Neural Networks:

Perceptron and Linear Separability

doc. RNDr. Iveta Mrázová, CSc.

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGIC FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY IN PRAGUE

Neural Networks:

Contents:

- Introduction to the Field
- Perceptron and Linear Separability
- Multi-layered Neural Networks

Contents:

- Introduction to the Field
 - Motivation and a Brief History
 - Biological Background
 - Adaptation and Learning
 - Feature Selection and Ordering
 - Probability and Hypotheses Testing (Review)
- Perceptron and Linear Separability
 - A Formal Neuron
 - Perceptron and Linear Separability
 - Perceptron Learning Algorithm
 - Convergence of Perceptron Learning
 - The Pocket Algorithm

Formal neuron

Types of transfer functions

I. MRÁZOVÁ: NEURAL NETWORKS

Types of transfer functions

Definition of a formal neuron

A neuron with the weight vector $\vec{w} = (w_1, ..., w_n) \in \mathbb{R}^n$, the threshold $\vartheta \in \mathbb{R}$ and the transfer function $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ computes for any input $\vec{z} \in \mathbb{R}^n$ its output $y \in \mathbb{R}$ as the value of the transfer function in \vec{z} , $f[\vec{w}, \vartheta](\vec{z})$.

Most often, the so-called sigmoidal transfer function is considered with the values bound by 0 and 1: $y = f[\vec{w}, \vartheta](\vec{z}) = f(\xi) = \frac{1}{1+e^{-\xi}}$

 $\xi = \sum_{i=1}^{n} z_i w_i + \vartheta$ denotes the so-called neuron potential, *R* is the set of real numbers

-but we mostly ash whether $\sigma(x) \ge \frac{1}{2}$ or $\sigma(x) < \frac{1}{2}$. It is very unlikely to have it equal. Specification of neuron states

Let $f[\vec{w}, \vartheta](\vec{z})$ denotes the output of a neuron:

• when $f[\vec{w}, \vartheta](\vec{z}) = 1$, we say that the neuron is **active**;

• when
$$f[\vec{w}, \vartheta](\vec{z}) = \frac{1}{2}$$
, we say that the neuron is **silent**;

This fact indicates that the respective input is located on the separating hyperplane given by this neuron.

• when $f[\vec{w}, \vartheta](\vec{z}) = 0$, we say that the neuron is **passive**.

Training and recall

- Training:
 - **Supervised training set** of the form [input / desired output]
 - Self-organization no desired output
 - => Goal: setting (adaptation) of the synaptic weights (e.g., by minimizing the mean squared error)
 - **Objective function:** e.g., $\sum_{p} \sum_{j} (y_{p,j} d_{p,j})^2$, -2 identify that $\sqrt{\xi} (y_i t_i)^2$ \vec{y} is the actual and \vec{d} is the desired output
- <u>Recall</u> of newly presented input patterns:
 => Goal: get the response (output) of the neural network

Specification of training patterns

For a (neural) network B with n input and m output neurons:

- An input pattern is an input vector $\vec{x} \in \mathbb{R}^n$ being processed by B.
- An output pattern $\vec{d} = (d_1, ..., d_m)$ is formed by desired outputs of the output neurons.
- An actual output of *B* is a vector $\vec{y} = (y_1, ..., y_m)$ formed by actual outputs of the output neurons.

A training set *T* is a finite non-empty set of *P* ordered pairs of input / output patterns:

$$T = \left\{ \left[\vec{x}_1, \vec{d}_1 \right], \dots, \left[\vec{x}_P, \vec{d}_P \right] \right\}.$$

Neural Networks:

Contents:

- Introduction to the Field
- Perceptron and Linear Separability
- Multi-layered Neural Networks

Contents:

- Introduction to the Field
 - Motivation and a Brief History
 - Biological Background
 - Adaptation and Learning
 - Feature Selection and Ordering
 - Probability and Hypotheses Testing (Review)
- Perceptron and Linear Separability
 - A Formal Neuron
 - Perceptron and Linear Separability
 - Perceptron Learning Algorithm
 - Convergence of Perceptron Learning
 - The Pocket Algorithm

