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Kolmogorov´s Theorem – 1957
13. Hilbert problem  

~  Can every continuous function of 𝑛 arguments be represented using
a finite composition of functions of at most two arguments?
▪ Example:     𝑥 ⋅ 𝑦 = exp (ln 𝑥 + ln 𝑦)

Theorem (Kolmogorov, 1957): Let  𝑓: [0,1]𝑛 → [0,1] be a continuous function. 
There exist functions of one argument 𝑔 and 𝜑𝑞, for  𝑞 = 1, … , 2𝑛 + 1 and
constants 𝜆𝑝, for 𝑝 = 1, … , 𝑛 such that

 𝑓 𝑥1, … , 𝑥𝑛 = σ𝑞=1
2𝑛+1 𝑔 σ𝑝=1

𝑛 𝜆𝑝𝜑𝑞 𝑥𝑝
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Kolmogorov 
Networks

▪ to represent continuous 
functions of 𝑛 variables

      𝑓 𝑥1, … , 𝑥𝑛 =

         = σ𝑞=1
2𝑛+1 𝑔 σ𝑝=1

𝑛 𝜆𝑝𝜑𝑞 𝑥𝑝
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Function Approximation (1)
▪ Any continuous function can be reproduced exactly by a finite 

network of  computing units, whereby the necessary primitive 
functions for each node exist 

× the choice of the right transfer function!

▪ The best possible approximation to a given function 
× the choice of the right number of computing units with the

considered transfer function

⇒ Instead of an exact representation, try to approximate
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Function Approximation (2)
Theorem:  Any continuous real function  𝑓: [0, 1] → [0, 1]  can be 
approximated using a network of threshold elements in such a way 
that the total approximation error 𝐸 is lower than any given real 
number 𝜀 > 0:

𝐸 = න
0

1

𝑓 𝑥 − ሚ𝑓 𝑥 d𝑥 < 𝜀

     where ሚ𝑓 denotes the network function.
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Function 
Approximation (3)

Proof - idea: 
▪ approximation of 𝑓        

by means of 𝜑𝑁 

...
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Function Approximation (4)
Proof (continued): 
▪ Divide the interval [0, 1] into 𝑁 equal segments selecting the points  

𝑥0, 𝑥1, … , 𝑥𝑁 ∈ 0, 1 ; 𝑥0 = 0, 𝑥𝑁 = 1
▪ Define a function 𝜑𝑁 as it follows: 

    𝜑𝑁 𝑥 = min  𝑓 𝑥′ ; 𝑥′ ∈ 𝑥𝑖 , 𝑥𝑖+1  for 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1

▪ Further, consider 𝜑𝑁 an approximation of 𝑓 so that the approximation 
error 𝐸𝑁  is given by: 

𝐸𝑁 =  න
0

1

𝑓 𝑥 − 𝜑𝑁 𝑥  d𝑥
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Function Approximation (5)
Proof (continued): 
▪ Since  𝑓 𝑥 ≥ 𝜑𝑁 𝑥  ∀𝑥 ∈ [0, 1],  𝐸𝑁   corresponds to 

𝐸𝑁 = න
0

1

𝑓 𝑥  d𝑥 − න
0

1

𝜑𝑁 𝑥 d𝑥

▪ Since continuous functions are integrable  →  the lower sum of 𝑓 converges in the 
limit 𝑁 → ∞ to the integral of 𝑓 in the interval [0,1] 

▪ Thus, it holds 𝐸𝑁 → 0 when 𝑁 → ∞, hence for any real number 𝜀 > 0 there exists 
an 𝑀 such that 𝐸𝑁 < 𝜀 ∀𝑁 ≥ 𝑀

▪ The function 𝜑𝑁  is therefore the desired approximation of 𝑓.
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Function 
Approximation (6)

Proof (continued): 
▪ The function  𝜑𝑁(𝑥) can be 

computed by a network of 
threshold units (~ a neural 
network)
• 𝜑𝑁(𝑥) is a step-wise function 
• in each of the 𝑁 segments of  

the interval 0, 1 : 
𝑥0, 𝑥1 , 𝑥1, 𝑥2 , … , 𝑥𝑁−1, 𝑥𝑁 , 

𝜑𝑁(𝑥) has the respective 
value 𝛼1, … , 𝛼𝑁

x
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x N+δ
𝑁 − 1

x 2
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Function Approximation (7)
Proof (continued): 
This network can compute the step-wise function 𝜑𝑁(𝑥):
▪ The single input to the network is 𝑥 (from the interval [0,1])
▪ Each pair of units with the thresholds 𝑥𝑖 and 𝑥𝑖+1 guarantees that the unit with threshold 𝑥𝑖  

will be active when  𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1 .
▪ The (linear) output unit adds all outputs of the previous layer of units and produces their 

