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Computer Versus Brain
• The speed of information processing

• The kind of information processing
• serial × parallel

• The kind of information storage

• Redundancy 

• Control
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Computer Versus Brain
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The Z1 computer designed 
by Konrad Zuse in 1936/7

Mark I Perceptron machine 
built by F. Rosenblatt in 1957 
(equipped with a camera to
Process 20x20 pixel images)

Human 
brain

A biological neuron



Computer Versus Brain
The Structure of the Human Brain
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Frontal lobes plan for the future,
movement control, speech formation.

Temporal lobes process and interpret music and speech.

Parietal lobes collect and process 
the data provided by the senses.

Occipital lobes specialize in 
visual information processing.

Cerebellum controls muscle coordination 
and learning of automated movements.

Thalamus collects the information from the senses
and forwards it further to the brain cortex.Hippocampus consolidates recently acquired information and 

transforms the short-term memory to the long-term one

Amygdala creates emotions from the perceptions and thoughts 

Cerebral cortex covers all the lobes, that form together 
the left and right cerebral hemisphere. It is just a few 
millimeters thick. 

Brain stem controls automatically performer body functions 
such as breathing. It connects the brain with the spinal cord.
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Neural Networks – a Brief History 
1943 – formal neuron (W. McCulloch, W. Pitts)

1949 – mathematical notion of learning (D. Hebb)

1958 – perceptron (F. Rosenblatt)
1962 – Adaline and sigmoidal transfer function (B. Widrow, M. Hoff) 

1969 – The perceptrons (M. Minsky, S. Papert)

1980s – a further development
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Neural Networks – a Brief History
since the eighties – further developments:
• The back-propagation training algorithm (P. Werbos, D. Rumelhart, G. 

Hinton, Y. Le Cun)

• Kohonen self-organizing feature maps (T. Kohonen)

• RBF-networks (Radial Basis Function, J. Moody, C. Darken)

• GNG-model (Growing Neural Gas, B. Fritzke)

• Convolutional neural networks (Y. Le Cun)

• SVM-machines (Support Vector Machines, V. Vapnik)

• ELM-networks (Extreme Learning Machines, G.-B. Huang)
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Neural Networks – 21st Century
2003 - Allen Brain Atlas (Allen Institute for Brain Science, USA)

HBP – Human Brain Project, EU (January 2013)

Goal:  mimic the human brain and identify faults its function 

Expected costs – 1.2 billions Euro /10 year

https://www.humanbrainproject.eu/ 

http://www.nature.com/news/brain-simulation-and-graphene-projects-win-billion-euro-
competition-1.12291 

2013 – BigBrain (Montreal Neurological Institute and German Forschungszentrum Jülich)

https://bigbrain.loris.ca/main.php 

https://www.humanbrainproject.eu/
http://www.nature.com/news/brain-simulation-and-graphene-projects-win-billion-euro-competition-1.12291
https://bigbrain.loris.ca/main.php


Neural Networks – 21st Century
GRAND CHALLENGE BRAIN Initiative, President Obama, 2. 4. 2013, USA: 
~ Brain Research Through Advancing Innovative Neurotechnologies
 https://obamawhitehouse.archives.gov/BRAIN

 Goal:  understand, how we think, how we learn and how works our memory
 Expected costs – 3 billions USD / 10 years
 Participants:   DARPA ~ Defense Advanced Research Projects Agency
                 NIH ~ National Institutes of Health
                 NSF ~ National Science Foundation
                 private sector

https://www.nimh.nih.gov/news/science-news/science-news-about-the-brain-initiative

http://www.nature.com/news/flashing-fish-brains-filmed-in-action-1.12621 
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https://obamawhitehouse.archives.gov/BRAIN
https://www.nimh.nih.gov/news/science-news/science-news-about-the-brain-initiative
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❑ Light-sheet microscopy

http://www.nature.com/nmeth/journal/v10/n5/fig_tab/nmeth.243
4_SV4.html

15

New Technologies
❑  Neurosynaptic chip 
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11. 8. 2024 – Pinnacle 
Business Systems:
Scientists from IBM 
unveiled the first 
neurosynaptic chip to 
achieve a scale of: 
▪ one million program-

mable neurons,
▪ 256 million program-

mable synapses, and
▪ 46 billion synaptic 

operations per second 
per Watt.

http://www.nature.com/nmeth/journal/v10/n5/fig_tab/nmeth.2434_SV4.html
http://www.nature.com/nmeth/journal/v10/n5/fig_tab/nmeth.2434_SV4.html
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Neural Networks – a General Introduction
Recent problems:
• Training strategies – parallelization and efficiency,  few-shot training, generative models
• Architecture – generalization and robustness, non-standard forms of data
• Scalability – GPU, TPU, Google Cloud Platform, Edge TPU, …
• Convergence, (few-shot) training, and over-training
• Prediction and generative models
• Adversarial patterns

Applications:
• Data mining – „black-box“, „white-box“
• Clustering and classification
• Information processing – NLP, speech, vision, olfactory, tactile, motoric
• Artworks
• Solutions of optimization tasks
• and many others ….
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Biological Background (1)
Model of a neuron

~ basic „computational unit“ of a more complex system
~ neural network (contains cca 8.6× 1010 neurons)

~ biological neurons consist of: 
body (soma), dendrites, axon and synapses

Body of the neuron

Axon  

Synapses

Dendrites
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Biological Background (1) - Biological Neuron
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Biological Background (2) - Biological Neuron

Body (soma):
◦ summarizes signals transmitted by surrounding neurons → potential
◦ inner potential leads to the excitation of the neuron 
◦ the size varies from several μm to several tens of μm (~ 10-6 m) 

