Neural Networks

doc. RNDr. lveta Mrázová, CSc.

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGIC FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY IN PRAGUE

Neural Networks:

Multi-layered Neural Networks: Analysis of Their Properties

doc. RNDr. Iveta Mrázová, CSc.

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGIC FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY IN PRAGUE

Neural Networks:

Contents:

- Multi-layered Neural Networks
- Multi-layered Neural Networks: Analysis of Their Properties
- Multi-layered Neural Networks: an Application Example

Contents:

- Multi-layered Neural Networks
 - Back-Propagation Training Algorithm
 - Strategies to Speed-up the Training Process
- Multi-layered Neural Networks: Analysis of Their Properties
 - Kolmogorov's Theorem
 - Function Approximation
 - The Complexity of Learning
 - The Number of Regions in the Feature Space
 - Vapnik-Chervonenkis Dimension
- Multi-layered Neural Networks: an Application Example
 - Internal Knowledge Representation and Pruning
 - Sensitivity Analysis and Feature Selection
 - Analysis of the World Bank Data

Kolmogorov's Theorem – 1957

13. Hilbert problem

~ Can every continuous function of *n* arguments be represented using a finite composition of functions of at most two arguments?

• Example: $x \cdot y = \exp(\ln x + \ln y)$

<u>Theorem (Kolmogorov, 1957)</u>: Let $f: [0,1]^n \rightarrow [0,1]$ be a continuous function. There exist functions of one argument g and φ_q , for q = 1, ..., 2n + 1 and constants λ_p , for p = 1, ..., n such that

$$f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} g\left(\sum_{p=1}^n \lambda_p \varphi_q(x_p)\right)$$

Kolmogorov Networks

 to represent continuous functions of *n* variables

 $f(x_1, \dots, x_n) =$

$$= \sum_{q=1}^{2n+1} g(\sum_{p=1}^n \lambda_p \varphi_q(x_p))$$

I. MRÁZOVÁ: NEURAL NETWORKS

Neural Networks:

Contents:

- Multi-layered Neural Networks
- Multi-layered Neural Networks: Analysis of Their Properties
- Multi-layered Neural Networks: an Application Example

Contents:

- Multi-layered Neural Networks
 - Back-Propagation Training Algorithm
 - Strategies to Speed-up the Training Process
- Multi-layered Neural Networks: Analysis of Their Properties
 - Kolmogorov's Theorem
 - Function Approximation
 - The Complexity of Learning
 - The Number of Regions in the Feature Space
 - Vapnik-Chervonenkis Dimension
- Multi-layered Neural Networks: an Application Example
 - Internal Knowledge Representation and Pruning
 - Sensitivity Analysis and Feature Selection
 - Analysis of the World Bank Data

Function Approximation (1)

 Any continuous function can be reproduced exactly by a finite network of computing units, whereby the necessary primitive functions for each node exist

× the choice of the right transfer function!

The best possible approximation to a given function

× the choice of the right number of computing units with the considered transfer function

 \Rightarrow Instead of an exact representation, try to approximate

Function Approximation (2)

<u>Theorem</u>: Any continuous real function $f: [0, 1] \rightarrow [0, 1]$ can be approximated using a network of threshold elements in such a way that the total approximation error E is lower than any given real number $\varepsilon > 0$:

$$E = \int_{0}^{1} \left| f(x) - \tilde{f}(x) \right| \, \mathrm{d}x < \varepsilon$$

where \tilde{f} denotes the network function.

Function Approximation (3)

<u> Proof - idea:</u>

• approximation of fby means of φ_N

Inspinovano Riemannashin integnilem

Function Approximation (4)

Proof (continued):

- Divide the interval [0, 1] into N equal segments selecting the points $x_0, x_1, \dots, x_N \in [0, 1]; x_0 = 0, x_N = 1$
- Define a function φ_N as it follows:

 $\varphi_N(x) = \min\{f(x'); x' \in [x_i, x_{i+1}) \text{ for } x_i \le x < x_{i+1}\}$

• Further, consider φ_N an approximation of f so that the approximation error E_N is given by:

$$E_N = \int_0^1 |f(x) - \varphi_N(x)| \, \mathrm{d}x$$

Function Approximation (5)

Proof (continued):

• Since $f(x) \ge \varphi_N(x) \quad \forall x \in [0, 1], E_N$ corresponds to

$$E_N = \int_0^1 f(x) \, \mathrm{d}x - \int_0^1 \varphi_N(x) \, \mathrm{d}x \qquad \stackrel{\sim \text{ lower Riemann sum of the function } f}{}$$

- Since continuous functions are integrable \rightarrow the lower sum of f converges in the limit $N \rightarrow \infty$ to the integral of f in the interval [0,1]
- Thus, it holds $E_N \to 0$ when $N \to \infty$, hence for any real number $\varepsilon > 0$ there exists an M such that $E_N < \varepsilon \ \forall N \ge M$
- The function φ_N is therefore the desired approximation of f.