(weighted) sum as a result
▪ The unit with the threshold 𝑥𝑁 + 𝛿, where 𝛿 is a small positive number, is used to recognize 

the case 𝑥𝑁−1 ≤ 𝑥 ≤ 𝑥𝑁.

This network computes the function 𝜑𝑁(𝑥), that approximates the function 𝑓 with the 
desired maximum error.                                                   
QED
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Function 
Approximation (8)

Corollary:

The theorem is valid also for 
any function 𝑓: [0, 1] → (0, 1) 
and networks with the 
sigmoidal transfer function.
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Function 
Approximation (9)
Proof: 
▪ The image of the function 𝑓 has 

been limited to the interval  
(0, 1) in order to simplify the 
proof

▪ The function 𝑓 can be approxim-
ated using the sketched network

▪ The transfer function of the units 
with the threshold 𝑥𝑖 is given by 
𝑠𝑐(𝑥 − 𝑥𝑖), where  𝒄  controls the 
slope of the function

𝑠𝑐 𝑥 − 𝑥𝑖  =
1

1 + 𝑒−𝑐 𝑥−𝑥𝑖
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Function Approximation (10)
Proof (continued): 

▪ The network can approximate the function 𝜑𝑁(𝑥) with an approximation error 
lower than any desired bound (> 0)

      ~ threshold functions can be approximated with any desired precision  by  
a sigmoidal function parametrized with 𝑐)

▪ The weights connecting the first layer of units to the output unit have been set in 
such a way that the sigmoid produces the desired values 𝛼𝑖   as a result

▪ Further it should be guaranteed that every input 𝑥 produces a single 1 from the 
first layer to the output unit

     →  the first layer just finds out to which of the 𝑁 segments of the interval [0, 1] 
the input 𝑥 belongs 

QED
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Function Approximation (11)
The multidimensional case:
  The network capable of approximating the function 

𝑓: 0,1 𝑛 → (0,1)  can be constructed using the same general 
idea as before in the one-dimensional case

▪ Extensions necessary for the two-dimensional case
• Recognition of intervals in the 𝑥 and y domains 

o 2 units left are used to test 𝑥0 ≤ 𝑥 < 𝑥1
o 2 units right are used to test  𝑦1 ≤ 𝑦 < 𝑦2

• The unit with the threshold 1.5 recognizes the conjunction of both 
conditions  (for 𝑥 and 𝑦)

I. MRÁZOVÁ: NEURAL NETWORKS 17



I. MRÁZOVÁ: NEURAL NETWORKS 18

Extensions necessary for the 2D-case
▪ Recognition of intervals in the 𝑥 and y domains 

• 2 units left are used to test 𝑥0 ≤ 𝑥 < 𝑥1
• 2 units right are used to test  𝑦1 ≤ 𝑦 < 𝑦2

▪ The unit with the threshold 1.5 recognizes the 
conjunction of both conditions  (for 𝑥 and 𝑦)

▪ The „output“ has the weight 𝑠0
−1(𝛼12), so the 

sigmoidal transfer function yields 𝛼12
   →  this number corresponds to the desired 

approximation of the function 𝑓 on
𝑥0, 𝑥1 × 𝑦1, 𝑦2

Function Approximation (12)
x

. . .

y
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The Complexity of Learning
The satisfiability problem 
D:  Let 𝑉 be a set of 𝑛 logical variables, and let 𝐹 be a logical expression

in conjunctive normal form (conjunction of disjunctions of literals)
which contains only variables from 𝑉.

      The satisfiability problem consists in assigning truth values to the
variables in 𝑉 in such a way that the expression 𝐹 becomes true.

