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Kolmogorov's Theorem — 1957

13. Hilbert problem

~ Can every continuous function of n arguments be represented using

a finite composition of functions of at most two arguments?
= Example: x-y=exp(lnx +Iny)

Theorem (Kolmogoroy, 1957): Let f:[0,1]® — [0,1] be a continuous function.

There exist functions of one argument g and ¢, for ¢ = 1, ...,2n + 1 and

constants /12,, forp =1, ...,n such that

fQxq e, xn) = 222 9(25=1 2pPq (%))
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Kolmogorov
Networks

" to represent continuous

functions of n variables

f(xl; "'Ixn) —

= 2324 9(5-1 Ap9q (%))
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Function Approximation (1)

= Any continuous function can be reproduced exactly by a finite
network of computing units, whereby the necessary primitive
functions for each node exist

x the choice of the right transfer function!
= The best possible approximation to a given function

x the choice of the right number of computing units with the
considered transfer function

= Instead of an exact representation, try to approximate
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Function Approximation (2)

Theorem: Any continuous real function f:[0,1] — [0, 1] can be
approximated using a network of threshold elements in such a way
that the total approximation error E is lower than any given real
number € > 0:

1
= f|f(x)—f(x)| dx < ¢
0

where f denotes the network function.
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Function
Approximation (3)

Proof - idea:
= approximation of f

by means of @

@n(x)

f(x)
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Function Approximation (4)

Proof (continued):

= Divide the interval [0, 1] into N equal segments selecting the points
X0y X1y o) XN (S [O, 1], 250 = 0, XN = 1

= Define a function ¢y as it follows:
on(x) =min{ f(x'); x" € [x;, x;41) for x; < x < Xx;44}

= Further, consider ¢, an approximation of f so that the approximation
error Ey is given by:

1
Ey = f|f(x) — oy(x)| dx
0
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Function Approximation (5)

Proof (continued):
= Since f(x) = @y(x) Vx €[0,1], Ey corresponds to

1 ~ lower Riemann sum

1

of the function f

En :ff(x) dx—j‘PN(x) dx
0 0

= Since continuous functions are integrable - the lower sum of f converges in the
limit N — oo to the integral of f in the interval [0,1]

"= Thus, it holds Ejy = 0 when N — oo, hence for any real number € > 0 there exists
an M suchthatEy <e VN = M

= The function ¢y is therefore the desired approximation of f.
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Function
Approximation (6)

Proof (continued):

= The function @, (x) can be
computed by a network of
threshold units (~ a neural
network
* @y(x) is a step-wise function
* in each of the N segments of
the interval [0, 1]:

[x0, x1), 21, %2), -, [y -1, 2N ],
@y (x) has the respective
value ay, ..., ay

Py (x)
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Function Approximation (7)

Proof (continued):

This network can compute the step-wise function @, (x):
= The single input to the network is x (from the interval [0,1])

= Each pair of units with the thresholds x; and x;,; guarantees that the unit with threshold x;
will be active when x; < x < x;,1.

= The (linear) output unit adds all outputs of the previous layer of units and produces their
(weighted) sum as a result

= The unit with the threshold xy + &, where § is a small positive number, is used to recognize
the case xy_1 < x < xy.

This network computes the function ¢, (x), that approximates the function f with the
desired maximum error.

QED
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Function
Approximation (8)

The theorem is valid also for
any function f: [0,1] = (0, 1)
and networks with the
sigmoidal transfer function

I. MRAZOVA: NEURAL NETWORKS
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Function
Approximation (9)

Proof:

* The image of the function f has
been limited to the interval
(0,1) in order to simplify the
proof

* The function f can be approxim-
ated using the sketched network

= The transfer function of the units
with the threshold x; is given by
s.(x — x;), where ¢ controls the
slope of the function

on(x)

SC(X_xi) :1+e
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Function Approximation (10)

Proof (continued):

The network can approximate the function ¢ (x) with an approximation error
lower than any desired bound (> 0)

~ threshold functions can be approximated with any desired precision by
a sigmoidal function parametrized with c)