Perceptron and linear separability (1)

D A simple perceptron is a computing unit with the threshold ϑ which, when receiving the n real inputs x_1, x_2, \dots, x_n through edges with the associated weights w_1, \ldots, w_n yields the output 1, if the following inequality holds:

$$\sum_{i=1}^{n} w_i x_i \geq \vartheta$$
 (i.e., if $\vec{w} \cdot \vec{x} \geq \vartheta$) and $\boldsymbol{0}$ otherwise.

Note: Similarly, for the so-called **extended weight and input vector** bins $\begin{cases} \vec{w} = (w_1, w_2, \dots, w_n, w_{n+1}); \ w_{n+1} = -\vartheta \text{ and } \text{fixed, not updated} \\ \vec{x} = (x_1, x_2, \dots, x_n, 1) => \text{ output 1, if } \vec{w} \cdot \vec{x} \ge 0 \\ -\text{ then we can compare for \mathcal{I} instead of \mathcal{N}.} \end{cases}$

Perceptron and linear separability (2)

Linear separability:

D Two sets of points A and B are called **linearly separable** in an *n*dimensional space, if n + 1 real numbers $w_1, ..., w_n, \vartheta$ exist, such that every point $(x_1, x_2, ..., x_n) \in A$ satisfies $\sum_{i=1}^n w_i x_i \ge \vartheta$ and every point $(x_1, x_2, ..., x_n) \in B$ satisfies $\sum_{i=1}^n w_i x_i < \vartheta$.

• Example:

- $n = 2 \Rightarrow 14$ out of 16 possible Boolean functions are "linearly separable"
- $n = 3 \Rightarrow 104$ out of 256 possible Boolean functions are "linearly separable",
- $n = 4 \Rightarrow 1882 \text{ out of } 65536 = `` -$
- For a general case *n*, there is still no known formula expressing the number of linearly separable functions.

Perceptron and linear separability (3)

Absolute linear separability: ... nie nezustane un délia cate

D Two sets A and B are called **absolutely linearly separable** in an *n*-dimensional space, if n + 1 real numbers $w_1, ..., w_n, \vartheta$ exist, such that every point $(x_1, x_2, ..., x_n) \in A$ satisfies $\sum_{i=1}^n w_i x_i > \vartheta$ and every point $(x_1, x_2, ..., x_n) \in B$ satisfies $\sum_{i=1}^n w_i x_i < \vartheta$.

Perceptron and linear separability (4)

- T Two finite sets of points *A* and *B*, that are linearly separable in an *n*-dimensional space, are also absolutely linearly separable.
- <u>Proof:</u> Since the two sets, A and B are linearly separable, real numbers $w_1, \ldots, w_n, \vartheta$ exist, such that it holds $\sum_{i=1}^n w_i x_i \ge \vartheta$ for all points $(x_1, x_2, \ldots, x_n) \in A$ and $\sum_{i=1}^n w_i x_i < \vartheta$ for all points $(x_1, x_2, \ldots, x_n) \in B.$

Verms si nijbližší bol od hanice u mažing B (ta hde puhy adeží na hanici) o o polarina
posuna tato hanici sunorum la nejbližšíma paha v B. Pak hada mil obří neurosti ostré.
Perceptron and linear separability (5)
Surther let:
$$\varepsilon = \max_{(b_1,...,b_n)\in B}(\sum_{i=1}^n w_i b_i - \vartheta)$$
, then clearly $\varepsilon < \frac{\varepsilon}{2} < 0$.
Let $\vartheta' = \vartheta + \frac{\varepsilon}{2}$ (and therefore $\vartheta = \vartheta' - \frac{\varepsilon}{2}$).