THEOREM:  The general learning problem for networks of threshold
functions is NP-complete.
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The Complexity    
of Learning (2)

Proof - idea: 
▪ a network equivalent 

to 3SAT
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The Complexity of Learning (3)
Proof (continue):

1. 3SAT can be reduced to an instance of a learning problem for 
neural networks in polynomial time

     A logical expression 𝐹 in conjunctive normal form, which 
contains 𝑛 variables can be transformed in polynomial time 
in the description of a network of the above type:
• For each variable 𝑥𝑖  a weight 𝑤𝑖  is defined
• The connections to the third layer are fixed according to the 

conjunctive normal form we are dealing with
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The Complexity of Learning (4)

Proof (continue):

▪ This can be done (using a suitable coding) in polynomial time, 
because it holds for the number 𝑚 of different possible 
disjunctions in a 3SAT formula that  𝑚 ≤ 2𝑛 3

▪ If an instantiation 𝐴 with logical values of the variables 𝑥𝑖  
exists, such that 𝐹 becomes true, then there exist weights  
𝑤1, 𝑤2, … , 𝑤𝑛 , that solve the learning problem
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The Complexity of Learning (5)
Proof (continue):
▪ It is sufficient to set the weights  𝑤𝑖 = 1, if  𝑥𝑖 = 1;               

and 𝑤𝑖 = 0, if  𝑥𝑖 = 0.                                                      
(in both cases, we thus choose  𝑤𝑖 = 𝑥𝑖)

▪ Similarly in the opposite way:                                  
if there exist weights 𝑤1, 𝑤2, … , 𝑤𝑛, that solve the learning
problem, then the instantiation 𝑥𝑖 = 1 for 𝑤𝑖 ≥ 0.5 and 
𝑥𝑖 = 0 otherwise, is a valid instantiation that makes 𝐹 true
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The Complexity of Learning (6)
Proof (continue):

2. Further, we must show that the learning problem belongs to 
the class NP (its solution can be checked in polynomial time)

• If the weights 𝑤1, 𝑤2, … , 𝑤𝑛 are given, then a single run of the 
network can be used to check if the output 𝐹 is equal to 1

• The number of computation steps is directly proportional to the 
number 𝑛 of variables and to the number 𝑚 of disjunctive clauses 
(which is bounded by the polynomial 2𝑛 3 )
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The Complexity of Learning (7)
Proof (continue):

▪ The time required to check an instantiation is therefore 
bounded by a polynomial in 𝑛

▪ The given learning problem thus belongs to the class NP

QED

Remark:
    For some special types of simple neural networks, the learning problem 

can be solved in polynomial time (by means of linear programming 
algorithms)
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The XOR Problem (1)
16 Boolean functions of two variables

▪ Input vector Ԧ𝑥 = (𝑥1, 𝑥2) is a point in the two-dimensional space; 𝑓𝑗  defines the 
labeling for all points (𝑥1, 𝑥2), where 𝑥𝑖 ∈ {0,1}

▪ The perceptron can compute functions for which a hyperplane can separate the 
points labeled by 0 from the points labeled by 1 

𝒙𝟏 𝒙𝟐 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 𝑓11 𝑓12 𝑓13 𝑓14 𝑓15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND OR

XOR
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The XOR Problem (2)

16 Boolean functions of two variables

0 1

1 1

OR

0 0

0 1

AND

0 1

1 0

XOR
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The Number of Regions  
in the Feature Space (1)

▪ The capacity of a neuron depends on the dimension of the weight 
space and the number of cuts with separating hyperplanes

→  Question:   
      How many regions are defined by 𝑚 cutting hyper-planes of the   
      dimension 𝑛 − 1 in an 𝑛-dimensional space?
       -  we consider only hyperplanes going through the origin

→  The intersection of 𝑙 hyperplanes; 𝑙 ≤ 𝑛 is of dimension 𝑛 − 𝑙 



The Number of Regions  
in the Feature Space (2)

▪ 2-dimensional case:
          𝑚 lines going through the origin define 
          at most 2 ⋅ 𝑚 different regions
▪ 3 – dimensional case:

            each new cut increases the number of regions
          two times
▪ in general:  
       𝑛 cuts with 𝑛 − 1 -dimensional hyperplanes
       in  𝑛-dimensional space define at most 2𝑛

       different regions
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+ 2  new regions
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The Number of Regions  
in the Feature Space (3)

