents a random shift (normal 
distribution) from the original value

• Crossover:
• One-point, multiple-point, …

• Uniform – in every gene we throw a coin from which parent the 
value is chosen

• Beware of ordinal representations in cases where the order does 
not make sense (then, probably, the biased mutation does not make 
sense)

whendoingmutation onan integer
codeofa countyTherethebiased shift

mutation doesn'tmakesensesincethecodes
doesnotrepresentorderdistance



FLOATING POINT ENCODING

• Historically, the first attempts were encoding real numbers 
into bit-string representations

• Not used often today, except for the cases when a limited 
precision makes good sense (compression of a search 
space, explicit control over the accuracy of the 
representation) 

• Common practice today is to encode real values as floating 
point representation, and the operators take this into 
account



FLOATING POINT OPERATORS

• Mutation

• Biased 

• Unbiased

• Crossover

• Structural 

• One-point, uniform, ...

• Arithmetic

• Combination of values  



ARITHMETIC CROSSOVER

• Simple average of parents‘ values

• Variants:

• Some other convex combination:

• z = a*x + (1-a)*y, where  0<a<1

• How many values from an individual to cross over:

• Typically all of them

• Sometimes just one chosen at random

• Sometimes a combination with 1-point crossover





EVOLUTION OF 
COOPERATION

Prisoners and their dilemma, Nash, von Neumann, 
Axelrod, Dawkins



ALTRUISM VS. DARWINISM ?

• Darwinism is inherently competitive – survival of the fittest

• Social Darwinism – backing the laissez-faire („let it be“) capitalism

• Andrew Carnegie, The Gospel of Wealth, 1900 While the law of competition may 
be sometimes hard for the individual, it is best for the race, because it ensures the 
survival of the fittest in every department. We accept and welcome, therefore, as 
conditions to which we must accommodate ourselves, great inequality of 
environment; the concentration of business, industrial and commercial, in the hands 
of the few; and the law of competition between these, as being not only beneficial, 
but essential to the future progress of the race.  

• But there is a lot of cooperation both in nature and society 

• The main problem of evolutionary (social) biology: 

• How can altruistic behavior be evolved, when it (by definition) 
decreases a fitness of an individual?



THEORIES OF EVOLUTION OF 
ALTRUISM

• Group selection

• Evolution can work on groups of individuals (Darwin)

• How to explain individuals who cheat and do not help

• Kin selection 

• Preservation of almost identical genes in close relatives

• How to explain altruism of strangers, even other species

• Dawkins, selfish gene  

• The unit of evolution is a gene, not an individual

• Wilson: „the organism is only DNA's way of making more DNA.“

• Trivers, 1971: reciprocal altruism

• Mutual benefits for both organisms (even different species)

• Shadow of the future, parallel with iterated prisoner's dilemma



PRISONER’S DILEMMA

i/j C D

C -1 / -1 -3 / 0

D 0 / -3 -2 / -2

i/j C D

C R / R S / T

D T / S P / P

•Temptation > Reward > Penalty >
Suckers payoff
• R>P: mutual cooperation is better 
than mutual deception
•T>R and P>S: deception is a 
dominant strategy for both players
• (50s - RAND corp.)



NASH

• A strategy s is dominant for agent i, if it gives better or the 
same result than any other strategy of an agent i against all 
strategies of agent j

• Strategies si and sj are in Nash equilibrium, if:

• If agent i plays strategy si, agent j does best with strategy sj

• If j plays sj, i does best with si

• Or,  si and sj are the best mutual answers to each other

• These are called pure strategies



NASH IN MIXED STRATEGIES

• Mixed strategies – random 
selection among pure 
strategies

• Nash theorem: Every game 
with finite number of 
strategies have Nash 
equilibrium in mixed 
strategies.

• Example: Rock-Paper-Scissors



NASH AND PARETO

• The solution is Pareto-
optimal/efficient

• If there is no other strategy 
which would improve agent 
outcome without worsening 
some other agent outcome

• The solution is not Pareto-
efficient: if an outcome of one 
agent can be improved without 
decreasing other agent‘s 
outcome



THUS …

• For rational agents there is no dilemma/or is there?

• DD is Nash equilibrium

• DD is the only solution that is not Pareto-optimal

• CC is a solution maximizing common outcome

• Tragedy of the commons

• What is rational, and are people rational?

• Shadow of future – iterated version – Axelrod



ITERATED PRISONER‘S DILEMMA

• Players play more games, they 
remember the results/actions of the 
opponent, and can modify their 
strategies according to the history

• T>R>P>S, 

• 2R>T+S – it does not pay off to 
alternate C and D

• If the game is played N-times (and 
the players know the N) it can be 
proved by induction, the best 
strategy is „deceive all the time“.

a
shadowofa future wedon'tknowhowmanyroundswillbeplayed

2 in thelastmove
youcanbetmy itsthelastThenforthe n1 youcanbetray again

you knowyougonnabetrayinthenstep
Andyou

don'tfearbetmybecauseyouarenotpunishedatthe d



AXELROD TOURNAMENTS 

• The first tournament:

• 14 strategies plus RANDOM, 200 games, everybody played with everybody (ncludit 
itself), 5x repeat

• TFT = Tit For Tat strategy

• Start cooperate, then copy opponent's moves

• The second tournament: 

• 62 strategies– everybody knew the results of previous tournament –TFT wins again

• The third „ecological“ tournament 

• Resembling the generations of GA, initial population was the second tournament 
strategies, there were 1000 generations 

• The number of individuals in the next generation was proportional to number of 
victories in the previous generation

• Aaaaand, the TFT wins again! 

aslongas botharenielyyouplaynicely

movenewstrategiesbut
I



WHAT DOES IT MEAN FOR 
STRATEGIES?

• 4 important properties of successful strategies:

• Niceness – do not deceive first

• Provocability – quickly punish deception

• Forgiveness – but quickly calm down 

• Clarity – be simple, so others understand you

• There is not a single strategy that would win against all strategies

• It is necessary to be successful against very diverse strategies (ALL-D, 
TFTT, RANDOM, TRIGGER) 

• It is also good to learn play well against itself

• Attempts to beat TFT by more deception did not help

thisproofsthat cooperationmighthelpevenforevolution
butnotalways

Evolutionary stablestrategy strategywinsinallpopulationsofstrategies



WHAT DOES IT MEAN FOR 
COOPERATION?