=> For all points in A, it holds that $\sum_{i=1}^{n} w_i a_i - \left(\vartheta' - \frac{1}{2}\varepsilon\right) \ge 0$. This means that $\sum_{i=1}^{n} w_i a_i - \vartheta' \ge -\frac{1}{2}\varepsilon > 0$.

$$\rightarrow \quad \sum_{i=1}^{n} w_i a_i > \vartheta' \quad (\forall (a_1, \dots, a_n) \in A) \;. \tag{*}$$

Perceptron and linear separability (6)

Similarly for all points in B

$$\sum_{i=1}^{n} w_i b_i - \vartheta = \sum_{i=1}^{n} w_i b_i - \left(\vartheta' - \frac{1}{2}\varepsilon\right) \le \varepsilon$$

and therefore $\sum_{i=1}^{n} w_i b_i - \vartheta' \le \frac{1}{2}\varepsilon < 0.$ (**)

From (*) and (**), it follows that the sets A and B are absolutely linearly separable.

QED

Neural Networks:

Contents:

- Introduction to the Field
- Perceptron and Linear Separability
- Multi-layered Neural Networks

Contents:

- Introduction to the Field
 - Motivation and a Brief History
 - Biological Background
 - Adaptation and Learning
 - Feature Selection and Ordering
 - Probability and Hypotheses Testing (Review)
- Perceptron and Linear Separability
 - A Formal Neuron
 - Perceptron and Linear Separability
 - Perceptron Learning Algorithm
 - Convergence of Perceptron Learning
 - The Pocket Algorithm

Separating hyperplane – for the extended weight and feature space (1)

D The open (closed) positive half-space associated with the

n – dimensional weight vector \vec{w} is the set of all points

 $\vec{x} \in \mathbb{R}^n$ for which $\vec{w} \cdot \vec{x} > 0$ $(\vec{w} \cdot \vec{x} \ge 0)$.

The open (closed) negative half-space associated with the n – dimensional weight vector \vec{w} is the set of all points $\vec{x} \in R^n$ for which $\vec{w} \cdot \vec{x} < 0$ ($\vec{w} \cdot \vec{x} \leq 0$).

Separating hyperplane – for the extended weight and feature space (2)

- D The separating hyperplane associated with the *n*-dimensional weight vector \vec{w} is the set of all points $\vec{x} \in R^n$ for which $\vec{w} \cdot \vec{x} = 0$
- **Problem:** Find the weights and threshold capable of absolutely separating two sets
 - => e.g., the **PERCEPTRON LEARNING ALGORITHM**

Assumption:

- A ... a set of input vectors in n-dimensional space
- ${m B}$... a set of input vectors in n-dimensional space

Separating hyperplane – for the extended weight and feature space (3)

SEPARATION of A and B:

=> Perceptron should realize a binary function $f_{\vec{w}}$ such that $f_{\vec{w}}(\vec{x}) = 1 \quad \forall \ \vec{x} \in A$ and $f_{\vec{w}}(\vec{x}) = 0 \quad \forall \ \vec{x} \in B$

($f_{\vec{w}}$ depends on the weights and threshold, resp.).

=> The error corresponds to the number of incorrectly classified points:

$$E(\vec{w}) = \sum_{\vec{x} \in A} \left(1 - f_{\vec{w}}(\vec{x}) \right) + \sum_{\vec{x} \in B} f_{\vec{w}}(\vec{x})$$

<u>The goal of learning</u>: minimize $E(\vec{w})$ in the weight space $(E(\vec{w}) = 0)$.

Perceptron learning algorithm (1)

We are looking for a weight vector \vec{w} with a positive scalar product with all the extended vectors represented by the points in P and with a negative product with the extended vectors represented by the points in N.

 \vec{w}

Perceptron learning algorithm (2)

IN GENERAL: assume that *P* and *N* are sets of *n*-dimensional vectors and a weight vector \vec{w} must be found, such that $\vec{w} \cdot \vec{x} > 0 \quad \forall \vec{x} \in P$ and $\vec{w} \cdot \vec{x} < 0 \quad \forall \vec{x} \in N$.

