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Types of transfer functions
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Types of transfer functions

:  CLASS  A
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Definition of a formal neuron
A neuron with the weight vector 𝑤 = 𝑤1, … , 𝑤𝑛 ∈ 𝑅𝑛, the threshold 𝜗 ∈ 𝑅 
and the transfer function 𝑓 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅 computes for any input  Ԧ𝑧 ∈ 𝑅𝑛 its 
output 𝑦 ∈ 𝑅 as the value of the transfer function in Ԧ𝑧, 𝑓 𝑤, 𝜗 Ԧ𝑧 .

Most often, the so-called sigmoidal transfer function is considered with the 
values bound by 0 and 1: 𝑦 = 𝑓 𝑤, 𝜗 Ԧ𝑧 = 𝑓 𝜉 = 1

1+𝑒−𝜉

𝜉 = σ𝑖=1
𝑛 𝑧𝑖𝑤𝑖 + 𝜗 denotes the so-called neuron potential, 

𝑅 is the set of real numbers



Specification of neuron states
Let 𝑓 𝑤, 𝜗 Ԧ𝑧 denotes the output of a neuron:

• when 𝑓 𝑤, 𝜗 Ԧ𝑧 = 1, we say that the neuron is active;

• when 𝑓 𝑤, 𝜗 Ԧ𝑧 = 1
2
, we say that the neuron is silent;

This fact indicates that the respective input is located on the separating 
hyperplane given by this neuron.

• when 𝑓 𝑤, 𝜗 Ԧ𝑧 = 0, we say that the neuron is passive.
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Training and recall
▪ Training:

• Supervised – training set of the form [ input / desired output]
• Self-organization – no desired output

=> Goal:  setting (adaptation) of the synaptic weights  
             (e.g., by minimizing the mean squared error)

• Objective function: e.g., σ𝑝 σ𝑗 𝑦𝑝,𝑗 − 𝑑𝑝,𝑗
2

, 

Ԧ𝑦 is the actual and Ԧ𝑑is the desired output                              

▪ Recall of newly presented input patterns:
=> Goal: get the response (output) of the neural network

idealuichi Ftt



Specification of training patterns
For a (neural) network 𝐵 with n input and 𝑚 output neurons:

• An input pattern is an input vector Ԧ𝑥  𝑅𝑛 being processed by 𝐵.

• An output pattern Ԧ𝑑  =  (𝑑1, … , 𝑑𝑚) is formed by desired outputs of the output 
neurons.

• An actual output of 𝐵 is a vector Ԧ𝑦  =  (𝑦1, … , 𝑦𝑚) formed by actual outputs of the
output neurons.

A training set 𝑇 is a finite non-empty set of 𝑃 ordered pairs of input / output patterns:

       𝑇 = Ԧ𝑥1, Ԧ𝑑1 , … , Ԧ𝑥𝑃, Ԧ𝑑𝑃 .
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Perceptron and linear separability (1)
D A simple perceptron is a computing unit with the threshold 𝜗  which, 

when receiving the 𝑛 real inputs 𝑥1, 𝑥2, , … , 𝑥𝑛 through edges with 
the associated weights 𝑤1, … , 𝑤𝑛  yields the output 1, if the 
following inequality holds:

    σ𝑖=1
𝑛 𝑤𝑖𝑥𝑖 ≥ 𝜗  (i.e., if  𝑤 ⋅ Ԧ𝑥 ≥ 𝜗 )  and 0  otherwise.

Note:  Similarly, for the so-called extended weight and input vector     
𝑤 = 𝑤1, 𝑤2, … , 𝑤𝑛, 𝑤𝑛+1 ; 𝑤𝑛+1 = −𝜗 and
Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛, 1 =>  output 1, if 𝑤 ⋅ Ԧ𝑥 ≥ 0     

requires linearlyseparabledata

bins fixednotupdated

thenwecan compareto 0 insteadof
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Perceptron and linear separability (2)
Linear separability:

D Two sets of points  𝐴  and  B  are called  linearly separable  in an  𝑛-
dimensional space, if  𝑛 + 1 real numbers 𝑤1, … , 𝑤𝑛, , 𝜗 exist, such that 
every point 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐴 satisfies   σ𝑖=1

𝑛 𝑤𝑖𝑥𝑖 ≥ 𝜗  and  every point 
𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐵 satisfies σ𝑖=1