Dendrites:
◦ represent signal input to neuron body
◦ their length varies around 2-3 mm (~ 10-3 m) 
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Biological Background (3) - Biological Neuron
Axon:
◦ the only output of a neuron, but branched out widely at its end 
◦ transmits the signal given by the level of excitation to the synapses
◦ its length can reach over 1 m 

Synapse:
◦ represent the „output device“ of the neurons, can the signal amplify or diminish and 

transmit it to other neurons
◦ for each neuron, there are up to 106 connections to other neurons

Neuron output: 
◦ Depends on neuron inputs and their processing inside neuron body

Body of the neuron

Axon  

Synapses 

Dendrites
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Biological Background (4) - Biological Networks
Biological neural networks:
▪ neurons are mutually interconnected into networks 

• by means of axons connected to dendrites of other
     neurons via synapses

▪ density of the neurons:
• reaches cca  70 – 80 · 10³ / mm³  in the human brain
• cca 10 · 10³ neurons die every day without replacement
• synapses are formed on the dendrites during the whole life    
 → new synapses are formed, resp. non-functioning synapses       
       can be revived

       =>   L E A R N I N G

Body of the neuron

Axon  

Synapses 

Dendrites



Question:

What percentage of a human brain is lost while alive? 

Assume the age at death to be 100 years. 
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Biological Background (5) – Memory Types

Memory types
▪ Short-term memory mechanism

• based on cyclical circulation of signals in neural networks
• after cca 300 circulations, fixation of the information starts in mid-term 

memory – this takes cca 30 s

▪ Mid-term memory mechanism
• based on the  changes of „neural weights“
• the change of synaptic weight coefficients is caused by multiple actions 

of the same signal on the respective synapse
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Biological Background (6) – Memory Types
Memory types
▪ Mid-term memory mechanism

• some information stored in mid-term memory moves to long-term 
memory while sleeping

• information stays in mid-term memory for several hours or days

▪ Long-term memory mechanism
• consists in copying the information from mid-term memory to proteins 

inside the neurons – in particular in their nuclei
• the stored information can remain in the organism for its entire life
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Adaptation and Learning
Adaptation: 
▪ ability to accommodate to the changes of the environment

Adaptive process: the process of the adjustment 
▪ every adaptation represents for the system some costs (material, energy, …)
▪ living organisms are capable of reducing these costs during multiply 

repeated adaptations to environment changes

L E A R N I N G:
▪ its objective is to minimize the costs spent for adaptation
▪ is the result of a multiply repeated adaptation
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Adaptation and Learning - the Formalism (1)
▪ Manifestation of the environment: 𝒙
 ~ input pattern generated by the environment

▪ Feature description of the objects (~ input patterns) : 
• selection of  𝑛  basic characteristics – features 𝑥1, … , 𝑥𝑛

• 𝒙 = 𝑥1, … , 𝑥𝑛

▪ Information about the desired system reaction to the manifested environment: Ω
 ~ e.g., the true class assignment function for the input patterns

▪ The system reacts to any manifestation of the environment (~ input pattern generated 
by the environment)  𝒙  and information Ω (~ true class assignment) by yielding one 
of the symbols  𝜔𝑟;  𝑟 = 1, … , 𝑅  at its output (~ actual class labels).
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Adaptation and Learning - the Formalism (2)

▪ Every assignment  [𝒙, Ω] → 𝜔𝑟   is accompanied by some 
costs given by the function  𝑄(𝒙, Ω, 𝜔𝑟)  for each time unit

▪ The goal of the system: 
• find for any  𝒙  and  Ω such an assignment 𝒙, Ω → 𝜔𝑟,

    for which the cost is minimal:

𝑸 𝒙, 𝛀, 𝝎𝒓 = min
𝝎

𝑸(𝒙, 𝛀, 𝝎)
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Adaptive Systems (1)
Adaptive system ~  a system with two inputs and one output determined by:

1) a set  𝑋  of manifestations of the environment 𝒙  (~ input patterns generated by 
the environment) 

2) a set  𝑂1  of information about the desired system reaction  Ω (e.g., true class 
assignments for the input patterns)

3)  a set  𝑂2  of output symbols  𝜔 (~ actual class labels).
4)  a set  𝐷  of (parametrized class label) decision rules  𝜔 = 𝑑(𝒙, 𝑞)
5)  the cost  𝑄 𝒙, Ω, 𝑞  

For any pair  [𝒙, Ω] we seek such a parameter  𝑞∗, for which it holds: 
     

𝑸 𝒙, 𝛀, 𝒒∗ = min
𝒒

𝑸(𝒙, 𝛀, 𝒒) 
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Adaptive Systems (2)
▪ Initial assignment  𝒙, Ω → 𝜔𝑠 
▪ If the system stays for time  𝑇 in its initial assignment, 

this will be associated with total costs corresponding to  
𝑻 ⋅ 𝑸 𝒙, 𝜴, 𝝎𝒔

▪ If the system is able to change its behavior based on an 
ongoing cost assessment, it finds after the time 𝜏 
necessary for evaluating  𝜔𝑟  , for which the cost is 
minimal
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Adaptive Systems (3)

Total costs after time 𝑻 :
            𝝉 𝑸 𝒙, 𝜴, 𝝎𝒔 + 𝑻 − 𝝉 𝑸 𝒙, 𝜴, 𝝎𝒓

▪ are bigger than the least possible total costs  𝑻 𝑸 𝒙, 𝜴, 𝝎𝒓 ,

▪ but smaller than the total costs of a system, that cannot change 

its decision,  𝑻 𝑸 𝒙, 𝜴, 𝝎𝒔

   𝑻 𝑸 𝒙, 𝛀, 𝝎𝒓 < 𝝉 𝑸 𝒙, 𝛀, 𝝎𝒔 + 𝑻 − 𝝉 𝑸 𝒙, 𝛀, 𝝎𝒓 < 𝑻 𝑸(𝒙, 𝛀, 𝝎𝒔 
)