Function Approximation (6)

Proof (continued):

- The function \(\varphi_N(x)\) can be computed by a network of threshold units (~ a neural network)
 - $\varphi_N(x)$ is a step-wise function
 - in each of the N segments of the interval [0, 1]: [x₀, x₁), [x₁, x₂), ..., [x_{N-1}, x_N], φ_N(x) has the respective value α₁, ..., α_N

Udélám si costationi jemnou sit, abyen na judervalu [21] pohuy! usechang isznamni body (2mény y-smén), ve lutemich hudu mit treshold a budu na ném poravisiont Function Approximation (7)

Proof (continued):

This network can compute the step-wise function $\varphi_N(x)$:

- The single input to the network is x (from the interval [0,1])
- Each pair of units with the thresholds x_i and x_{i+1} guarantees that the unit with threshold x_i will be active when $x_i \le x < x_{i+1}$.
- The (linear) output unit adds all outputs of the previous layer of units and produces their (weighted) sum as a result
- The unit with the threshold $x_N + \delta$, where δ is a small positive number, is used to recognize the case $x_{N-1} \le x \le x_N$.

This network computes the function $\varphi_N(x)$, that approximates the function f with the desired maximum error.

QED

Function Approximation (8)

Corollary:

The theorem is valid also for any function $f: [0, 1] \rightarrow (0, 1)$ and networks with the sigmoidal transfer function.

Function Approximation (9)

Proof:

- The image of the function *f* has been limited to the interval
 (0, 1) in order to simplify the proof
- The function *f* can be approximated using the sketched network
- The transfer function of the units with the threshold x_i is given by $s_c(x - x_i)$, where c controls the slope of the function

$$s_c(x-x_i) = \frac{1}{1+e^{-c(x-x_i)}}$$

Function Approximation (10)

Proof (continued):

The network can approximate the function $\varphi_N(x)$ with an approximation error lower than any desired bound (> 0)

~ threshold functions can be approximated with any desired precision by a sigmoidal function parametrized with *c*)

- The weights connecting the first layer of units to the output unit have been set in such a way that the sigmoid produces the desired values *α_i* as a result
- Further it should be guaranteed that every input x produces a single 1 from the first layer to the output unit
 - → the first layer just finds out to which of the *N* segments of the interval [0, 1] the input *x* belongs

QED

Function Approximation (11)

The multidimensional case:

The network capable of approximating the function $f: [0,1]^n \rightarrow (0,1)$ can be constructed using the same general idea as before in the one-dimensional case

- Extensions necessary for the two-dimensional case
 - Recognition of intervals in the *x* and *y* domains
 - 2 units left are used to test $x_0 \le x < x_1$
 - 2 units right are used to test $y_1 \le y < y_2$
 - The unit with the threshold 1.5 recognizes the conjunction of both conditions (for x and y)

Function Approximation (12)

Extensions necessary for the 2D-case

- Recognition of intervals in the x and y domains
 - 2 units left are used to test $x_0 \le x < x_1$
 - 2 units right are used to test $y_1 \le y < y_2$
- The unit with the threshold 1.5 recognizes the conjunction of both conditions (for x and y)
- The "output" has the weight $s_0^{-1}(\alpha_{12})$, so the sigmoidal transfer function yields α_{12}
 - → this number corresponds to the desired approximation of the function f on $[x_0, x_1) \times [y_1, y_2)$

Extensions necessary for the 2D-case

- Recognition of intervals in the x and y domains
 - 2 units left are used to test $x_0 \le x < x_1$
 - 2 units right are used to test $y_1 \le y < y_2$
- The unit with the threshold 1.5 recognizes the conjunction of both conditions (for x and y)
- The "output" has the weight $s_0^{-1}(\alpha_{12})$, so the sigmoidal transfer function yields α_{12}
 - → this number corresponds to the desired approximation of the function f on $[x_0, x_1) \times [y_1, y_2)$

Neural Networks:

Contents:

- Multi-layered Neural Networks
- Multi-layered Neural Networks: Analysis of Their Properties
- Multi-layered Neural Networks: an Application Example

Contents:

- Multi-layered Neural Networks
 - Back-Propagation Training Algorithm
 - Strategies to Speed-up the Training Process
- Multi-layered Neural Networks: Analysis of Their Properties
 - Kolmogorov's Theorem
 - Function Approximation
 - The Complexity of Learning
 - The Number of Regions in the Feature Space
 - Vapnik-Chervonenkis Dimension
- Multi-layered Neural Networks: an Application Example
 - Internal Knowledge Representation and Pruning
 - Sensitivity Analysis and Feature Selection
 - Analysis of the World Bank Data

The Complexity of Learning

The satisfiability problem

D: Let V be a set of n logical variables, and let F be a logical expression in conjunctive normal form (conjunction of disjunctions of literals) which contains only variables from V.

The satisfiability problem consists in assigning truth values to the variables in V in such a way that the expression F becomes true.

THEOREM: The general learning problem for networks of threshold functions is NP-complete.

The Complexity of Learning (2)

Proof - idea:

a network equivalent
 to 3SAT

The Complexity of Learning (3)

Proof (continue):

1. 3SAT can be reduced to an instance of a learning problem for neural networks in polynomial time

A logical expression F in conjunctive normal form, which contains n variables can be transformed in polynomial time in the description of a network of the above type:

- For each variable x_i a weight w_i is defined
- The connections to the third layer are fixed according to the conjunctive normal form we are dealing with

The Complexity of Learning (4)

Proof (continue):

- This can be done (using a suitable coding) in polynomial time, because it holds for the number m of different possible disjunctions in a 3SAT formula that $m \leq (2n)^3$
- If an instantiation A with logical values of the variables x_i exists, such that F becomes true, then there exist weights w_1, w_2, \ldots, w_n , that solve the learning problem

The Complexity of Learning (5)

Proof (continue):

- It is sufficient to set the weights w_i = 1, if x_i = 1; and w_i = 0, if x_i = 0.
 (in both cases, we thus choose w_i = x_i)
- Similarly in the opposite way: if there exist weights $w_1, w_2, ..., w_n$, that solve the learning problem, then the instantiation $x_i = 1$ for $w_i \ge 0.5$ and $x_i = 0$ otherwise, is a valid instantiation that makes F true

The Complexity of Learning (6)

Proof (continue):

- 2. Further, we must show that the learning problem belongs to the class NP (its solution can be checked in polynomial time)
 - If the weights $w_1, w_2, ..., w_n$ are given, then a single run of the network can be used to check if the output F is equal to 1
 - The number of computation steps is directly proportional to the number *n* of variables and to the number *m* of disjunctive clauses (which is bounded by the polynomial (2n)³)

The Complexity of Learning (7)

Proof (continue):

- The time required to check an instantiation is therefore bounded by a polynomial in n
- The given learning problem thus belongs to the class NP

QED

Remark:

For some special types of simple neural networks, the learning problem can be solved in polynomial time (by means of linear programming algorithms)

Neural Networks:

Contents:

- Multi-layered Neural Networks
- Multi-layered Neural Networks: Analysis of Their Properties
- Multi-layered Neural Networks: an Application Example

Contents:

- Multi-layered Neural Networks
 - Back-Propagation Training Algorithm
 - Strategies to Speed-up the Training Process
- Multi-layered Neural Networks: Analysis of Their Properties
 - Kolmogorov's Theorem
 - Function Approximation
 - The Complexity of Learning
 - The Number of Regions in the Feature Space
 - Vapnik-Chervonenkis Dimension
- Multi-layered Neural Networks: an Application Example
 - Internal Knowledge Representation and Pruning
 - Sensitivity Analysis and Feature Selection
 - Analysis of the World Bank Data

The XOR Problem (1)

- Input vector $\vec{x} = (x_1, x_2)$ is a point in the two-dimensional space; f_j defines the labeling for all points (x_1, x_2) , where $x_i \in \{0, 1\}$
- The perceptron can compute functions for which a hyperplane can separate the points labeled by 0 from the points labeled by 1

The XOR Problem (2)

16 Boolean functions of two variables

The Number of Regions in the Feature Space (1)

 The capacity of a neuron depends on the dimension of the weight space and the number of cuts with separating hyperplanes

\rightarrow <u>Question</u>:

How many regions are defined by m cutting hyper-planes of the dimension n - 1 in an n-dimensional space?