𝑛 𝑤𝑖𝑥𝑖 < 𝜗.  
▪ Example:

• 𝒏 = 𝟐  =>  14 out of 16 possible Boolean functions are „linearly separable“
• 𝒏 = 𝟑  =>  104 out of 256 possible Boolean functions are „linearly separable“,
• 𝒏 = 𝟒  =>  1882 out of 65536     - ´´ -
• For a general case 𝑛, there is still no known  formula expressing the number of 

linearly separable functions. 
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Perceptron and linear separability (3)

Absolute linear separability:

D Two sets  A  and  B  are called  absolutely linearly separable  
in an 𝑛-dimensional space, if  𝑛 + 1  real  
numbers 𝑤1, … , 𝑤𝑛, , 𝜗 exist, such that every 
point 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐴 satisfies σ𝑖=1

𝑛 𝑤𝑖𝑥𝑖 > 𝜗 and every 
point 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐵 satisfies σ𝑖=1

𝑛 𝑤𝑖𝑥𝑖 < 𝜗.

nienezustanenadelicicare
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Perceptron and linear separability (4)

T Two finite sets of points A  and  B , that are linearly separable 

in an n-dimensional space, are also absolutely linearly separable.

 Proof:  Since  the two sets,  A  and  B  are linearly separable, real numbers

𝑤1, … , 𝑤𝑛, , 𝜗 exist, such that it holds σ𝑖=1
𝑛 𝑤𝑖𝑥𝑖 ≥ 𝜗 for all points

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐴 and σ𝑖=1
𝑛 𝑤𝑖𝑥𝑖 < 𝜗 for all points

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝐵.
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Perceptron and linear separability (5)

Further let: 𝜀 = max 𝑏1,…,𝑏𝑛 ∈𝐵 σ𝑖=1
𝑛 𝑤𝑖𝑏𝑖 − 𝜗 , then clearly   𝜀 < 𝜀

2
< 0 .

Let 𝜗′ = 𝜗 + 𝜀
2
 (and therefore 𝜗 = 𝜗′ − 𝜀

2
 ) .

=>  For all points in 𝐴,  it holds that σ𝑖=1
𝑛 𝑤𝑖𝑎𝑖 − 𝜗′ − 1

2
𝜀 ≥ 0 .

      This means that σ𝑖=1
𝑛 𝑤𝑖𝑎𝑖 − 𝜗′ ≥ − 1

2
𝜀 > 0 .

→ σ𝑖=1
𝑛 𝑤𝑖𝑎𝑖 > 𝜗′ ∀ 𝑎1, … , 𝑎𝑛 ∈ 𝐴 .              ∗

Verma sinejblizsibododhmnieaumnozingbftakdepruhynelez.inhmnici a 0 polovina
pusunntotohmnicismivemhnejbliesimnpurhnvB.PL budnmitobenewunostiostre

imneibliz.sk
tentozipismediussmyst
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Perceptron and linear separability (6)
Similarly for all points in 𝐵

σ𝑖=1
𝑛 𝑤𝑖𝑏𝑖 − 𝜗 = σ𝑖=1

𝑛 𝑤𝑖𝑏𝑖 − 𝜗′ − 1
2

𝜀 ≤ 𝜀

       and therefore σ𝑖=1
𝑛 𝑤𝑖𝑏𝑖 − 𝜗′  ≤ 1

2
𝜀 < 0.         ∗∗

 From ∗  and ∗∗ , it follows that the sets  𝐴  and 𝐵  are 
absolutely linearly separable.
QED
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Separating hyperplane  – for the 
extended weight and feature space (1)

D The open (closed) positive half-space associated with the 

𝑛 – dimensional weight vector 𝑤 is the set of all points

Ԧ𝑥 ∈ 𝑅𝑛 for which 𝑤 ∙ Ԧ𝑥 > 0 𝑤 ∙ Ԧ𝑥 ≥ 0 .