Non-adaptive system

Adaptive system

Learned system
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Learning Systems (1)
▪ The result of adaptation is stored in the memory:

• Save the time  𝜏  necessary to find minimum costs for repeated manifestations 
of the environment (~ input pattern sets generated by the environment) 

• Further, it is not necessary to evaluate the costs
      →  after training, the information  Ω about the desired system reaction 

is not necessary anymore 

▪ The total costs of a learning system after training 𝑻 𝑸 𝒙, 𝜴, 𝝎𝒓 are 
smaller than the total costs of an adaptive system
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Learning Systems (2)
Learning system ~  a system with 2 inputs and 1 output determined by:

1) a set  𝑋  of manifestations of the environment  𝒙 (~ input patterns 
generated by the environment) 

2) a set  𝑂1  of information about the desired  system reaction  Ω (e.g., true 
class assignments for the input patterns; is not necessary after training)

3) a set  𝑂2  of output symbols  𝜔  (~ actual class labels)

4) a set  𝐷  of (parametrized class label) decision rules  𝜔 = 𝑑 𝒙, 𝑞
5) The desired behavior  Ω = 𝑇 𝑥  (in addition to adaptive systems)

6) Mean costs  𝐽 𝑞  evaluated over  𝑋 × 𝑂1 (different from adaptive systems)
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Learning Systems (3)
Learning system 

▪ After presenting the pair elements from the sequence  

 𝒙𝒌 
, 𝛀𝒌  ;  𝟏 ≤ 𝒌 ≤ ∞,  where  𝛀𝒌 = 𝑻𝒌 𝒙𝒌 , 

it finds such a parameter  𝒒∗, for which it holds:  
𝑱 𝒒∗ = min

𝒒
𝑱 𝒒

▪ Sequential  ~  sequential presentation of the pairs 𝒙𝒌 
, 𝛀𝒌

▪ Inductive ~ find after the evaluation of countably many pairs 𝒙𝒌 
, 𝛀𝒌   the 

parameter  𝒒∗, that minimizes the mean costs over the entire set  𝑿
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Efficiency of Adaptation and Learning
The efficiency of an adaptive system is the higher, the shorter is the

time 𝝉 necessary for its adaptation and the longer are the time 

intervals  𝑻  when the environment does not change:
◦ 𝝉/𝑻 →  𝟎: 

 The efficiency of the AS is comparable with the efficiency of a learning system after training

◦ 𝝉/𝑻 →  𝟏   ( 𝝉/𝑻 < 𝟏): 

 AS has about the same efficiency as a non-adaptive system

◦ 𝝉/𝑻 ≥  𝟏:   no adaptation takes place

The efficiency of the (trained) learning system is the highest possible
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▪ In the Euclidean space, standardization of attributes is recommended 
so that all attributes can have an equal impact on the computation of 
distances. 

▪ Example: Consider the following pair of data points 
• 𝐱𝑖: (0,1; 20) and 𝐱𝑗: 0,9; 720 ,

𝑑𝑖𝑠𝑡(𝐱𝑖, 𝐱𝑗) = (0,9 − 0.1)2 + (720 − 20)2 = 700,000457

▪ The distance is dominated by (720 − 20) = 700.

▪ Standardize the attributes  to have a common value range 

Data Standardization
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▪ Their values are real numbers following a linear scale. 
• e.g., the difference in Age between 10 and 20 is the same as that between 40 and 50. 
• The key idea is that the intervals keep the same importance throughout the scale

▪ Decimal scaling to the interval [−1,1]: divides the attribute values by the 
smallest power of 10 that keeps all the transformed values within the 
interval [−1,1].

▪ Range standardization to the interval [0,1] normalizes attribute values in the 
following way (f is an attribute):

𝑟𝑎𝑛𝑔𝑒 𝑥𝑖𝑓 =
𝑥𝑖𝑓 − min( 𝑓) 

max( 𝑓) − min( 𝑓)
 .

Interval-Scaled Attributes
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▪ Range standardization to the interval [−1,1] normalizes attribute values in the following way 
(using 𝑟𝑎𝑛𝑔𝑒(𝑥𝑖𝑓) defined above):

  𝒓𝒂𝒏𝒈𝒆 −𝟏,𝟏 𝒙𝒊𝒇 = 𝟐 · 𝒓𝒂𝒏𝒈𝒆 𝒙𝒊𝒇 − 𝟏

▪ Standardization according to the mean absolute deviation (MAD) transforms the attribute 
values so that they have zero mean and mean absolute deviation equal to 1. 