- we consider only hyperplanes going through the origin
- \rightarrow The intersection of *l* hyperplanes; $l \leq n$ is of dimension n l

The Number of Regions in the Feature Space (2)

<u>2-dimensional case:</u>

m lines going through the origin define at most $2 \cdot m$ different regions

<u>3 – dimensional case:</u>

each new cut increases the number of regions two times

■ <u>in general:</u>

n cuts with (n - 1)-dimensional hyperplanes in n-dimensional space define at most 2^n different regions

+ 2 new regions

The Number of Regions in the Feature Space (3)

Theorem:

Let R(m, n) denote the number of different regions defined by m separating hyperplanes of the dimension n - 1 in an n-dimensional space.

We set R(1, n) = 2 for $n \ge 1$ and $R(m, 0) = 0 \forall m \ge 1$.

Then for $n \ge 1$ and m > 1:

R(m,n) = R(m-1,n) + R(m-1,n-1)

The Number of Regions in the Feature Space (4)

Proof (by induction on <u>m</u>):

1. m = 2 and n = 1: The formula is valid, because R(2,1) = R(1,1) + R(1,0) = 2 + 0 = 2

2. m = 2 and $n \ge 2$: $R(2,n) = 4 \implies$ valid, because R(2,n) = R(1,n) + R(1,n-1) = 2 + 2 = 4

3. m + 1 hyperplanes of dimension n - 1 are given in the *n*-dimensional space and in general position $(n \ge 2)$:

• The first m hyperplanes define R(m, n) regions in the n-dimensional space

The Number of Regions in the Feature Space (5)

Proof (continue):

- (m + 1)-st hyperplane intersects the first m hyperplanes in m hyperplanes of dimension n 2
- These m hyperplanes (of dimension n-2) divide the (n-1)-dimensional space into R(m, n-1) regions
- After the cut with the hyperplane (m + 1), exactly R(m, n 1) new regions have been created
- \rightarrow The new number of regions is therefore:

•
$$R(m+1,n) = R(m,n) + R(m,n-1)$$

QED

Number of Regions in the Feature Space (6)

• A useful alternative for R(m, n):

$$R(m,n) = 2 \sum_{i=0}^{n-1} \binom{m-1}{i}$$

- X With growing *n*, the number of Boolean functions grows significantly quicker than the number of regions formed by hyperplanes in a general position
 - this number can be in general larger than the number of threshold functions over binary inputs

Number of Regions in the Feature Space (7)

Example:

n	# Boolean functions	# threshold functions	# regions
1	4	2	2
2	16	14	14
3	256	104	128
4	65536	1882	3882
5	4.3×10^{9}	94572	412736

Number of Regions in the Feature Space (8)

Consequences:

- Learnability problems ~ if the number of input vectors is too high, the network might be not able to form enough regions with the given number of hidden neurons
- Generalization
 - ~ expected number of correctly classified examples
- Over-fitting
 - ~ erroneous interpolation of patterns outside of the training set
- Vapnik-Chervonenkis dimension (VC-dimension)
 - ~ finite VC-dimension \rightarrow "the class of concepts" is learnable

Neural Networks:

Contents:

- Multi-layered Neural Networks
- Multi-layered Neural Networks: Analysis of Their Properties
- Multi-layered Neural Networks: an Application Example

Contents:

- Multi-layered Neural Networks
 - Back-Propagation Training Algorithm
 - Strategies to Speed-up the Training Process
- Multi-layered Neural Networks: Analysis of Their Properties
 - Kolmogorov's Theorem
 - Function Approximation
 - The Complexity of Learning
 - The Number of Regions in the Feature Space
 - Vapnik-Chervonenkis Dimension
- Multi-layered Neural Networks: an Application Example
 - Internal Knowledge Representation and Pruning
 - Sensitivity Analysis and Feature Selection
 - Analysis of the World Bank Data

Vapnik-Chervonenkis Dimension (VC-dimension) (1)

Definition:

Let $C = \{f_i\}$ be a set of functions (concept class).

The set of *m* training patterns $\{t_k\}_{k=1,...,m}$ can be shattered by means of *C*, if for each of the 2^m possible labelings of these patterns with 1/0, there exists at least one function, that satisfies this labeling.

Definition:

The VC-dimension V of a set of functions C is defined as the biggest m, for which a set of m training patterns exists that can be shattered.