Theorem:  
Let 𝑅(𝑚, 𝑛) denote the number of different regions defined 
by 𝑚 separating hyperplanes of the dimension 𝑛 − 1 in an 
𝑛-dimensional space. 
We set 𝑅 1, 𝑛 = 2 for 𝑛 ≥ 1 and 𝑅 𝑚, 0 = 0 ∀ 𝑚 ≥ 1.
Then for 𝑛 ≥ 1 and 𝑚 > 1:

𝑅 𝑚, 𝑛 = 𝑅 𝑚 − 1, 𝑛 + 𝑅 𝑚 − 1, 𝑛 − 1
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The Number of Regions  
in the Feature Space (4)
Proof  (by induction on 𝑚):
1. 𝑚 = 2 and 𝑛 = 1:  The formula is valid, because
 𝑅 2, 1 =  𝑅 1, 1 + 𝑅 1, 0 = 2 + 0 =  2
2. 𝑚 = 2 and 𝑛 ≥ 2:  𝑅(2, 𝑛) = 4  =>  valid, because  

𝑅 2, 𝑛 = 𝑅 1, 𝑛 + 𝑅 1, 𝑛 − 1 = 2 + 2 = 4
3. 𝑚 + 1 hyperplanes of dimension 𝑛 − 1 are given in the   

𝑛-dimensional space and in general position (𝑛 ≥ 2):
• The first 𝑚 hyperplanes define 𝑅 𝑚, 𝑛  regions in the

𝑛-dimensional space
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The Number of Regions  
in the Feature Space (5)
Proof  (continue):
▪ (𝒎 + 𝟏)-st hyperplane intersects the first 𝒎  hyperplanes in 𝒎 

hyperplanes of dimension 𝒏 − 𝟐
▪ These 𝒎 hyperplanes (of dimension 𝒏 − 𝟐) divide the (𝒏 − 𝟏)-

dimensional space into 𝑹(𝒎, 𝒏 − 𝟏) regions
▪ After the cut with the hyperplane  (𝒎 + 𝟏), exactly 𝑹 𝒎, 𝒏 − 𝟏  new 

regions have been created
▪ → The new number of regions is therefore:
▪      𝑹 𝒎 + 𝟏, 𝒏  =  𝑹 𝒎, 𝒏 + 𝑹 𝒎, 𝒏 − 𝟏

QED 
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Number of Regions 
in the Feature Space (6)
▪ A useful alternative for 𝑅(𝑚, 𝑛):

𝑅 𝑚, 𝑛 = 2 σ𝑖=0
𝑛−1 𝑚 − 1

𝑖

x With growing  𝑛, the number of Boolean functions grows 
significantly quicker than the number of  regions formed by 
hyperplanes in a general position 
• this number can be in general larger than the number of threshold 

functions over binary inputs
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Number of Regions  
in the Feature Space (7)

Example:

𝑛 # Boolean functions # threshold functions # regions
1 4 2 2
2 16 14 14
3 256 104 128
4 65536 1882 3882
5 4.3 × 109 94572 412736
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Number of Regions  
in the Feature Space (8)
Consequences:
▪ Learnability problems  ~  if the number of input vectors is too high, 

the network might be not able to form enough regions with the given 
number of hidden neurons 

▪ Generalization
~  expected number of correctly classified examples

▪ Over-fitting 
~  erroneous interpolation of patterns outside of the training set

▪ Vapnik-Chervonenkis dimension (VC-dimension)
~  finite VC-dimension  →  „the class of concepts“ is learnable
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Vapnik-Chervonenkis Dimension  
(VC-dimension)  (1)
Definition: 
Let 𝐶 = {𝑓𝑖} be a set of functions (concept class).
The set of 𝑚 training patterns 𝑡𝑘 𝑘=1,…,𝑚 can be shattered by means of 𝐶, if 
for each of the 2𝑚 possible labelings of these patterns with 1/0, there exists at 
least one function, that satisfies this labeling. 