The weights connecting the first layer of units to the output unit have been set in
such a way that the sigmoid produces the desired values a; as a result

Further it should be guaranteed that every input x produces a single 1 from the
first layer to the output unit

—> the first layer just finds out to which of the N segments of the interval [0, 1]
the input x belongs

QED
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Function Approximation (11)

The multidimensional case:

The network capable of approximating the function

f:10,1]™" — (0,1) can be constructed using the same general
idea as before in the one-dimensional case

Extensions necessary for the two-dimensional case

* Recognition of intervals in the x and y domains
O 2 units left are used to test x5 < x < x4
o 2 units rightareusedtotest y; <y <y,

* The unit with the threshold 1.5 recognizes the conjunction of both
conditions (for x and y)

I. MRAZOVA: NEURAL NETWORKS 17



Function Approximation (12)

X y Extensions necessary for the 2D-case

= Recognition of intervals in the x and y domains
* 2 units leftare used to test x; < x < x4

1 1 1 1
* 2 unitsrightareusedtotest y; <y <y,
! (s
‘o @ = The unit with the threshold 1.5 recognizes the
conjunction of both conditions (for x and y)
) : /1

= The ,output” has the weight sy 1(ay5), so the
sigmoidal transfer function yields a4,

— this number corresponds to the desired
S ' (a12) approximation of the function f on

[0, X1) X [V1,¥2)
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Extensions necessary for the 2D-case

= Recognition of intervals in the x and y domains

* 2 units left are used to test x; < x < x4
e 2 unitsrightareusedtotest y; <y <y,

= The unit with the threshold 1.5 recognizes the
conjunction of both conditions (for x and y)
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The Complexity of Learning

The satisfiability problem

D: LetV be a set of n logical variables, and let F be a logical expression
in conjunctive normal form (conjunction of disjunctions of literals)

which contains only variables from V.

The satisfiability problem consists in assigning truth values to the
variables in V in such a way that the expression F becomes true.

THEOREM: The general learning problem for networks of threshold
functions is NP-complete.

I. MRAZOVA: NEURAL NETWORKS (NAIL002) 21




The Complexity
of Learning (2)

Proof - idea:

= a3 network equivalent
to 3SAT

1) xl V _Ixz V _|x3

2) Xy Vx3V-x,

a

conjunction

g(m‘/*‘" 75 SWer/
V)Hl/u@f . L\]Mda T/F Jodwo,

I. MRAZOVA: NEURAL NETWORKS

m clauses
(disjunctions)
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The Complexity of Learning (3)

Proof (continue):

1. 3SAT can be reduced to an instance of a learning problem for
neural networks in polynomial time

A logical expression F in conjunctive normal form, which
contains n variables can be transformed in polynomial time
in the description of a network of the above type:

* For each variable x; a weight w; is defined

* The connections to the third layer are fixed according to the
conjunctive normal form we are dealing with

I. MRAZOVA: NEURAL NETWORKS (NAIL002) 23




The Complexity of Learning (4)

Proof (continue):

= This can be done (using a suitable coding) in polynomial time,
because it holds for the number m of different possible
disjunctions in a 3SAT formula that m < (2n)3

= |f an instantiation A with logical values of the variables x;
exists, such that I becomes true, then there exist weights
W1, W>, ..., Wy, , that solve the learning problem

I. MRAZOVA: NEURAL NETWORKS (NAIL002) 24



The Complexity of Learning (5)

Proof (continue):

= |tissufficient to set the weights w; =1, if x; = 1;
and W; = O, if Xi = 0.