• The mean absolute deviation of attribute f (denoted by 𝑀𝐴𝐷𝑠𝑓) is computed as follows:

   𝑚f = 1
𝑛

𝑥1𝑓 + 𝑥2𝑓+. . . +𝑥𝑛𝑓 ,

   𝑀𝐴𝐷𝑠𝑓 = 1
𝑛

𝑥1𝑓 − 𝑚𝑓 + 𝑥2𝑓 − 𝑚𝑓 + ⋯ + 𝑥𝑛𝑓 − 𝑚𝑓 ,

   MAD-score: 𝒛(𝒙𝒊𝒇) = 𝒙𝒊𝒇−𝒎𝒇
𝑀𝐴𝐷𝑠𝑓

Interval-Scaled Attributes (cont …)
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▪ Standardization according to standard deviation transforms the attribute 
values so that they have zero mean and (corrected) sample standard 
deviation equal to 1. 
• The (corrected) sample standard deviation of attribute f (denoted by 𝑐𝑜𝑟𝑠𝑓) is computed 

as it follows:

  
𝑐𝑜𝑟𝑠𝑓 =

1
𝑛 − 1

𝑥1𝑓 − 𝑚𝑓
2 + 𝑥2𝑓 − 𝑚𝑓

2 + ⋯ + 𝑥𝑛𝑓 − 𝑚𝑓
2 ,

𝑚𝑓  =
1
𝑛

 𝑥1𝑓 +  𝑥2𝑓 + ⋯ + 𝑥𝑛𝑓 ,

std 𝒙𝒊𝒇  = 𝒙𝒊𝒇−𝒎𝒇
𝑐𝑜𝑟𝑠𝑓

 .std-score:

Interval-Scaled Attributes (cont …)
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Question:

Let  𝑿  be a dataset consisting of the following five elements:
 𝑿 = { 𝟎, 𝟏; −𝟐, 𝟎;  𝟏, 𝟓; −𝟎, 𝟐; −𝟏, 𝟑 } .

State its standardized forms. 
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Selection and Order of Features
Probability of a wrong decision

   ×
Information contained in the input patterns
▪ Too many features:

• technical feasibility
• speed of processing
• danger of over-training
• the number of variables × the number of training patterns
• correlated features
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Selection of Informative Features
▪ Selection of the minimum number of features from the 

considered set of features
• the chosen set is not guaranteed to contain really informative features 
• the choice depends on the actual task solved

▪ The order of features from the considered set of features
• according to the amount of information contained 
• can be used, e.g., in the case of sequential classifiers
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Karhunen-Loeve Transform (1)

Properties of the Karhunen-Loeve transform: 
1. For the given number of expansion members, it yields the 

least mean squared error between the original and the 
transformed patterns

2. After the application of the covariance matrix the 
approximated patterns are decorrelated

 →  decorrelation of features
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Karhunen-Loeve Transform (2)
3. Expansion members do not contribute equally to the approximation

 The influence of each respective expansion member on the approximation 
accuracy falls with its index

 →  The impact of members with high indexes will be small and
       we can thus omit them

4. The magnitude of the approximation error does not influence the 
structure of the expansion  
• Changed demands on the approximation error do not require the 

recomputation of the entire expansion
 →  It is sufficient to add or remove a few of the last members 

Of advantage especially for sequential classification methods
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Karhunen-Loeve Transform (3)
▪ The choice of a suitable mapping of patterns from 𝑿𝑚  to 𝑿𝑝 such that the 

patterns from 𝑿𝑝  will represent the best approximation of the original 
patterns from 𝑿𝑚 in the sense of the mean squared error
 𝐾  patterns
 𝑚  features
 𝑝  orthonormal vectors  𝒆𝑖  (1 ≤ 𝑖 ≤ 𝑝)  in  𝑿𝑚 (𝑝 ≤ 𝑚)

  →  Approximate the vectors  𝐱𝑘  from 𝑿𝑚 (1 ≤ 𝑘 ≤ 𝐾) by a linear 
combination of 𝒆𝑖:

such that the squared error 𝜀𝑘
2 = 𝐱𝑘 − 𝐲𝑘

2, will be minimal

𝐲𝑘 = σ𝑖=1
𝑝 𝑐𝑘𝑖𝑒𝑖
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Karhunen-Loeve Transform (4)
From  𝑚  measured features, 
we want to get the  𝑝 most im-
portant features (1 ≤ 𝑝 ≪ 𝑚)

 Matrix  𝐕: 𝑚 × 𝑝

𝐕 =
𝑣11 ⋯ 𝑣1𝑝

⋮ ⋱ ⋮
𝑣𝑚1 ⋯ 𝑣𝑚𝑝

 Compute the vector of the 𝒑  
most important features:        

         𝐲 = 𝐕𝐓 𝐱

𝐯 = 𝑣1, 𝑣2, … , 𝑣𝑚
T,

𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑚
T 

𝐲 = 𝑦1, 𝑦2, … , 𝑦𝑝
T

 
𝐲 = 𝐯T𝐱 = 𝑣1𝑥1 + 𝑣2𝑥2 + ⋯

the 𝒑-th EV

the 1-st EV

the most import-
ant feature

the second most 
important feature

the data matrix 𝐗 =
𝑥11 ⋯ 𝑥1𝑚

⋮ ⋱ ⋮
𝑥𝐾1 ⋯ 𝑥𝐾𝑚

1st pattern

Kth pattern
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Karhunen-Loeve Transform (5)
Computation of the matrix 𝐕:

▪ Center the data:      𝜇𝑗 = 1
𝐾

σ𝑘=1
𝐾 𝑥𝑘𝑗

▪ Compute the covariance matrix for the training set:

▪ The vectors defining the most important features correspond 
to the eigenvectors of the covariance matrix

𝑤𝑖𝑗 = 𝑤𝑗𝑖 = 1
𝐾

σ𝑘=1
𝐾 𝑥𝑘𝑖 − 𝜇𝑖 ⋅ 𝑥𝑘𝑗 − 𝜇𝑗  

𝑋 =
⋯ 𝑥1𝑗 ⋯
⋯ ⋯ ⋯
⋯ 𝑥𝐾𝑗 ⋯

𝜇 =  ⋯ 𝜇𝑗  ⋯ 

Observations 
are the rows
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Karhunen-Loeve Transform (6)
The eigenvalues correspond to the variance of the most important features
• the 1st column of the matrix 𝐕 is the eigenvector corresponding to the biggest eigenvalue, … 
• further columns of  𝐕  will be added until the following eigenvalues are too small and can be 

omitted
• covariance matrices are positive semi-definite (~ their eigenvalues are non-negative;       

𝝀𝒊 ≥ 𝟎 ∀ 𝒊, because they are computed from the sums of squares, which themselves are 
each non-negative).