The perceptron learning algorithm starts with a randomly chosen vector \vec{w}_0 .

If a vector $\vec{x} \in P$ is found such that $\vec{w} \cdot \vec{x} < 0$, this means that the angle between the two vectors is greater than 90°

- → The weight vector must be rotated in the direction of \vec{x} (to bring this vector into the "positive" half-space defined by \vec{w}).
- \rightarrow Rotation in the direction of \vec{x} can be done by <u>adding</u> \vec{x} to \vec{w}

Perceptron learning algorithm (3)

If a vector $\forall \vec{x} \in N$ is found such that $\vec{w} \cdot \vec{x} > 0$, this means that the angle between the two vectors is smaller than 90°

 \rightarrow The weight vector must be rotated away from \vec{x}

(to bring this vector into the "negative" half-space defined by \vec{w})

 \rightarrow Rotation away from \vec{x} can be done by <u>subtracting</u> \vec{x} from \vec{w}

The vectors from P thus rotate the weight vector in one direction, while the vectors from N do it in the opposite way.

If a solution exists, it can be found in a finite number of steps.

Perceptron learning algorithm (4)

- Step 1: Initialize the weights with small random values $w_i(0)$ ($w_i(0)$) is the weight of input i at time 0; $1 \le i \le n+1$).
- Step 2: Present a randomly selected training pattern in the form of the input pattern $(x_1(t), ..., x_{n+1}(t))$ and the desired output pattern d(t) (for the presented input).
- Step 3: Compute the actual response (network output)

$$y(t) = \operatorname{sgn}\left(\sum_{i=1}^{n+1} w_i(t) x_i(t)\right)$$

Step 4: Adjust the weights according to: $y = x^{T} v$ $w_{i}(t +) = w_{i}(t)$ if the actual output is correct $y_{i}(t +) = w_{i}(t) + x_{i}(t)$ if the actual output is 0 but should be 1 $w_{i}(t +) = w_{i}(t) - x_{i}(t)$ if the actual output is 1 but should be 0 $w_{i}(t +) = w_{i}(t) - x_{i}(t)$ if the actual output is 1 but should be 0 $w_{i}(t +) = w_{i}(t) - x_{i}(t)$ if the actual output is 2

Perceptron learning algorithm (5)

Heuristics for weight initialization:

Start with the averaged "positive" input vector minus the averaged "negative" vector.

<u>Modification</u> learning rates α ($0 \le \alpha \le 1$)

(adaptivity level of the weights ~ network plasticity)

• Weight adjustment according to:

$$\begin{split} w_i(t+) &= w_i(t) & \text{if the actual output is correct} \\ w_i(t+) &= w_i(t) + \alpha \; x_i(t) & \text{if the actual output is 0 but should be 1} \\ w_i(t+) &= w_i(t) - \alpha \; x_i(t) & \text{if the actual output is 1 but should be 0} \end{split}$$

Neural Networks:

Contents:

- Introduction to the Field
- Perceptron and Linear Separability
- Multi-layered Neural Networks

Contents:

- Introduction to the Field
 - Motivation and a Brief History
 - Biological Background
 - Adaptation and Learning
 - Feature Selection and Ordering
 - Probability and Hypotheses Testing (Review)
- Perceptron and Linear Separability
 - A Formal Neuron
 - Perceptron and Linear Separability
 - Perceptron Learning Algorithm
 - Convergence of Perceptron Learning
 - The Pocket Algorithm

Only if data an linnely symmble... Convergence of perceptron learning (Rosenblatt, 1959)

Т If the sets P and N are finite and linearly separable, the perceptron learning algorithm updates the weight vector \vec{w}_t a finite number of times.

(If the vectors in P and N are tested cyclically one after the other, a weight vector \vec{w}_t is found after a finite number of steps t which can separate the two sets P and N.)

Proof: We will show that the perceptron learning works by bringing the initial vector \vec{w}_t sufficiently close to the "solution vector" \vec{w}^* .