• In environments that support cooperation …

• Payoffs favor cooperation, 

• There is a big probability of iterated PD (shadow of the future)

• … the cooperation is usually evolved

• But not always, such as in the ALL-D world

• Rationality, intelligence, consciousness, … is not necessary for 
cooperation, just bigger fitness values

• Initial cooperation can emerge at random, and then it can 
survive



TWENTY YEARS AFTER

• In environments with noise, the Pavlov strategy (win-stay, lose-
shift) is successful

• If the payoff R or P => C, 

• if T or S => D

• After 20 years the tournament was repeated with more 
strategies from each team

• The winning strategies were cooperating as a team

• Few moves (10) to recognize the opponent, then all strategies 
helped one father strategy from the team to get better score 

• The teams were even fighting the organizers (false teams to get 
more slots in the tournament …) 



EVOLUTIONARY STRATEGIES

Motivation, population cycle, floating point 
mutations, meta-evolution

thesearethemostused evolutionary
solutions



EVOLUTIONARY STRATEGIES

• Rechenberg, Schwefel, 60s

• Optimization of real function of many parameters

• 'evolution of evolution'

• Evolved individual: 

• Genetic parameters - affecting the behavior

• Strategic, endogenous parameters - affecting evolution

• New individual is accepted only if it is better

• More individuals as parents

• Todays most successful (and complex) CMA-ES (correlation matrix 
adaptation-ES) 

noanyspecialcoding
justtherealnumbers

wecan
controltheevolutionwithit

alwaysjustoneoffspring



ES NOTATION

• Important parameters:

• M number individuals in population

• L number of new individuals 

• R number of ‘parents'

• Special selection related notation:

• (M+L) ES – M individuals to a new generation is selected from M+L old 
and new individuals

• (M,L) ES – M individuals to a new generation is selected only from L new 
individuals

strategy

parentsarekilledalways
strategy



SIMPLEST ES EXAMPLE

• Minimize f: Rn->R

• Individuals are vectors 

• (x1, …, xn)

• Population is just one individual

• One offspring is created

• Mutations are drawn from normal 
distribution

• Variance of the distribution (step size) 
is changed by simple heuristics to 
balance exploration/exploitation

Initialize x(0) = (x1, …, xn), t = 0

Repeat

y(t) = x(t) + N(0,s)

If f(x(t))< f(y(t)) then x(t+1) := x(t)

           else  x(t+1) := y(t)

Keep track of p … % of successful mutations

Every k iterations modify s based on p:

If p>1/5 then s := s/c  // explore more

If p<1/5 then s := s.c  // exploit more

If p=1/5 then s := s    // 0.8 <= c <= 1

t++, Until x(t) is good enough 

Themutation isjust away howtomove inthe space andsample f x

Thisisactually likewhenSGD
is tmining guidient

thisisjust asimple hillclimb vacing
The bigger jumpthemoreweexploreotherwise exploiting



ES SELECTIONS

• Parental selection:  random – does not depend on fitness 

• Environmental selection:

• Deterministic – choose M best from the pool: 

• (M,L) – the pool is just L offspring

• Better for real-valued domains

• Avoids local optima better

• M<L, otherwise the selection provides no useful information

• (M+L) – the pool is M parents and L offspring

• Faster convergence

• Recommended for discrete optimization

• M>L or M=L possible, special case L=1 is called steady-state ES

iii
F l fun wecanmove easilystuckin

localoptimn

becausewejustget lesssamplesto
choosefromandalsoheaptheprevious good

ones



ES INDIVIDUAL

• The individual: C(i)=[Xn(i),Sk(i)], k=1, or n, 
or 2n, or n(n+1)/2

• Sk are endogenous parameters 
(such as standard deviations of biased 
floating point mutations)

• k=1: One common std dev for all 
evolved parameters X’s

• k=n: Non-correlated mutations, n 
individual normal distributions

• Each parameter has its own std dev

• Geometrically, the mutations are 
within an ellipse parallel to axes

• k=n(n+1)/2: Rotations are also 
included, the ellipses are not parallel 
to axes

• correlated mutations, they 
correspond to mutations from n-
dimensional normal distribution

• Thus, Sk correspond to the 
covariance matrix C that is a (non-
diagonal) product of rotation matrix 
M: C = M’M

 cii = si
2

 cij = 1/2(si
2 – sj

2) tan(2aij)

thesepammarebeinggutted
first

7
individualnewlycontainssomepummeterstocontrolmutation

1
martiling

4 1Noo
k n

s.int
Udemiemezidaty

nejlepst2puisob

Eachpartoftheindividualmight
contribute

differentlytotheresult moreless therefore it helpstochange
themseparately



ES MUTATIONS

• Endogenous parameters: - always mutate first

• Standard deviations: 

• Increase or decrease according to the success of the mutation (Originally, 
the so-called 1/5 rule (heuristic - „the best case is when the mutation has 
20% success rate“), thus, the std dev is increased for lower success rates, 
and decreased when the success rate is higher

• Now, multiply by a random number drawn from N(0,1)

• Rotations:

• Add a random number drawn from N(0,1)

• Genetic parameters:

• Adding random number from normal distribution with corresponding 
deviation, and rotation, respectively



ES INDIVIDUAL AND MUTATION

Image source: Baeck, Hoffmeister, Schwefel: A survey of 
Evolution Strategies (1991) 



ES CROSSOVER (CALLED 
RECOMBINATION HERE)

• „Gang bang“ of more parents -> one offspring

• Local (R=2)

• Global (R=M)

• Two versions (often combined together):

• Uniform (dominant)– the value of a gene is selected at random 
from parents' genes at a particular position

• Arithmetic (intermediate) – average of all parents’ values on a 
particular position

traditionalfamily

gangbang

comeshandywhenhaving a parents



SUMMARY – ES CYCLE

• n=0; Initialize at random a population Pn of M individuals

• Evaluate the fitness values of individuals in Pn 

• Until the solution is good enough:

• Repeat L times:

• choose R parents from Pn at random, 

• Cross them over -> one new individual [x,s],

• Mutate endogenous parameters s of [x,s]

• Mutate genetic parameters x of [x,s] 

• Evaluate [x,s] and put it to set of candidate solutions Cn+1

• For (M,L)-ES: choose M best individuals from Cn+1 the to Pn+1

• For (M+L)-ES: choose M best individuals from Pn  U Cn+1 the to Pn+1

• ++n



DIFFERENTIAL EVOLUTION

Alternative, geometrically motivated EVA



DIFFERENTIAL EVOLUTION

• R. Storn and K. Price (1997)

• Powerful algorithm designed for black-box optimization (or 
derivative-free optimization). 