Problem: 
▪ The choice of an adequate number of eigenvalues (𝑝)
▪ An optimal choice of 𝑝 cannot be guaranteed as the expansion does not reflect the true 

importance of each respective feature



Question:

Let 𝚺 be a covariance matrix of a two-dimensional dataset:

𝚺 = 2,0 0,8
0,8 0,6 .

Find its principal components. 
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Karhunen-Loeve Transform (7)

Modifications:

1. Centered most important features:   𝐲 = 𝐕𝐓 𝐱 − 𝛍 ,

   where 𝛍 = ( 𝜇1, … ) is the vector of mean values

2. Normalized most important features: 𝐲 = 𝐋−𝟏
𝟐 𝐕𝐓 𝐱 − 𝛍 ,

 where  𝐋  is the matrix  𝑝 × 𝑝 ,  diagonal elements are the eigenvalues
corresponding to the columns of 𝐕,  the other elements are zero



Neural 
Networks:

Contents:

▪ Introduction to the Field
• Motivation and a Brief History
• Biological Background
• Adaptation and Learning
• Feature Selection and Ordering
• Probability and Hypotheses Testing (Review)

▪ Perceptron and Linear Separability
• A Formal Neuron
• Perceptron and Linear Separability
• Perceptron Learning Algorithm
• Convergence of Perceptron Learning
• The Pocket Algorithm

Contents:
• Introduction to the 

Field

• Perceptron and 
Linear Separability
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Probability – Basic Notions (1)
Probability (of an event 𝐴 from the space 𝑆):

▪ 𝐏 𝑨 ≥ 𝟎       ( 𝐏 ∅ = 𝟎 )

▪ 𝐏 𝑺 = 𝟏 

▪ For a finite number of mutually exclusive events 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏  
the probability 𝑷(𝑨𝟏 ∪ 𝑨𝟐 ∪ ⋯ ∪ 𝑨𝒏) = σ𝒊=𝟏

𝒏 𝑷(𝑨𝒊) 

▪ For an infinite number of mutually exclusive events 𝑨𝟏, 𝑨𝟐, … 
the probability 𝑷(𝑨𝟏 ∪ 𝑨𝟐 ∪ ⋯ ) = σ𝒊=𝟏

∞ 𝑷(𝑨𝒊) 



▪ Conditional probability of the event 𝑩  given that the event 𝑨 
has occurred (𝐏 𝑨 > 𝟎):

𝑷(𝑩|𝑨) =
𝑷(𝑨 ∩ 𝑩)

𝑷(𝑨)
▪ Mutual independence of the events 𝑨  and  𝑩:

𝐏 𝑨 ∩ 𝑩 = 𝐏 𝑨 ⋅ 𝐏(𝑩)
▪ Formula for the probability of 𝑨:

𝑷(𝑨) = σ𝒊 𝑷(𝑨|𝑩𝒊)𝑷(𝑩𝒊) 

Probability – Basic Notions (2)
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probability of A

probability of A and B

probability of B given A
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Probability – Basic Notions (3)
▪ Bayesian formula for the conditional probability:

▪ Random variable:
• ´the name of an experiment with a probabilistic outcome´
• its value is the outcome of the experiment

▪ Probability distribution (for the random variable 𝒀):
• probability  𝐏 𝒀 = 𝒚𝒊 , that 𝒀  will take on the value 𝒚𝒊

▪ Expected value (~mean) of a random variable 𝒀:

𝝁𝒀 = 𝐄 𝒀 = σ𝒊 𝒚𝒊 𝑷(𝒀 = 𝒚𝒊) 

𝐏 𝑩 𝑨 =
𝐏 𝑨 𝑩 𝐏 𝑩

𝐏 𝑨
; P 𝐴 , P 𝐵 > 0

probability of B given A
probability of B given A

probability of A

probability of B 



I. MRÁZOVÁ: NEURAL NETWORKS 68

Probability – Basic Notions (4)
▪ Variance (of a random variable):

𝑉𝐴𝑅 𝑌 = 𝐸 𝑌 − 𝜇𝑌
2

• Characterizes the width (dispersion) of the distribution around its mean

▪ Standard deviation of Y: 𝜎𝑦 = 𝑉𝐴𝑅 𝑌
▪ Binomial distribution

• The probability of observing  𝒓 ´heads´ in a series of  𝒏 independent coin 
tosses

• The probability of ´heads´ in a single toss is  𝒑
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Probability – Basic Notions (5)
Binomial distribution
▪ The probability of observing 𝒓 

´heads´ in a series of  𝒏 
independent coin tosses

▪ The probability of ´heads´ in a 
single toss is  𝒑

▪ Probability function (probability 
that 𝑿 will take on the value 𝒓):

𝐏 𝒓 = 𝒏!
𝒓!(𝒏−𝒓)!