(in both cases, we thus choose w; = x;)
= Similarly in the opposite way:
if there exist weights wy, w,, ..., w,,, that solve the learning

problem, then the instantiation x; = 1 for w; = 0.5 and
x; = 0 otherwise, is a valid instantiation that makes F true
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The Complexity of Learning (6)

Proof (continue):

2. Further, we must show that the learning problem belongs to
the class NP (its solution can be checked in polynomial time)

* If the weights wy, w,, ..., w,, are given, then a single run of the
network can be used to check if the output F is equal to 1

* The number of computation steps is directly proportional to the
number n of variables and to the number m of disjunctive clauses
(which is bounded by the polynomial (21)3)
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The Complexity of Learning (7)

Proof (continue):

= The time required to check an instantiation is therefore
bounded by a polynomial in n

= The given learning problem thus belongs to the class NP
QED

Remark:

For some special types of simple neural networks, the learning problem
can be solved in polynomial time (by means of linear programming
algorithms)
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The XOR Problem (1)

16 Boolean functions of two variables
fis

o 0 01 01 01 01 01 01 O 1 0 1
0o 10 01 1 0 01 1 0 O 1 1 0 0 1 1
1 0 0o 60 001 1 11 0 0 O0OOT1 1 1 1
11 0 0 0 0O OO O O 17T11 11 1 1 1 1

= |nput vector X = (xq,x,) is a point in the two-dimensional space; fj defines the
labeling for all points (x4, x,), where x; € {0,1}

= The perceptron can compute functions for which a hyperplane can separate the
points labeled by 0 from the points labeled by 1
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The XOR Problem (2)

16 Boolean functions of two variables

OR AND XOR

RAZOVA: NEURAL NETWORKS (NAIL002)



The Number of Regions
in the Feature Space (1)

The capacity of a neuron depends on the dimension of the weight
space and the number of cuts with separating hyperplanes

— Question:

How many regions are defined by m cutting hyper-planes of the
dimension n — 1 in an n-dimensional space?

- we consider only hyperplanes going through the origin

— The intersection of [ hyperplanes; [ < n is of dimension n — [

I. MRAZOVA: NEURAL NETWORKS (NAIL002) 31



The Number of Regions
in the Feature Space (2)

=  ?2-dimensional case:

+ 2 new regions

m lines going through the origin define
at most 2 - m different regions

"= 3 —dimensional case:

each new cut increases the number of regions
two times

= jn general:

n cuts with (n — 1)-dimensional hyperplanes
in n-dimensional space define at most 2™
different regions

I. MRAZOVA: NEURAL NETWORKS (NAIL002)




The Number of Regions
in the Feature Space (3)

Theorem:

Let R(m, n) denote the number of different regions defined
by m separating hyperplanes of the dimensionn — 1 in an
n-dimensional space.

Weset R(1,n) = 2forn>=1and R(m,0) =0 Vm > 1.
Thenforn = 1andm > 1:

Rim,n) =R(m—-—1,n)+R(m—-—1,n—1)




The Number of Regions
in the Feature Space (4)

Proof (by induction on m):

1. m=2andn = 1: The formula is valid, because
R2,1)= R(1,1)+R(1,0)=24+0 = 2

Z. m=2andn = 2: R(2,n) =4 => valid, because
R(2,n)=R(1,n)+R(1,n—-1)=24+2=4

3. m + 1 hyperplanes of dimension n — 1 are given in the

n-dimensional space and in general position (n = 2):

The first m hyperplanes define R(m, n) regions in the
n-dimensional space
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The Number of Regions
in the Feature Space (5)

Proof (continue):

= (m + 1)-st hyperplane intersects the first m hyperplanesinm
hyperplanes of dimension n — 2

= These m hyperplanes (of dimension n — 2) divide the (n — 1)-
dimensional space into R(m,n — 1) regions

= After the cut with the hyperplane (m + 1), exactly R(m,n — 1) new
regions have been created

= = The new number of regions is therefore:

o Rlm+1,n) = Rlmn)+R(mn—1)
QED
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Number of Regions
in the Feature Space (6)

= A useful alternative for R(m, n):
_ n-1 (m—1
R(m,n) = 2 33 ( l. )

X With growing n, the number of Boolean functions grows
significantly quicker than the number of regions formed by
hyperplanes in a general position

* this number can be in general larger than the number of threshold
functions over binary inputs
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Number of Regions
in the Feature Space (7)

Example:
1 4 2 2
2 16 14 14
3 256 104 128
4 65536 1882 3882
5 4.3 x 10° 94572 412736