Definition:
The VC-dimension 𝑉 of a set of functions 𝐶 is defined as the biggest 𝑚, for 
which a set of 𝑚 training patterns exists that can be shattered.
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Vapnik-Chervonenkis Dimension  
(VC-dimension) (2)
▪ If there exists for any 𝑚 a set of 𝑚 training patterns, that can 

be shattered by means of 𝐶, the VC-dimension of 𝐶 is infinite
→  Such a problem is not „ L E A R N A B L E “

▪ In general, the VC-dimension of  a set of functions does not 
depend on the number of parameters

▪ VC-dimension impacts adequate  generalization
• The network can have many parameters, but it should have a small VC-

dimension  →   better generalization
• High VC-dimension correlates with worse generalization
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Vapnik-Chervonenkis Dimension  
(VC-dimension) (3)
Example:

1. The VC-dimension of a set of linear indicator functions  
𝑄 Ԧ𝑧, 𝛼 = Θ σ𝑝=1

𝑛 𝛼𝑝𝑧𝑝 + 𝛼0  in the 𝑛-dimensional space is 𝑛 + 1, 
(i.e., it can shatter at most 𝑛 + 1 patterns)  

𝑛 = 2

𝒛𝟒

𝒛𝟑

𝒛𝟐

𝒛𝟐

𝒛𝟏

𝒛𝟏

𝒛𝟑
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Vapnik-Chervonenkis Dimension  
(VC-dimension) (4)
2. VC-dimension of the set of functions 𝑓𝛼 𝑧 = 𝜃 𝑐𝑜𝑠 𝛼𝑧 ,  𝛼 ∈ 𝑅 is infinite 

▪ The points 𝑧1 = 10−1, … , 𝑧𝑚 = 10−𝑚 can be shattered by means of the 
functions from this set

▪ To shatter these patterns into two classes (+1/−1) given by the 
sequence  𝛿1, … , 𝛿𝑚; 𝛿𝑖 ∈ {0, 1}  it is sufficient to choose the value 
of the parameter as

𝛼 = 1 + ෍
𝑖=1

𝑚

1 − 𝛿𝑖 10𝑖 ⋅ 𝜋

𝜃 𝑥 = ቊ1 𝑓𝑜𝑟 𝑥 ≥ 0
0 𝑓𝑜𝑟 𝑥 < 0



Vapnik-Chervonenkis Dimension 
(VC-dimension) (5)

• e.g., for  𝛿1 = 1, 𝛿2 = 0, 𝛿3 = 1,  𝛼 = 𝜋 1 + 0 ⋅ 101 + 1 ⋅ 102 + 0 ⋅ 103 = 101 ∙ 𝜋
• cos 𝛼𝑧1 = cos 10.1 𝜋 ≈ 0.9511 > 0  
• cos 𝛼𝑧2 = cos 1.01 𝜋 ≈ −0.9995 < 0
• cos 𝛼𝑧3 = cos 0.101 𝜋 ≈ 0.9501 > 0
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For the set of functions 𝑓𝛼 𝑧 = 𝜃 𝑐𝑜𝑠 𝛼𝑧 ,  𝛼 ∈ 𝑅
• The points 𝑧1 = 10−1, … , 𝑧𝑚 = 10−𝑚 can be shattered by this set of functions
• To shatter these patterns into two classes  (+1/−1)  given by the sequence  

𝛿1, … , 𝛿𝑚; 𝛿𝑖 ∈ {0, 1}  it is sufficient to choose the value of the parameter

𝛼 = 1 + ෍
𝑖=1

𝑚

1 − 𝛿𝑖 10𝑖 ⋅ 𝜋
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Vapnik-Chervonenkis Dimension  
(VC-dimension) (6)

when choosing a suitable 
coefficient 𝛼 , it is possible to 
approximate any function 
bounded in the interval 
⟨+ 1; − 1⟩ for any number 𝑚 of 
selected points by 𝑐𝑜𝑠 𝛼𝑧
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Vapnik-Chervonenkis Dimension  
(VC-dimension) (7)

The problem of „overfitting“  ~  the network learns also the noise

computed approximation

the unknown function
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Vapnik-Chervonenkis Dimension  
(VC-dimension) (8)
▪ For the network with 𝑊 weights and 𝑁 neurons and with the 

required limit for the generalization error 𝜀, the number 𝑃 of 
training patterns necessary for good generalization is:   

𝑃 ≥
𝑊
𝜀

𝑙𝑜𝑔2
𝑁
𝜀

▪ A multi-layered network with 1 hidden layer cannot generalize 
well, if there were less than 𝑊/𝜀  randomly chosen training 
patterns, i.e., 𝑃 ≥ 𝑊/𝜀
• To achieve the accuracy of at least 90 %, it is necessary to provide at 

least 10 ⋅ 𝑊 patterns 
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