 𝒑𝒓(𝟏 − 𝒑)𝒏−𝒓
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Probability – Basic Notions (6)
▪ Expected (mean) value of 𝑿:   𝐄 𝑿 = 𝒏𝒑
▪ Variance:    𝑽𝑨𝑹 𝑿 = 𝒏 𝒑 (𝟏 − 𝒑)
▪ Standard deviation: 𝝈𝑿 = 𝒏𝒑(𝟏 − 𝒑)
▪ For sufficiently large values of  𝒏  the binomial distribution is 

closely approximated by a normal distribution with the same 
mean and variance

▪ Recommendation:  use the normal approximation only when:    
𝒏𝒑 𝟏 − 𝒑 ≥ 𝟓  (i.e., for 𝒏 ≥ 𝟓

𝒑 𝟏−𝒑
 )
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Probability – Basic Notions (7)
Normal distribution
▪ also called  Gaussian distribution 

▪ Normal probability density function 

             𝒑 𝒙 = 𝟏

𝟐𝝅𝝈𝟐
𝒆−𝟏

𝟐
𝒙−𝝁

𝝈

𝟐

Probability that the value of the random 
variable 𝑿 will fall into the interval (𝒂, 𝒃): 

𝒂
𝒃 𝒑 𝒙 𝒅𝒙
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Probability – Basic Notions (8)
Normal distribution
▪ Suitable for a large number of natural phenomena

▪ Expected (mean) value of 𝑿:   𝐄[𝑿] = 𝝁
▪ Variance:    𝑽𝑨𝑹(𝑿) = 𝝈𝟐

▪ Standard deviation:     𝝈𝑿 = 𝝈

▪ Central limit theorem:

 ´The distribution of the mean of a large number of independent random 
variables of the same distribution approximates the normal distribution.´
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Probability – Basic Notions (9)
▪ Estimator  ~  random variable  𝒀

• Used to estimate the parameter p from the tested population

▪ Estimation bias of 𝒀 for  𝒑:  𝐄 𝒀 − 𝒑
• ´unbiased´ estimator for  𝒑:     𝐄[𝒀] = 𝒑

▪ 𝑵%  confidence interval for the parameter 𝒑
• Interval that contains 𝒑 with probability  𝑵% 

▪ Test ~  procedure deciding on the correctness of a statistical 
hypothesis 𝑯
• Significance level α  corresponds to the probability of  rejecting the 

true hypothesis →  usually set to  𝜶 = 𝟎. 𝟎𝟓 
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Hypotheses Testing (1)
1. Given the observed accuracy of a hypothesis over a limited sample of data 

→  how well does this estimate its accuracy over additional examples?

2. Given that one hypothesis outperforms another over some sample of data 
→  how probable is it that this hypothesis is more accurate in general?

3. When the data is limited →  how to best use this data to both  learn a 
hypothesis and estimate its accuracy as well as to compare the 
performance of two learning algorithms?

2

  →  limit the difference between the accuracy observed on the given data 
and the actual accuracy of the whole data distribution 
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Hypotheses Testing (2)
Aim:  1) Understand whether to use the hypothesis or not

           2) Evaluating hypotheses represents an integral component of many
learning methods (e.g., when post-pruning decision trees to avoid
overfitting)

Estimate future accuracy of  a hypothesis given only a limited set of data:
• Bias in the estimate: over-training × unbiased estimate of future accuracy 

(mutually independent training and test sets)

• Variance in the estimate: the measured accuracy can vary from the true 
accuracy; bigger variance for fewer test examples
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Hypotheses Testing (3)
Estimating hypothesis accuracy

▪ Space of possible instances  𝑿, e.g., the set of all people

▪ Various target functions may be defined over 𝑿,  𝒇 : 𝑿 → {𝟎, 𝟏}, 
e.g., people who plan to purchase new skis this year

▪ Different instances  𝒙 ∈ 𝑿  may be encountered with different 
frequencies, e.g., probability that x arrives at the ski resort
• 𝑫 … probability of encountering the instances in 𝑿 
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Hypotheses Testing (4)
Task: learn the target function 𝑓 from the space 𝐻 of possible hypotheses

▪ provided are training examples x, along with their correct target value  
𝒇(𝒙), drawn randomly from 𝑿 according to the distribution 𝑫

Questions:
Given a hypothesis 𝒉 and a data sample containing 𝒏 examples drawn at 
random according to the distribution 𝑫:
1. What is the best estimate of the accuracy of 𝒉 over future instances 

drawn from the same distribution?
2. What is the probable error in this accuracy estimate?
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Hypotheses Testing (5)
The sample error on the training set 𝑺 ⊂ 𝑿 
~ the fraction of 𝑺, misclassified by 𝒉  

• 𝒏 … the number of examples in 𝑺
• 𝜹(𝒇(𝒙), 𝒉(𝒙)) = 𝟏  for 𝒇 𝒙 ≠ 𝒉 𝒙
• 𝜹(𝒇(𝒙), 𝒉(𝒙)) = 𝟎 for 𝒇(𝒙) = 𝒉(𝒙)

• Binomial distribution  𝑬𝑹𝑹𝑶𝑹𝑺(𝒉):   𝑬𝑹𝑹𝑶𝑹𝑺(𝒉) = 𝒓
𝒏

o 𝒓 … the number of examples from 𝑺, that were misclassified by 𝒉  

𝐸𝑅𝑅𝑂𝑅𝑆 ℎ  ≡
1
𝑛


𝑥∈𝑆

𝛿 𝑓 𝑥 , ℎ 𝑥
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Hypotheses Testing (6)
The true error of hypothesis 𝒉

~   probability of misclassification for an instance 𝒙 ∈ 𝑿 drawn at random 
according to 𝑫 ∶ 𝑬𝑹𝑹𝑶𝑹𝑫 𝒉 ≡ 𝑷𝒓