• Find the minimum of a function f(x): Rn→R, if we do not 
know its analytical form. 

• Relatively simple algorithm

• Used in many applications 

• European Space Agency – optimal spaceships trajectories



Pablo R. Mier: A tutorial on Differential Evolution with Python, 
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/



DIFFERENTIAL EVOLUTION

• Initialization: random parameter values

• Mutation: „shift“ according to the others

• Crossover: uniform „with a safeguard“

• Parental selection: all individuals in a population

• Environmental selection: comparison and possible 
replacement by a better offspring



MUTATION

• Every individual in a population undergoes mutation, 
crossover, and selection

• For an individual xi,p we choose three different individuals 
xa,p, xb,p, xc,p at random

• Define a donor v: vi,p+1 = xa,p + F.(xb,p-xc,p)

• F is a mutation parameter, a value from interval <0;2>

forall replace iffbetter



CROSSOVER

• Uniform crossover of original individual with a donor

• Parameter C controls the probability of a change

• At least one element must come from a donor

• Probe vector ui,p+1 :

• uj,i,p+1 = vj,i,p+1 ; iff randji <= C or j=Irand 

• uj,i,p+1 = xj,i,p+1 ; iff randji > C and jǂIrand 

• randji is pseudorandom number from <0;1>

• Irand pseudorandom integer from <1;2; ... ; D>



ENV. SELECTION

• Compare fitness of x and v, select the better:

• xi,p+1 = ui,p+1 ; iff f(ui,p+1) <= f(xi,p)

• xi,p+1 = xi,p ; otherwise 

• for i=1,2, ... , N

• Mutation, crossover, and selection is repeated until some 
termination criterion is satisfied (typically, the fitness of the 
best individual is good enough)

Mutation generates doner_ crossed with original if better thensaved



MUTATION VARIANTS

• The described mutation is denoted as rand/1

• Xa is chosen at random, Xb – Xc create one difference vector

• rand/2: 

• we choose Xb, Xc, Xd, Xe, and create two difference vectors:

• V = Xa + F(Xb - Xc + Xd –Xe)  

• best/1:

• Xa is not random, but the best Xbest in population

• best/2: - homework 

wayofselect numberof differences



PARTICLE SWARM 
OPTIMIZATION

Individual is a particle floating in a swarm in the 
fitness landscape



PSO

• Population-based search heuristic, Eberhart, Kennedy, 1995

• Inspiration of swarms of insect/fish

• Individual is typically a floating point vector, called a particle 

• No crossover,  no mutation as we know it

• Individuals are moving in a swarm through their parameter 
space

• The algorithm is using local and global memory:

• pBest – each particle remembers a position with the best fitness

• gBest – best pBest among all particles

XER

r
ithasalso
its velocity

Xn Xn maxp
Bests

Un Un eachparticlehasmemoryofits position inhistory



PSO ALGORITHM

• Initialize each particle
• Do
•     Foreach particle
•         Compute fitness of particle
•         If the fitness is better than the best fitness seen so far (pBest)
•             pBest := fitness;
•     End

•  Set gBest to the best pBest
•     Foreach particle
•         compute the speed of particle by equation (a)
•         update position of particle by equation (b)
•     End
• While maximum iterations or minimum error not satisfied



PSO MOVEMENT EQUATIONS

• v : = v + 
      + c1 * rand() * (pbest - present) + 

      + c2 * rand() * (gbest - present)                           (a)

• present = present + v                                    (b)

• v is particle speed, present is particle position 

• pbest best position of a particle in history

• gbest best global position in history

• rand() random number from (0,1). 

• c1, c2 constants (learning rates) often c1 = c2 = 2. 

direction towards itsbest

towardstheglobalminimum

thepartialsarestillmoving but hopefully
towardsoption



PSO DISCUSSION

• Common with GA:

• Start with random configuration, have a fitness, use stochastic 
update methods

• Different from GA:

• No genetic operators

• Particles have memories

• The exchange of information goes only from the better 
particles to the rest



EVOLUTIONARY MACHINE 
LEARNING

Michigan vs. Pittsburg, machine learning, 
reinforcement learning  



MACHINE LEARNING – A SUBSET

• Learn rules based on the training examples

• Data mining

• Expert systems

• Agent, robots learning (reinforcement learning)

• Basic evolutionary approaches:

• Michigan (Holland): individual is one rule

• Holland LCS: learning classifier systems

• Pittsburgh: individual is a set of rules

like simple geneticalgorithm

this is used forRLmostlysinceit ismove suitable



CLASSIFICATION

Predicted/
Real

Positive Negative

Positive TP FP

Negative FN TN

• Accuracy 

• = number of correct answers / 
number of all answers 

• = (TN+TP)/(TN+TP+FN+FP)

• Specificity

• = TN/(TN+FP)

• Sensitivity

• = TP/(TP+FN)

FtiPrecision vs Recall

ETPYFPEp.IO
hjsekehlweewnt



MICHIGAN

• Holland in 80s: learning classifier systems

• The individual is a rule

• The whole population works as an expert or control system

• The rules are simple:
• Left-hand side: feature is true/not/don‘t care (0/1/*)

• Right-hand side: action code or classification category

• Rules have weights (reflecting their success) 

• The weight makes their fitness

• The evolution does not have to be generational

strength is actually an accumay ofallthe rulesgiven someinput

2 strenghtwhenmovemlesonnbe

applied thestrongestwillapply

thisisonerule

Eachslot whatweexpect fromthefeaturetobeTrue False



MICHIGAN - LCS

• Evolution happens only from time to time and/or on part of 
population

• The problem of reactivness (lack of inner memory)