I. MRAZOVA: NEURAL NETWORKS (NAIL002) 37




Number of Regions
in the Feature Space (8)

Conseqguences:

= Learnability problems ~ if the number of input vectors is too high,
the network might be not able to form enough regions with the given
number of hidden neurons

= @Generalization
~ expected number of correctly classified examples

= Over-fitting
~ erroneous interpolation of patterns outside of the training set

= Vapnik-Chervonenkis dimension (VC-dimension)
~ finite VC-dimension - ,the class of concepts” is learnable
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Vapnik-Chervonenkis Dimension
(VC-dimension) (1)

Definition:

Let C = {f;} be a set of functions (concept class).

The set of m training patterns {ty };=1 ., can be shattered by means of C, if
for each of the 2™ possible labelings of these patterns with 1/0, there exists at
least one function, that satisfies this labeling.

Definition: e liol sz‘wz + 4m4mm MY o zlidid
The VC-dimension V of a set of functions C is defined as the biggest m, for
which a set of m training patterns exists that can be shattered.
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Vapnik-Chervonenkis Dimension
(VC-dimension) (2)
= |f there exists for any m a set of m training patterns, that can
be shattered by means of C, the VC-dimension of C is infinite

—> Such a problemisnot, LEARNABLE®“

* |n general, the VC-dimension of a set of functions does not
depend on the number of parameters

= VC-dimension impacts adequate generalization

* The network can have many parameters, but it should have a small VC-
dimension - better generalization

* High VC-dimension correlates with worse generalization
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Vapnik-Chervonenkis Dimension
(VC-dimension) (3)

Example:

1. The VC-dimension of a set of linear indicator functions
Q(z,a) = @{Zg=1 Vs ey A ao} in the n-dimensional spaceisn + 1,

(i.e., it can shatter at most n + 1 patterns)

\ K y
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n=2 \ p )
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Vapnik-Chervonenkis Dimension

(VC-dimension) (4) o= ! ?%igL
"

2. VC-dimension of the set of functions f,(z) = 0(cos az), a € R is infinite

= The points z; = 1071 ... , Zm = 107™ can be shattered by means of the
functions from this set

= To shatter these patterns into two classes (+1/—1) given by the

sequence &4, ... ,0,,; 0; € {0,1} itis sufficient to choose the value
of the parameter as

a=<1+2(1—6i) 10i>-n

i=1
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Vapnik-Chervonenkis Dimension
(VC-dimension) (5)

For the set of functions f,(z) = 6(cos az), « € R

* The points z; = 1074, ... ,Zm = 107" can be shattered by this set of functions
* To shatter these patterns into two classes (+1/—1) given by the sequence
01, . ,0m; 0; € {0, 1} itis sufficient to choose the value of the parameter

a = <1+Z(1—5i) 1oi>-n
=1

ceg,for 5,=1,6,=0,63=1, a=mw(1+0-101 +1-10°4+0-103) =101-7
*cosazy =cos10.1mT = 09511>0

*cosaz, =cosl.0lm = —09995<0

e cosazz = c0s0.101 T = 09501 >0
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Vapnik-Chervonenkis Dimension
(VC-dimension) (6)

cos(a*2)

nnnnnlmnnn

when choosing a suitable

coefficient a , it is possible to

approximate any function
bounded in the interval

( (+ 1; — 1) for any number m of

selected points by cos az
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Vapnik-Chervonenkis Dimension
(VC-dimension) (7)

The problem of ,overfitting” ~ the network learns also the noise

the unknown function

computed approximation
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Vapnik-Chervonenkis Dimension
(VC-dimension) (8)

= For the network with W weights and N neurons and with the
required limit for the generalization error ¢, the number P of
training patterns necessary for good generalization is:

- (Fer)

= A multi-layered network with 1 hidden layer cannot generalize
well, if there were less than W /e randomly chosen training
patterns,i.e.,, P = W /¢

* To achieve the accuracy of at least 90 %, it is necessary to provide at
least 10 - W patterns
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