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Types of transfer functions

Hard-limiting Sigmoidal
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Types of transfer functions

Hard-limiting Tanh
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Definition of a formal neuron

A neuron with the weight vector w = (w, ..., w;,) € R™, the threshold 9 € R
and the transfer function f : R™ X R™ —» R computes for any input Z € R" its
output y € R as the value of the transfer function in z, f[w, 9](2).

Most often, the so-called sigmoidal transfer function is considered with the
values bound by 0 and 1: y = f[w, 9](2) = f(§) = —

1+e—$

& =Y 1z;w; +9 denotes the so-called neuron potential,
R is the set of real numbers
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Specification of neuron states

Let f[w,9](2) denotes the output of a neuron:

« when f[w,9](Z) = 1, we say that the neuron is active;
* when f[w,9](2) = %, we say that the neuron is silent;

This fact indicates that the respective input is located on the separating
hyperplane given by this neuron.

« when f[w,9](Z2) = 0, we say that the neuron is passive.
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Training and recall

= Training:
* Supervised — training set of the form [ input / desired output]
* Self-organization — no desired output

=> @Goal: setting (adaptation) of the synaptic weights
(e.g., by minimizing the mean squared error)

e | - . 1\¢
* Objective function: e.g., X, ¥ i(vp,j — dp,j)z, —> (deasi ch @(8.4,)

y is the actual and dis the desired output

= Recall of newly presented input patterns:
=> Goal: get the response (output) of the neural network
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Specification of training patterns

For a (neural) network B with n input and m output neurons:

e An input pattern is an input vector ¥ € R™ being processed by B.

e An output pattern d = (dy, ..., dy,) is formed by desired outputs of the output
neurons.

* An actual output of Bisavectory = (yy, ..., i) formed by actual outputs of the
output neurons.

A training set T is a finite non-empty set of P ordered pairs of input / output patterns:
T = {[fli dl] 5 ooo g [fp, dp]} -
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Perceptron and linear separability (1)

D A simple perceptron is a computing unit with the threshold 9 which,
when receiving the n real inputs x4, x,,, ..., x,, through edges with
the associated weights wy, ..., w,, yields the output 1, if the
following inequality holds:

?:1 wix; = 0 (i.e, if w-x=>9 ) and 0 otherwise.

Note: Similarly, for the so-called extended weight and input vector

hing W = (W, Wy, e, Wy, Wy 41); Wper = —0 and /ﬂ)(&cé pA U/M&J
X = (x1,%5, ., X, 1) => outputl,if w-x=>0
— /%&}'I we Cavr 6’17/«7/0'/?/ 7LV J /5574’4/ 04 v
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Perceptron and linear separability (2)

Linear separability:

D Two sets of points A and B are called linearly separable in an n-
dimensional space, if n + 1 real numbers wy, ..., w,,,, U exist, such that
every point (xq, X3, ..., X,) € A satisfies )i, w;x; =9 and every point
(x1, X3, ..., Xp) € B satisfies )./, wix; < 9.

= Example:

e n =2 => 14 out of 16 possible Boolean functions are , linearly separable”

e n =3 => 104 out of 256 possible Boolean functions are , linearly separable®,
* n=4 => 1882 outof 65536 - -

For a general case n, there is still no known formula expressing the number of
linearly separable functions.
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Perceptron and linear separability (3)

Absolute linear separability: . v woldwy o do¥t ite

D Two sets A and B are called absolutely linearly separable
in an n-dimensional space, if n + 1 real

numbers wy, ..., w,,, 9 exist, such that every
point (x4, x5, ..., X,,) € A satisfies ), ; w;x; > 9 and every

point (x4, Xy, ..., X,) € B satisfies X,/ ; w;x; < 9.
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Perceptron and linear separability (4)

T Two finite sets of points A and B, that are linearly separable

in an n-dimensional space, are also absolutely linearly separable.

Proof: Since the two sets, A and B are linearly separable, real numbers
Wy, .., Wp,, 0 exist, such that it holds Y.}, w;x; =9 for all points
(X1, X3, ., Xp) €A and XL, wix; <9 forall points

(x1,%5, ..., X) € B.
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Perceptron and linear separability (5)
bl vejbliza bod

Further let: € = max,,,  p.)es(Xi=q Wib; — ) , thenclearly &<~ °<0.

— 7/&4717 9@/7» mc/m 50‘7?;/

Let 9' =90 +§ (and therefore 9 =9’ — 2 ).

=> For all pointsin A4, it holds that };[* 1Wlal (19’ —%e) = 0.
This means that Y,I*, w;a; — 9’ = —Ee > 0.