• The right-hand side of the rule contains – besides the 
action/classification code – other inner features, called 
„messages“ 

• The left-hand side of the rule has special features to intercept 
the messages, called „receptors“ 

• The system has a buffer of messages and it has to realize an 
algorithm to distribute a reward among chains of rules



LCS – BUCKET BRIGADE

• Only some rules lead to actions that trigger reward from the 
environment, 

• The reward should be distributed to the chain of successful 
rules leading to the reward

• Rules have to give up part of their strength (like paying money 
to take part in the action) if they compete for a chance to be 
applied

• The technical way it is done is called Bucket brigade 
algorithm

• In practice it is difficult to balance the economy of rules, hardly 
used today

easyto getinflation involved



BUCKET BRIGADE ALGORITHM

E
N
V
I
R
O
N
M
E
N
T

DETECTORS

EFFECTORS

MESSAGE BUFFER

BUCKET 
BRIGADE GA

MATCHING 
RULES

POPULATION OF RULES

SET OF 
ACTIONS

EXTERNAL | INTERNAL | ACTION EXTERNAL | INTERNAL | ACTION | STRENGTH

REWARD

A S
C E
T L
I E

O C
N T

leftsideofthemln whatisthis outputofthewileisextendedbytheinternalmessage
the conditioning is alsoextendedbythismessagespace
Itshouldthereforebereactivesineitcanstore environmentbasedinfo
leanforexampleholdmyremainingenergytodecidewhattodonext

rightsideofthemle



CURRENT LCS SCHEME

© R. Urbanowicz, J.Moore: LCS: A complete introduction, review and roadmap, 2009

setofrules

time t actionset
changesthe matching

population
matchset
weperformthe
actionandthe
environmentchanges

2 thisiswhenreward is requested



Z(ERO)CS

• (Wilson, 1994) simplify LCS

• No internal messages

• No complicated mechanism of reward redistribution

• Rules are just bitmap (and *) representations:

• IF(inputs) THEN (outputs)

• Cover operator:

• If there is no rule for current situation/example, it is generated 
ad hoc

• Randomly some * are added and a random output is selected

ExtendedfromMichiganapproach

this isthefirstextended

nomessages bucketbrigadeetc toocomplextoimplementwell

Cowitheachnew wearehavinghigherchanceofmatchingsomething



ZCS – ACTION SELECTION

• P – population – set of all rules

• Detector presents an input x

• M – match set 

• rules with condition satisfied compared to input x

• Action a is selected from M

• by roulette wheel mechanism 

• based on strengths of rules from M

• A – action set – all members of M that advocated action a 
Jumps

thesameactions sumstheirstrength



ZCS – REINFORCEMENT

• How the reward is distributed / the strength of rules is 
modified – operate on current A and previous A-1

• Create a bucket B by reducing each rule from A strength by 
0<b<=1 (and adding those numbers – denote B the sum)

• If the system receives reward r from environment after action a:

• Add (b*r) / |A| to strength of each rule in A

• Add (g*B) / |A-1| to all members of A-1 (0<g<=1) 

• The strength of the rules in the set M – A (matching but 
advocating different action than a) are reduced by 0<“tax”<=1 

essentially you
rememberthepreviousrulesandrewardonlythosethat
ledtothecurrentreward

rewardedwinners

rewarded helpersfrom
inflationsecurity previous step

welowerthosethatweregivingotheraction than ya
even though their leftsidesmatchedtheinput



XCS – IMPROVED ZCS

• Cons of ZCS:

• ZCS does not tend to evolve a complete rule system covering all cases

• Rules at the beginning of the chains are seldom rewarded and they are 
not surviving

• Rules leading to actions with small rewards can die off too, although they 
are important

• The previous LCS were “strength-based” - both  a measure of fitness for 
GA, and to control which rules “fire”

• “Wilson’s intuition was that prediction should estimate how much 
reward might result from a certain action, but that the evolution learning 
should be focused on most reliable classifiers, that is, classifiers that give a 
more precise (accurate) prediction” (P. Lanzi, 2000)

LCSworkswellbut ithasjustnonebach action rewarding Sometimes
youalsoneedtoreward themoveprevious

actions

Also 215 is usually takingverygeneralrulesbutsometimes it is necessary
to piksome veryspecializedrules which255throwsaway

Rule isnot as good as manytimes Ican use it buthowwell it workswhenused



XCS - PROPERTIES

• Rule is a tuple (c, a, p, e, f)

• c – condition

• a – action

• p – payoff prediction

• e – prediction error

• f – fitness used in GA

• Fitness is based on accuracy of the rule:

• Accuracy k = h * (e / e0)-v ; h, e0 and v are parameters

• Payoff and error estimates are updated by Q-learning

FITNESS ACCURACY

thisbecomes Q learning



XCS – ALGORITHM SKETCH

• Based on input, form a match set M

• M is subdivided into action sets Ai based on actions

• We keep track of previous step action set as well 

• For each action in A, predict the payoff pa as average of 
payoffs of rules in the action set weighted by fitness values

• Choose the winning action a either as max pa , or 
stochastically (roulette wheel).  Perform the action.



XCS – ALGORITHM SKETCH

• Redistribute the payoff from environment to rules in the 
previous step Action set

• Update accuracies using errors

• Update fitness using accuracies

• Update payoffs using previous step payoff and max payoff from 
action set

• Run GA (only) on previous Action set

youareprovidingnewrulesonlyfromthegood
mles



XCS – WRAPUP

• Accuracy based fitness

• Niche GA operating on action set A

• Q-learning algorithm as credit assignment 

• Bridging the gap between RL and LCS

• Great applications in practice



PITT

• Individuals are sets of rules, complete systems

• The evaluation is more complicated

• Rule priorities, conflicts

• False positives, false negatives

• Genetic operators are more complicated

• Typically, dozen or more operators working of sets of rules, 
individual rules, terms in the rules, ...

• Emphasis on rich domain representation (sets, 
enumerations, intervals, ...)