𝒙∈𝑫
𝒇 𝒙 ≠ 𝒉 𝒙

▪ Binomial distribution: 𝑬𝑹𝑹𝑶𝑹𝑫(𝒉) = 𝒑   (= 𝑟
𝑛

 … estimate for 𝒑)
• 𝒑 … probability of misclassifying a single instance drawn from  𝑫
• unbiased estimator  𝑬𝑹𝑹𝑶𝑹𝑫(𝒉)     (~  𝑝 = 𝑟/𝑛 )   

o The hypothesis 𝒉 and the sample set 𝑺 must be chosen independently.
o The sample set 𝑺 contains 𝒏  (≥ 30)  examples drawn at random from 𝑿 

according to the probability distribution 𝑫



I. MRÁZOVÁ: NEURAL NETWORKS 80

Hypotheses Testing (7)
Estimator variance
▪  An unbiased estimator with the least variance would yield the smallest expected 

squared error between the estimate and the true value of the parameter

▪ Given no other information, the most probable value of 𝑬𝑹𝑹𝑶𝑹𝑫(𝒉) is 
𝑬𝑹𝑹𝑶𝑹𝑺(𝒉)  

▪ With approximately 𝟗𝟓% probability, the true error 𝑬𝑹𝑹𝑶𝑹𝑫(𝒉) lies in the 
interval

𝑬𝑹𝑹𝑶𝑹𝑺 𝒉 ± 𝟏. 𝟗𝟔
𝑬𝑹𝑹𝑶𝑹𝑺 𝒉 ⋅ 𝟏 − 𝑬𝑹𝑹𝑶𝑹𝑺 𝒉

𝒏

→  for approximately  95%  of experiments, the calculated interval will contain 
the true error value
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Hypotheses Testing (8)
The expression for general (𝑵%) confidence intervals – constant  𝒛𝑵 :

𝐸𝑅𝑅𝑂𝑅𝑆 ℎ  ±  𝑧𝑁
𝐸𝑅𝑅𝑂𝑅𝑆 ℎ ⋅ 1 − 𝐸𝑅𝑅𝑂𝑅𝑆 ℎ

𝑛

▪ Wider intervals for a higher probability
▪ Good approximation for  𝒏 ≥ 𝟑𝟎 , resp. 𝒏 · 𝑬𝑹𝑹𝑶𝑹𝑺(𝒉) (𝟏 − 𝑬𝑹𝑹𝑶𝑹𝑺 (𝒉)) ≥ 𝟓

The values of  zN for two-sided  N% confidence intervals

𝑵% 50% 68% 80% 90% 95% 98% 99%

𝒛𝑵 0.67 1.00 1.28 1.64 1.96 2.33 2.58
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Hypotheses Testing (9)
General approach to derive the confidence intervals:
1. Identify the underlying population parameter 𝒑 to be estimated, 

e.g., 𝑬𝑹𝑹𝑶𝑹𝑫 𝒉 .

2. Define the estimator 𝒀  (e.g.,  𝑬𝑹𝑹𝑶𝑹𝑺(𝒉)).
  – choose a minimum-variance, unbiased estimator

3. Determine the probability distribution  𝑫𝒀 that governs the estimator 𝒀 
including its mean and variance.

4. Determine the 𝑵% confidence interval
 – find the thresholds 𝑳  and  𝑼  such that  𝑵%  of the mass in the probability 

distribution  𝑫𝒀 falls between 𝑳  a  𝑼.
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Hypotheses Testing (10)
Difference in error of two hypotheses D (with a discrete-valued target function):

▪ Hypothesis 𝒉𝟏has been tested on a sample 𝑺𝟏 containing 𝒏𝟏 randomly 
drawn examples

▪ Hypothesis 𝒉𝟐 has been tested on an independent sample 𝑺𝟐 containing 𝒏𝟐  
examples drawn from the same distribution

▪ We want to estimate the difference 𝒅 between the true errors of these 
two hypotheses: 

   𝒅 = 𝑬𝑹𝑹𝑶𝑹𝑫(𝒉𝟏) − 𝑬𝑹𝑹𝑶𝑹𝑫(𝒉𝟐) 
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Hypotheses Testing (11)
→  Estimator መ𝑑: መ𝑑 ≡ 𝐸𝑅𝑅𝑂𝑅𝑆1 ℎ1 − 𝐸𝑅𝑅𝑂𝑅𝑆2(ℎ2)

• መ𝑑 (~  difference between sample errors) yields an unbiased estimate of  d

• Normal distribution with the mean  E መ𝑑 = 𝑑  and variance  𝜎𝑑
2

𝜎𝑑
2 ≈

𝐸𝑅𝑅𝑂𝑅𝑆1 ℎ1 ⋅ 1 − 𝐸𝑅𝑅𝑂𝑅𝑆1 ℎ1

𝑛1
+

𝐸𝑅𝑅𝑂𝑅𝑆2 ℎ2 ⋅ 1 − 𝐸𝑅𝑅𝑂𝑅𝑆2 ℎ2

𝑛2

• 𝑵%  confidence interval:

𝒅  ± 𝒛𝑵
𝑬𝑹𝑹𝑶𝑹𝑺𝟏 𝒉𝟏 ⋅ (𝟏 − 𝑬𝑹𝑹𝑶𝑹𝑺𝟏 𝒉𝟏 )

𝒏𝟏
+

𝑬𝑹𝑹𝑶𝑹𝑺𝟐 𝒉𝟐 ⋅ (𝟏 − 𝑬𝑹𝑹𝑶𝑹𝑺𝟐 𝒉𝟐 )
𝒏𝟐
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Hypotheses Testing (12)

Comparing the learning algorithms:

▪ test for comparing the learning algorithms 𝑳𝑨 and 𝑳𝑩

▪ statistical significance of the observed difference between the algorithms

→  determine, which of the learning methods, 𝑳𝑨 and 𝑳𝑩, is better 

  for learning the target function 𝒇

▪ Consider the relative performance of the two algorithms averaged over all 
the training sets of size 𝒏 that might be drawn from the distribution 𝑫
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Hypotheses Testing (13)
Comparing learning algorithms:

→ estimate the expected value of the difference in the errors  

E
𝑆⊂𝐷

𝐸𝑅𝑅𝑂𝑅𝐷 𝐿𝐴 𝑆 − 𝐸𝑅𝑅𝑂𝑅𝐷 𝐿𝐵 𝑆

• 𝐿(𝑆) … hypothesis obtained by the learning algorithm 𝑳 on the training set 𝑺
• 𝑆 ⊂ 𝐷 … the expected value is taken over the samples S drawn according to 

the underlying instance distribution 𝑫 

→  in practice, just a limited number of training data 𝑫𝟎 is available to 
           compare the considered learning algorithms
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Hypotheses Testing (14)
▪ Divide the set 𝑫𝟎 into a training set 𝑺𝟎 and a disjoint test set 𝑻𝟎

• Training data are used to train both 𝑳𝑨 and 𝑳𝑩

• Test data are used to compare the accuracy of the two learned 
hypotheses:

𝑬𝑹𝑹𝑶𝑹𝑻𝟎 𝑳𝑨 𝑺𝟎 − 𝑬𝑹𝑹𝑶𝑹𝑻𝟎 𝑳𝑩 𝑺𝟎

• 𝑬𝑹𝑹𝑶𝑹𝑻𝟎 𝒉  approximates the true error 𝑬𝑹𝑹𝑶𝑹𝑫(𝒉) 

• The difference in errors is measured only for the training set 𝑺𝟎 (rather 
than taking the expected value of this difference over all samples 𝑺 that 
might be drawn from the distribution 𝑫)
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k-Fold Cross Validation (1)
1. Partition the available data 𝑫𝟎 into 𝒌 disjoint subsets 𝑻𝟏, 𝑻𝟐, … , 𝑻𝒌 of 

equal size (≥ 𝟑𝟎).

2. FOR  𝒊: = 𝟏 TO 𝒌 DO
   use 𝑻𝒊 for the test set, and the remaining data to build the training set 𝑺𝒊

𝑺𝒊       𝑫𝟎\𝑻𝒊

𝒉𝑨  𝑳𝑨(𝑺𝒊) 
𝒉𝑩  𝑳𝑩 𝑺𝒊  
𝜹𝒊  𝑬𝑹𝑹𝑶𝑹𝑻𝒊 𝒉𝑨 − 𝑬𝑹𝑹𝑶𝑹𝑻𝒊 𝒉𝑩

3. Return the value ഥ𝜹, where ഥ𝜹 = 𝟏
𝒌

σ𝒊=𝟏
𝒌 𝜹𝒊
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k-Fold Cross Validation (2)

▪ 𝑵 % - confidence interval: ഥ𝜹 ± 𝒕𝑵,𝒌−𝟏
𝝈ഥ𝜹
√𝒌

   

• 𝝈 ഥ𝜹 … estimate of the standard deviation: 𝝈 ሜ𝜹 ≡ 𝟏
𝒌−𝟏

⋅ σ𝒊=𝟏
𝒌 𝜹𝒊 − ሜ𝜹 𝟐

• 𝒕𝑵,𝒌−𝟏 …  constant (values of 𝒕𝑵,𝝂 for two-sided confidence intervals 
approach the values of 𝒛𝑵 with 𝝂 → ∞)

• 𝑵 ……… the desired confidence level

• 𝝂 ………. Nr. of degrees of freedom (nr. of independent random events
that influence the value of ҧ𝛿; 𝜈 = 𝑘 − 1 in the current setting)
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k-Fold Cross Validation (3)

𝑵 … desired  confidence level

𝝂 …. Nr. of degrees of freedom  

Confidence level 𝑁
90% 95% 98% 99%

𝝂 = 𝟐 2.92 4.30 6.96 9.92

𝝂 = 𝟒 2.13 2.78 3.75 4.60

𝝂 = 𝟓 2.02 2.57 3.36 4.03

𝝂 = 𝟗 1.83 2.26 2.82 3.25

𝝂 = 𝟏𝟎 1.81 2.23 2.76 3.17

𝝂 = 𝟐𝟎 1.72 2.09 2.53 2.84

𝝂 = 𝟑𝟎 1.70 2.04 2.46 2.75

𝝂 = 𝟏𝟐𝟎 1.66 1.98 2.36 2.62

𝝂 = ∞ 1.64 1.96 2.33 2.58

Values of 𝒕𝑵,𝝂 for two-sided confidence intervals
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k-Fold Cross Validation (4)

▪ Testing has to be done on identical test sets!
• in contrast to comparing hypotheses that requires independent test sets

     →  Paired tests 
• typically produce tighter confidence intervals because any differences in 

observed errors are due to differences between the hypotheses and not 
due to differences in the makeup of the sampled data 
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A Two-Sided Test
(looks for the change in the estimated parameter and has two critical regions)
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Rejecting zone
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α ~ significance level
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A One-Sided  ×  a Two-Sided Test

Accepting zoneAccepting zone

Rejecting zone Rejecting zoneRejecting zone

A one-sided test               A two-sided test       

A one-sided test specifies the direction of change in the estimated parameter 
(e.g., “precision is higher than”) and has only one critical region.
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