= Ximgwia; > 9" (V(ay, ..., an) € 4). ()
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Perceptron and linear separability (6)

Similarly for all points in B
l 1Wl 19 Zl 1Wl (ﬁ’—%E)SE
and therefore Y, w;b; — 9" < %8 < 0. (%)

From (*) and (x*), it follows that the sets A and B are
absolutely linearly separable.

QED
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Separating hyperplane —for the
extended weight and feature space (1)

D The open (closed) positive half-space associated with the
n — dimensional weight vector w is the set of all points

X € R™ for which w-X¥>0 (W-x > 0).

The open (closed) negative half-space associated with the
n — dimensional weight vector w is the set of all points

X € R™ for which w-X¥x <0 (W-x <0).
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Separating hyperplane —for the
extended weight and feature space (2)

D The separating hyperplane associated with the n—dimensional

weight vector w is the set of all points x € R™ for which
w-x=0

Problem: Find the weights and threshold capable of absolutely
separating two sets

=> e.g., the PERCEPTRON LEARNING ALGORITHM

Assumption:

A ... a set of input vectors in n—dimensional space

B ... a set of input vectors in n—dimensional space
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Separating hyperplane —for the
extended weight and feature space (3)

SEPARATION of A and B:

=> Perceptron should realize a binary function f5; such that
f(X)=1 VX€EA and f5(X)=0 VXEB

(f depends on the weights and threshold, resp.).

=> The error corresponds to the number of incorrectly classified points:
EW) = Yzea(l = f5@) + Xzep [

The goal of learning: minimize E(w) in the weight space (E(w) = 0).
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Perceptron learning algorithm (1)

-y = weight vector

vectors from the set P

Pq

separate
the sets
P and N

vectors from
« theset N

Sy

2 {

We are looking for a weight vector w with a positive scalar product with all the
extended vectors represented by the points in P and with a negative product
with the extended vectors represented by the pointsin N.

I. MRAZOVA: NEURAL NETWORKS 113




Perceptron learning algorithm (2)

IN GENERAL: assume that P and N are sets of n—dimensional
vectors and a weight vector w must be found, such

—

that w- x>0 VX€EP and w-x<0 VX €N.
The perceptron learning algorithm starts with a randomly chosen vector w,.

If a vector X € P is found such that w - X < 0, this means that the angle
between the two vectors is greater than 90°

- The weight vector must be rotated in the direction of x
(to bring this vector into the , positive” half-space defined by w ).

-> Rotation in the direction of X can be done by adding X to w
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Perceptron learning algorithm (3)

If a vector VX € N is found such that w - X > 0, this means that the angle
between the two vectors is smaller than 90°

> The weight vector must be rotated away from x
(to bring this vector into the ,negative” half-space defined by w )

-> Rotation away from X can be done by subtracting X from w

The vectors from P thus rotate the weight vector in one direction, while the
vectors from N do it in the opposite way.

If a solution exists, it can be found in a finite number of steps.
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Perceptron learning algorithm (4)

Step 1: Initialize the weights with small random values w;(0) (w;(0) is the weight of
input iattime0;1<i<n+1).

Step 2: Present a randomly selected training pattern in the form of the input pattern
(x1 (t), ..., xn+1(t)) and the desired output pattern d(t) (for the presented input).

Step 3: Compute the actual response (network output)
n+1

y© = sen [ D) wi®x©
i=1

_ Step 4: Adjust the weights according to:
a: X'\V w;(t +) = w;(t) if the actual output is correct
% h% o {Wi(t +) = w;(t) + x;(t) if the actual outputis O but should be 1
w;(t +) = w;(t) — x;(t) if the actual outputis 1 but should be 0
W+ 4()( Step 5: If the time t is smaller than the pre-set value, go to Step 2

I. MRAZOVA: NEURAL NETWORKS 116




Perceptron learning algorithm (5)

Heuristics for weight initialization:
Start with the averaged , positive” input vector minus the averaged

,hegative” vector.

Modification learningrates a (0 < a < 1)
(adaptivity level of the weights ~ network plasticity)

* Weight adjustment according to:
w;(t +) = w;(t) if the actual output is correct
w;(t +) = w;(t) + a x;(t) if the actual outputis 0 but should be 1
w;(t +) = w;(t) — a x;(t) if the actual outputis 1 but should be 0
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Convergence of perceptron learning
(Rosenblatt, 1959)

T Ifthe sets P and N are finite and linearly separable, the perceptron
learning algorithm updates the weight vector w; a finite number of
times.

(If the vectors in P and N are tested cyclically one after the other, a
weight vector w; is found after a finite number of steps t which can
separate the two sets P and N.)

Proof: We will show that the perceptron learning works by bringing the
initial vector w; sufficiently close to the ,solution vector” w*.
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