Complexhowtodomutation crossover when Ihavemoremiles inan individual



GIL, EXAMPLE OF THE PITT 
APPROACH

• Binary classification tasks

• The individual classifies implicitly to one class (no right-hand 
side of the rules) 

• Each individual is a disjunction of complexes

• Complex is conjunction of selectors (from 1 variable)

• Selector is a disjunction of values from the variable domain

• Representation by a bitmap:

• ((X=A1)AND(Z=C3)) OR((X=A2)AND(Y=B2))

• [001|11|0011 OR 010|10|1111]

whatallcomplexesdescribeshim

A 21
C Cz 3

Wedon'thaverighthandmles sincewearedoingonly classification



GIL CONTD.

• Operators on the individual level: 

• Swap of rules, copy of rules, generalization of rule, deletion of 
rule, specialization of rule, inclusion of one positive example to 
the rule

• Operators on the complex level: 

• Split of complex on 1 selector, generalization of selector 
(replacing by 11...1), specialization of generalized selector, 
inclusion of one negative example

• Operators on selectors:

• Mutation 0<->1, extension 0->1, reduction 1->0, 

III split I

Hot
I



MULTI-OBJECTIVE 
OPTIMIZATION

Multi-Objective Evolutionary Algorithms (MOEA), 
Pareto front, NSGA II

Whatcanbe theobjectives Goingfrom Ato B and
optimizingboththecostandtime



PROBLEM

• Instead of one fitness (objective function), there is a vector of them fi, 
i=1...n

• For the sake of simplicity, we consider minimization case, so we try to 
achieve minimal values of all fi, which is difficult

• Definitions of dominance (of individual, or a solution):

• Individual x weakly dominates individual y, iff fi(x)<=fi(y), pro i=1..n

• x dominates y, iff it weakly dominates him, and there exists j: fj(x) < fj(y)

• x and y are uncomparable, when neither x dominates y, nor y 
dominates x

• x does not dominate y, if either weakly dominates x, or they are 
uncomparable



PARETO FRONT

• Pareto front is a set of individuals not dominated by any 
other individual 1ˢᵗ Anexample

It gives a setof you canbevery fast
solutions thatarm anditwillcost alot

ofalloptimal cannot
youcanbeveryslow

be improvedmove and it willcostalittle
and userneedsto
choosewhathewants

time



THE SIMPLE WAY

• How to solve MOEA in a simple (simplistic?) way:

• Scalarization - Aggregate the fitness:
• Linear scalarization

• i.e. weighted sum of all fi, resulting in one value of f 

• And solve it as a standard one-objective optimization

• This one is sometimes, in the context of MOEA, called SOEA 
(single objective EA), but is is nothing new to us, actually we were 
doing only SOEA so far

• The solution of SOEA lies (somewhere) on Pareto front, but not 
all Pareto front points may be found

• Nevertheless, we don’t know how to set weights for fi‘s.



THE SIMPLE WAY

• e-constraint scalarization

• Turn MOEA into SOEA with n-1 constraints

• Choose one fi, say f1

• Other f2 ... fn turn into constrains by choosing constants e2 … 
en

• Minimize f1 with constraints f2<e2 … fn<en

• Problem how to find the constants

• Problem how to solve the constrain optimization



VEGA (VECTOR EVALUATED GA)

• One of the first MOEAs, 1985

• Idea: 

• Population of N individuals is sorted according to each of the n 
objective functions

• For each i we select N/n best individuals w.r.t. fi

• These are crossed over, mutated and selected to next generation

• This approach in fact, has lots of disadvantages: 

• It is difficult to preserve a diversity of the population

• It tends to converge to optimal solutions for individual objectives fi 

whenhaving 3objective functions wetake ofind withbestscoreonto
ofind withbestscoreon f

and 13ofind withbestscoreonfe



DECOMPOSITION BASED MOEA

• Trying to improve basic scalarization algorithms by 
decomposing the population into several sub-populations 
scalarized with different weights

• Define several weight vectors Li evenly distributed in the 
search space

• Use Chebyshev distance to perform scalarization:

• D(x,y) = maxi (|xi – yi|)

• Minimize maxi (Li |fi(x) – zi|) where z is a reference point – ideal 
solution estimate



MOEA/D ALGORITHM SCHEME

• input: Λ = {λ(1),...,λ(μ)} {weight vectors}
• input: z∗: reference point for Chebychev distance
• initialize P0 ⊂ X μ
• initialize neighborhoods B(i) by collecting k nearest weight vectors in Λ for each 

λ(i) 
• while not terminate do

• for all i ∈ {1,...,μ} do
• Select randomly two solutions x(1), x(2) in the neighborhood B(i).
• y ← Recombine x(1), x(2) by a problem specific recombination operator.
• y ← Local problem specific, heuristic improvement of y, e.g. local search, based on the 

scalarized objective function g(x|λ(i), z∗) .
• if g(y |λ(i), z∗) < g(x(i)|λ(i), z∗) then x(i) ← y 
• Update z∗, if neccessary, i.e, one of its component is larger than one of the 

corresponding components of f(x(i)). end for
• t←t+1 

• return Pt



HYPER-VOLUME

• SMS-MOEA = S-metrics 
evolutionary multiobjective 
optimisation algorithms

• Find some indicator that 
compares two solutions, and 
decides which Pareto front 
approximation is better

• Usually a hypervolume (with 
some reference point) is 
considered as indicator, called 
S-metrics



SMS-EMOA

• initialize P0 ⊂ Xµ

• while not terminate do

• {Begin variate}

• (x(1), x(2)) ← select mates(Pt) {select two parent individuals x(1) ∈ Pt and x(2) ∈ Pt}

• ct ← recombine(x(1), x(2))

• qt ← mutate(ct)

• {End variate}

• {Begin selection}
• Pt+1 ← selectf (Pt ∪ {qt}) {Select subset of size μ with maximal hypervolume indicator

• from P ∪ {qt}}
• {End selection}

• t ← t + 1

• end while

• return Pt



NSGA (NON-DOMINATED 
SORTING GA)

• 1994, an idea of dominance is used for fitness

• This still does not guarantee sufficient spread of population, it 
must be dealt with some other way  (niching) 

• Algorithm:
• Population P is divided into consequently constructed fronts F1, F2, 

...

• F1 is a set of all non-dominated individuals from P

• F2 is a set of all non-dominated individuals from P-F1

• F3 … from P-(F1 disjuncted with F2) 

• ...

bestapproxof pfront
2ndbestappaxofp.fm

Wecreatepareto like front fromtherest
3rd

Thereare yet 3 versions from 199h2002and2014



NSGA CONTD.