Vapnik-Chervonenkis Dimension (VC-dimension) (2)

If there exists for any m a set of m training patterns, that can be shattered by means of C, the VC-dimension of C is infinite

 \rightarrow Such a problem is not " <u>LEARNABLE</u>"

- In general, the VC-dimension of a set of functions does not depend on the number of parameters
- VC-dimension impacts adequate generalization
 - The network can have many parameters, but it should have a small VCdimension → better generalization
 - High VC-dimension correlates with worse generalization

Vapnik-Chervonenkis Dimension (VC-dimension) (3)

Example:

1. The VC-dimension of a set of linear indicator functions

 $Q(\vec{z}, \alpha) = \Theta\{\sum_{p=1}^{n} \alpha_p z_p + \alpha_0\}$ in the *n*-dimensional space is n + 1,

(i.e., it can shatter at most n + 1 patterns)

Vapnik-Chervonenkis Dimension (VC-dimension) (4) $\theta(x) = \begin{cases} 1 & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$

- 2. VC-dimension of the set of functions $f_{\alpha}(z) = \theta(\cos \alpha z), \ \alpha \in R$ is infinite
 - The points $z_1 = 10^{-1}, ..., z_m = 10^{-m}$ can be shattered by means of the functions from this set
 - To shatter these patterns into two classes (+1/-1) given by the sequence $\delta_1, \ldots, \delta_m$; $\delta_i \in \{0, 1\}$ it is sufficient to choose the value of the parameter as

$$\alpha = \left(1 + \sum_{i=1}^{m} (1 - \delta_i) \ 10^i\right) \cdot \pi$$

Vapnik-Chervonenkis Dimension (VC-dimension) (5)

For the set of functions $f_{\alpha}(z) = \theta(\cos \alpha z), \ \alpha \in R$

• The points $z_1 = 10^{-1}, ..., z_m = 10^{-m}$ can be shattered by this set of functions

- To shatter these patterns into two classes (+1/-1) given by the sequence $\delta_1, \dots, \delta_m$; $\delta_i \in \{0, 1\}$ it is sufficient to choose the value of the parameter $\alpha = \left(1 + \sum_{i=1}^m (1 \delta_i) \ 10^i\right) \cdot \pi$
- e.g., for $\delta_1 = 1$, $\delta_2 = 0$, $\delta_3 = 1$, $\alpha = \pi (1 + 0 \cdot 10^1 + 1 \cdot 10^2 + 0 \cdot 10^3) = 101 \cdot \pi$
- $\cos \alpha z_1 = \cos 10.1 \, \pi \approx 0.9511 > 0$
- $\cos \alpha z_2 = \cos 1.01 \, \pi \approx -0.9995 < 0$
- $\cos \alpha z_3 = \cos 0.101 \, \pi \approx 0.9501 > 0$

Vapnik-Chervonenkis Dimension (VC-dimension) (6)

when choosing a suitable coefficient α , it is possible to approximate any function bounded in the interval (+1; -1) for any number *m* of selected points by *cos* αz

Vapnik-Chervonenkis Dimension (VC-dimension) (7)

<u>The problem of "overfitting"</u> ~ the network learns also the noise

Vapnik-Chervonenkis Dimension (VC-dimension) (8)

 For the network with W weights and N neurons and with the required limit for the generalization error ε, the number P of training patterns necessary for good generalization is:

$$P \ge \left(\frac{W}{\varepsilon}\right) \log_2\left(\frac{N}{\varepsilon}\right)$$

- A multi-layered network with 1 hidden layer cannot generalize well, if there were less than W/ε randomly chosen training patterns, i.e., $P \ge W/\varepsilon$
 - To achieve the accuracy of at least 90 %, it is necessary to provide at least 10 · W patterns

Neural Networks:

Contents:

- Multi-layered Neural Networks
- Multi-layered Neural Networks: Analysis of Their Properties
- Multi-layered Neural Networks: an Application Example

Contents:

- Multi-layered Neural Networks
 - Back-Propagation Training Algorithm
 - Strategies to Speed-up the Training Process
- Multi-layered Neural Networks: Analysis of Their Properties
 - Kolmogorov's Theorem
 - Function Approximation
 - The Complexity of Learning
 - The Number of Regions in the Feature Space
 - Vapnik-Chervonenkis Dimension
- Multi-layered Neural Networks: an Application Example
 - Internal Knowledge Representation and Pruning
 - Sensitivity Analysis and Feature Selection
 - Analysis of the World Bank Data