• For each individual we compute a niching factor, as a sum of sh(i,j) over all 
individuals j from the same front, where:

• sh(i,j) = 1-[d(i,j)/dshare]^2, for d(i,j)<dshare

• sh(i,j) = 0 otherwise

• d(i,j) is distance i from j

• dshare is a parameter of the algorithm

• Individuals from the first front receive some „dummy“ fitness, that is divided 
by a niching factor

• Individuals from the second front receive a dummy fitness smaller that the 
fitness of the worst individual from the first front, and it is again divided by 
their niching factor

• ... For all fronts

howTodedisthe
surroundingofan individual



NSGA II

• 2000, repairing some drawbacks of NSGA:

• Necessity to set the right dshare value

• Non-existence of elitism

• Niching

• dshare – a niche count – is replaced by a crowding distance:

• This is a sum of distances to the nearest neighbors

• The best individuals w.r.t. each fi‘s have crowding distance set to infinity

• Elitism

• Old and new populations are joined, sorted, the better part goes to next 
generation

itjustsays hereit is
crowded hereit isnotso crowded

endidiandistance

Itsbettertotake theindividual whih ishavingless neighbours



NSGA II CONTD.

• Fitness: 

• Each individual has a number of non-dominated front it is in, and 
a crowding distance

• When comparing two individuals, first a front is considered 
(smaller is better), and in case of the same front, their crowding 
distance is considered (bigger is better)

• And in fact, no fitness is really computed, just these two 
numbers are compared in a tournament selection



NSGA III

• Improving the behavior in many 
dimensional problems

• Crowding distance is replaced 
by a set of reference points
• Generate evenly distributed 

reference points covering the 
search space.

• Consider reference vectors 
connecting 0 with reference 
points

• Number of reference points = 
population size

Image from https://pymoo.org/



NSGA III  CONTD.

• Selection:
• first, the non-dominated sorting 

as in NSGA-II

• then, fill up the underrepresented 
reference direction first. 

• If the reference direction does 
not have any solution assigned, 
then the solution with the 
smallest distance is surviving. 

• In case a second solution for this 
reference line is added, it is 
assigned randomly.

Image from https://pymoo.org/

f
newrepresentatives

assigned todirections

WnWsandWs Directions we a Wh mustbeassigned



REFERENCE POINTS

• Number of points grows with 
dimension M.

• N = C(p+M+1, p), where p is 
number of partitions, roughly 
equivalent to population size

• Generate evenly distributed 
points – not that easy

• Generate points reflecting the 
task preferences 

g notevenly
distributed

Phil

2s whentravelling from A to B
youmighthavesomelimitsfor time
or distance



COMBINATORIAL 
OPTIMIZATION

EVA solves NP-hard problems, TSP, permutation 
representations



EVA SOLVES HARD TASKS

• 0-1 knapsack problem

• Simple encoding

• Problematic fitness

• Standard operators

• Travelling Salesman problem (TSP)

• Simple fitness

• Problematic encoding and operators (crossover, really)

• Scheduling, planning, transportation problems ... 



KNAPSACK

• Given:

• A knapsack of capacity CMAX 

• N items, 

• each have a price v(i)

• and a volume c(i)

• The task is to choose items such that:

• Maximize ∑ v(i)

• At the same time, we squeeze them into a knapsack, i.e. 

• ∑ c(i) <= CMAX



KNAPSACK

• Encoding – a bitmap:

• 0110010 – take items 2,3 and 6

• Trivial almost

• But the individuals might not satisfy the CMAX condition

• Operators: 

• Simple crossover, mutation, selection

• Fitness: has two parts:

• max [ ∑v(i) ]  vs. min [ CMAX – ∑c(i) ]



KNAPSACK

• So, we have a multi-objective optimization:

• Either weight ‘em and add ‘em 

• Or use your favorite MOEA from previous chapter

• Or, change the encoding in a clever way:

• 1 means: PUT the item in the knapsack UNLESS the capacity 
is not exceeded

• This way we achieve a nice property that with such a 
decoder all strings in fact represent a valid solution



TRAVELLING SALESMAN

• N cities, tour them with minimal cost

• Fitness – the cost of the trip

• Representations are many

• Variants of vertex-based

• Edge-based, ...

• Operators are heavily dependent on representation

• Crossover allows to use heuristics we might have to solve the 
TSP



ADJACENCY REPRESENTATION

• Path is a list of cities

•  city j is at position i iff there is an edge from i to j

• Ex:

• (248397156) corresponds to 1-2-4-3-8-5-9-6-7

• Each path has 1 representation, some lists do not generate valid paths

• Not very intuitive

• Classical crossover does not work

• But schemata do: 

• E.g. (*3*...) means all paths with 2-3 edge

• Do not use it.

this istheorderofthecities I visit
was usedwhen

weknow longer

optimalsolutions

andwantedto 248 3 9 7 1 56
connect

them
together y 2134 8 89

12 4 3 8 5 9 6 7

E I thisisgoodforschemata

1 2 theremustbepathfrom 1to2



ORDINAL (OR BUFFER) 
REPRESENTATION

• Motivation was to use the standard 1-point crossover

• Let us have a buffer of vertices, maybe just ordered, the 
encoding is in fact a position of a city in this buffer

• When a city is used, it is deleted from a buffer

• Ex:

• Buffer (123456789), and path 1-2-4-3-8-5-9-6-7 is  represented 
as (112141311)

• Do not use it either.

represent thecities relatively insteadof exactly

thereforecitiesarein abufferandoncethe
item ispopped its

removed

fromthe
buffer

Effdpursuerwas
fromdifferentbufferthereforetheyarevery

madom

But Atleasttheyareformally
correct



PATH (OR PERMUTATION) 
REPRESENTATION

• Probably a first idea of most people 

• Permutation representation is important and natural for many 
other tasks, as well.

• path 5-1-7-8-9-4-6-2-3 is represented as (517894623) 

• The crossover does not work

• So, the main problem with this representation is to propose a 
crossover operator that produces correct individuals and 
represents some idea about how a good solution should look 
like.

• PMX, CX, OX, ...
2s thingmustbevalidpermutation

theyshouldalsohelpthesolution



PMX

• Partially mapped crossover (Goldberg)

• Preserve as many cities on their positions from the individuals 
as you can.

• 2-point

• (123|4567|89) PMX (452|1876|93) :
• (...|1876|..)  (...|4567|..) 

• and a mapping 1-4, 8-5, 7-6, 6-7 

• Can be added (.23|1876|.9)  (..2|4567|93)

• According to the mapping 

• (423|1876|59)  (182|4567|93)

thosewere thesewerenot
taking violated

cental

mtigliqye.es

theseareour
newoffsprings

wehave
created

mapping
between them

Wecantherefore notplacedin
the

topleftbecause1h isinthe
center



OX

• Order crossover (Davis)

• Preserve relative order of cities in the individuals

• (123|4567|89) OX (452|1876|93) : 

• (...|1876|..)  (...|4567|..) rearrange the path from the second 
crossover point

• 9-3-4-5-2-1-8-7-6

• Delete crossed over cities from  1, remains: 9-3-2-1-8

• Fill the first offspring: (218|4567|93)

• Similarly, the second offspring: (345|1876|92)

Itdoesntmatterwherewestartthetriponlytherelationsbetweencities

5451187 laz
218 4567193

Zowepreservedthe
relativeorderbetween

theremainingcities



CX

• Cyclic crossover (Oliver)

• Preserve the absolute position in the path

• (123456789) CX (412876935)

• First position at random, maybe from th first parent: P1=(1........), 

• Now we have to take 4, P1=(1..4....), then 8, 3 a 2

• P1=(1234...8.), can’t continue, we fill from the second parent

• P1=(123476985)

• Similarly P2=(412856739)

2housindetatretinchatehpoho.eu

dolandtojde



ER

• Edge recombination (Whitley et al)

• Observation: all previous crossovers preserve only about 
60% of edges from both parents 

• The ER tries to preserve as many edges as possible.

• For each city make a list of edges

• Start somewhere (the first city), 

• Choose cities with less edges, 

• In case of the same number of edges, choose randomly

Wecreatean additionalstructurefor crossover



(123456789) ER (412876935)

• 1:   9 2 4

• 2:   1 3 8

• 3:   2 4 9 5

• 4:   3 5 1

• 5:   4 6 3

• 6:   5 7 9

• 7:   6 8

• 8:   7 9 2

• 9:   8 1 6 3

• Start in 1, successors are 9, 2, 4

• 9 looses, has 4 succ., from 2  and 
4 choosing at random 4

• succ. of 4 are 3 and 5, take 5, 

• Now we have (145......),  and 
continue

• ... (145678239)

• It is possible that we cannot 
choose an edge and the 
algorithm fails, but it is very rare 
(1-1.5% cases)

wewillstartagainandchoosedifferent
startingposition



(123456789) ER2 (412876935)

• 1:   9 #2 4

• 2:   #1 3 8

• 3:   2 4 9 5

• 4:   3 #5 1

• 5:   #4 6 3

• 6:   5 #7 9

• 7:   #6 #8

• 8:   #7 9 2

• 9:   8 1 6 3

• ER2 – improving ER

• Preserving more common edges

• Mark edges that exist twice by - 
# 

• They are prioritized when 
choosing where to go.

thesearecommon

O

O theseare common

O
O these are common

00 thesearecommon
letsstart with 1

A because2 haspriority sowetake it

d
andonlyafterthatwewould

countnumberof
edges



INITIALIZATION FOR TSP

• Nearest neighbors:

• Start with a random city, 

• Choose next as the closest from the not chosen yet

• Edge insertion:

• To a path T (start with an edge) choose the nearest city c not in 
T

• Find an edge k-j in T so it minimizes the difference between k-c-
j and k-j

• Delete k-j, insert k-c and c-j to T

Youcan evensolvetheproblem withthiseventhough itwould takeverylong

Isthisdoesn'thavetobegloballytheshortest butis usuallybetterthan completely random

I
getsreplaced



MUTATION FOR TSP

• Inversion (!)

• Insert a city into a path

• Shift subpath

• Swap 2 cities

• Swap subpaths

• Heuristics such as 2-opt etc.

• Take two edges, four cities, choose other two edges 
connecting these 4 cities

12355 89

1231762518
thisiswhatwith DNAisdoggy

thatseasy

Boptwouldbepossible
toobut2opt isusedthemost

o

Wecanalsogo throughall quadmplets of feecitiesuntilfinding

9g enhancement

ifthey
Esther



OTHER APPROACHES

• (Binary) matrix representation:

• Either 1 on position (i,j) means an edge from i to j

• Or it means that i is before j in a path (more common)

• Specific operators of matrix crossover:  

• Conjunction – bitwise AND random insertion of edges 

• Disjunction – dissect into quadrants, 2 of them delete, remove 
contradictions, insert edges at random

• Combination with local heuristics

• Evolutionary strategy which improves paths by “smart mutations” – 
heuristics like 2-opt, 3-opt



SAT

• Paradigmatic NP-complete problem of satisfiability of 
Boolean formula (expressed in CNF)

• Given formula f: Bn -> B where B = {0,1}

• Find evaluation x = (x1,…xn) from Bn such that F(x) = 1

• CNF: f(x) = c1(x) & c2(x) & … & cm(x)

• conjunction of clauses

• each clause is disjunction of literals 

• each literal is a variable or its negation



K-SAT

• k-SAT: each conjunction has !k literals

• 2-SAT is solved in polynomial time

• 3-SAT and more are NP-complete

• Many heuristic algorithms exist for approximate SAT 
solving

• WSAT – popular local search heuristic evaluating solution 
based on number of satisfied classes, smart selection of 
local search direction



REPRESENTATIONS

• Straightforward bit-string - individual is Boolean vector x

• Floating-point - encode the formula as an expression

• Conjunction is *, disjunction is +, 

• x is (1-y)2, non x is (1+y)2

• Boolean 1 is 1, Boolean 0 is -1

• Minimize the encoded formula

• (round negative values to -1, positive to 1)



REPRESENTATIONS II

• Clause-based – for each clause find feasible assignments of 
variables
• the individual is a vector of assignments for all clauses 

• The length is m*k for k-SAT with m clauses

• A special fitness is needed that reflect global inconsistencies in 
assignments

• Path-based – visit clauses and select !1 variable assignments 
in each that is consistent, 
• not all variables are assigned, the individual represents more 

solutions

• Again, a special fitness solving inconsistencies is needed



EXAMPLE



FITNESS

• f itself - not good 

• Number of satisfied clauses

• Weight the problematic clauses

• Update after some iterations

• Refining function



EVAS FOR SAT 



OTHER TASKS - SCHEDULING

• Scheduling is NP-hard:

• Individual is a schedule, direct matrix encoding

• Rows are teachers, columns classes, values are codes of subjects

• Mutation – mix the subjects

• Crossover – swap better rows from individuals

• Fitness 

• Fitness of a row (how a teacher is satisfied)

• Other soft criteria and constrains about the schedule quality

• Hard constrains

• Must respect in operators, otherwise too many inadmissible solutions are generated

• Teachers constrains, when, where what to teach, …



OTHER TASKS – JOB SHOP 
SCHEDULING

• Production planning
• products o1…oN, from parts p1…pK, for each part more plans 

how to produce it on machines m1…mM, machines have 
different times for setup to a different product

• Fitness – production time

• Encoding is critical:
• Permutation – plan is just a permutation of products order. Decoder 

must choose plans for parts. Simple representation, can use TSP-
inspired crossovers. But shows not very efficient, decoder solves the 
complicated part, TSP operators not suitable.

• Direct representation of individual as the complete plan – 
specialized and complex evolutionary operators.



GENETIC PROGRAMMING

The very basics of tree-based representations of 
programs 

It ishardtorandomly generate legal machine code
Sourcecodeis notusedformutations etc
But treebased programming lany is possibly tomutate

manycompilers use
treestocompile therefore wecaneasilymutate

somebranches



EVOLUTION OF PROGRAMS

• 1950s – Alan Turing proposes evolution of programs

• 1980 – Forsyth – BEAGLE: A Darwinian Approach to 
Pattern Recognition

• Late 1980s – Tree representations were discussed among 
Holland PhD students 

• 1985 Nichael Cramer – first description of tree individuals, 

• 1989 – John Koza – tree based GP as we know it now  
(publication, patent)



GENERAL GP

• General structure of the GP algorithm:

• Generate initial population of random programs

• Evaluate the programs by running them and test on data

• Generate new population of programs:

• Selection based on fitness

• Crossover of two programs

• Mutation of programs

• As usual, repeat until a good enough solution is found



TREE-BASED GP

• John Koza, late 80s-early 90s:

• Programs are represented as syntactic trees

• Terminals are variables and constants

• Non-terminals are operations

• Crossover is a subtree exchange, non-terminals have typically bigger 
probability to be a crossover point

• Mutation replaces a subtree with random one

• Fitness is determined by running the program

• Selection is standard, often tournament

• First examples in Lisp

morningondata CG ELSE

119min an beanyother
subtrees

2s makesmoresense

in
expo

terminnls30

5 ie



MUTATIONS

• It is good (almost necessary) to use more mutation types:

• Random or systematic mutation of constants

• GP traditionally had problems fine-tuning numerical values

• Thus, a specialized mutations of constants speed-up the algorithm

• Either (any) arithmetic mutation on constants

• Or iterations of hill-climbing or other optimization methods on one or all 
constant set of the tree

• Random exchange of a node for the same arity one

• Permutations

• Swap non-terminal for terminal

• Mutations that decrease the size of the tree (smaller sub-tree, new individual from a 
sub-tree, … )

itsbesttoreplacesubtrees insteadofmutatingnode it requires validarityet



CROSSOVERS

• Swap two subtrees

• Uniform crossover – GPUX (Poli, Langdon)

• At early stages GPUX swaps large subtrees,  as the population 
converges the operator becomes more and more local.,

• Identify the common region C between two trees. Each node in 
C is considered for crossover with a constant probability. 

• Nodes in the interior of C are swapped without affecting the 
subtrees rooted at these nodes. 

• Nodes on the boundary of C - their subtrees are swapped. 

thisislikeonepointcrossover

1
whatisuniform
intreesmanner

Atthe beginning swap large subtrees expontion at theend swaponlylittlesubtrees exploitations



INITIALIZATIONS

• Random procedure how to generate trees from two sets – 
terminals and non-terminals 

• Grow: Generate random trees from both sets till a limit on 
number of nodes is reached

• Full: Generate random trees from non-terminal till certain 
depths, then only terminals are added

• Ramped half-and-half: half of population by grow, half by full

Terminals Nonterminals

is C

1am stoblevynyslellloza

Igfinhodieyplignp
itu.netnamanun limitpoetsprobi

tryingtobuild complete
tree First tagMutation isactually implementit bythissameinit to use non terminals

onlyattheend use
terminals



Symbolic regression

fix
target

4
fail t

a o thess error

whysymbolic

therefore the_we shouldprovide aformula
feelwillbe represented as trees

T XC Mutationofconstants
NT 5 sincos thischangeisfasterthan hoping
indiv singleexprtren thatgreatersubtreewithnonterminals

fitness error
would generatethedesiredvalue

C
i need 7 here

Bloating

Because mudomness says whynot
Icanplace 7asconst I cantryto

limitsize randomly build

penalizesize subtrees until
Igenerate 7smaller individuals

Efshrinkingmutations



WAY DOWN – LINEAR GP

• Program is represented in a linear way, most often in some 
machine/byte code

• Simpler, some claim more natural representation

• Simpler operators (crossover, mutation work on linear vectors)

• Faster emulation of the run

• But high risk of creating nonsense programs by mutations and 
crossovers

• Favourite representation in artificial life, evolution of bots and 
control code in games



WAY UP – GRAPH GP

• Program is not a tree, but a more general graph, often acyclic (DAG)

• First considered as extensions of tree GP to parallel programs

• Later it was discovered, that graph structures are really useful to 
describe lots of things 

• Evolution of circuits

• Finite automata, you guessed it

• Neural networks

• Reinforcement learning for robots, planning …

• Complicated genetic operators – how to cross over general graphs