    The open (closed) negative half-space associated with the

𝑛 – dimensional weight vector 𝑤 is the set of all points 

Ԧ𝑥 ∈ 𝑅𝑛 for which 𝑤 ∙ Ԧ𝑥 < 0 𝑤 ∙ Ԧ𝑥 ≤ 0 .
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Separating hyperplane  – for the 
extended weight and feature space (2)

D The separating hyperplane associated with the 𝑛–dimensional
weight vector 𝑤 is the set of all points Ԧ𝑥 ∈ 𝑅𝑛 for which
𝑤 ∙ Ԧ𝑥 = 0

Problem:   Find the weights and threshold capable of absolutely
separating two sets

 =>  e.g., the  PERCEPTRON  LEARNING  ALGORITHM 
Assumption:  

𝑨 … a set of input vectors in 𝑛–dimensional space

𝑩 … a set of input vectors in 𝑛–dimensional space
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Separating hyperplane  – for the 
extended weight and feature space (3)
SEPARATION of 𝐴 and 𝐵:

  => Perceptron should realize a binary function 𝑓𝑤 such that
𝑓𝑤 Ԧ𝑥 = 1 ∀ 𝒙 ∈ 𝑨 and   𝑓𝑤 Ԧ𝑥 = 0 ∀ Ԧ𝑥 ∈ 𝐵

    (𝑓𝑤 depends on the weights and threshold, resp.).

=> The error corresponds to the number of incorrectly classified points:

𝐸 𝑤 = σ𝒙∈𝑨 1 − 𝑓𝑤 Ԧ𝑥 + σ Ԧ𝑥∈𝐵 𝑓𝑤 Ԧ𝑥

The goal of learning:   minimize 𝐸 𝑤  in the weight space (𝐸 𝑤 = 0).
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Perceptron learning algorithm (1)

We are looking for a weight vector 𝑤 with a positive scalar product with all the 
extended vectors represented by the points in 𝑃 and with a negative product 
with the extended vectors represented by the points in 𝑁.

w
separate
the sets
P and N

vectors from the set  P

weight vector

vectors from
the set  N
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Perceptron learning algorithm (2)
IN GENERAL:  assume that 𝑃 and 𝑁 are sets of  𝑛–dimensional 

vectors and a weight vector 𝑤 must be found, such
that 𝑤 ⋅ Ԧ𝑥 > 0 ∀ Ԧ𝑥 ∈ 𝑃 and 𝑤 ⋅ Ԧ𝑥 < 0 ∀ Ԧ𝑥 ∈ 𝑁.

The perceptron learning algorithm starts with a randomly chosen vector 𝑤0.

If a vector Ԧ𝑥 ∈ 𝑃  is found such that 𝑤 ⋅ Ԧ𝑥 < 0, this means that the angle 
between the two vectors is greater than  90°

→ The weight vector must be rotated in the direction of Ԧ𝑥   
  (to bring this vector into the „positive“ half-space defined by 𝑤 ).
→  Rotation in the direction of Ԧ𝑥 can be done by adding Ԧ𝑥 to 𝑤 
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Perceptron learning algorithm (3)
If a vector ∀ Ԧ𝑥 ∈ 𝑁 is found such that 𝑤 ⋅ Ԧ𝑥 > 0, this means that the angle 
between the two vectors is smaller than  90°
→  The weight vector must be rotated away from Ԧ𝑥     

 (to bring this vector into the „negative“ half-space defined by 𝑤    )

→  Rotation away from Ԧ𝑥 can be done by subtracting Ԧ𝑥 from 𝑤  

The vectors from 𝑃  thus rotate the weight vector in one direction, while the 
vectors from  𝑁 do it in the opposite way.

If a solution exists, it can be found in a finite number of steps.
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Perceptron learning algorithm (4)
Step 1:  Initialize the weights with small random values 𝑤𝑖 0  (𝑤𝑖 0  is the weight of
 input  𝒊 at time 0 ; 𝟏 ≤ 𝒊 ≤ 𝒏 + 𝟏 ).
Step 2:   Present a randomly selected training pattern in the form of the input pattern
 𝑥1 𝑡 , … , 𝑥𝑛+1 𝑡  and the desired output pattern 𝑑 𝑡  (for the presented input).
Step 3:  Compute the actual response (network output)

𝑦 𝑡 = sgn 
𝑖=1

𝑛+1

𝑤𝑖 𝑡 𝑥𝑖 𝑡

Step 4:   Adjust the weights according to:
  𝑤𝑖 𝑡 + = 𝑤𝑖 𝑡                  if the actual output is correct
              𝑤𝑖 𝑡 + = 𝑤𝑖 𝑡 + 𝑥𝑖 𝑡  if the actual output is  0  but should be  1
  𝑤𝑖 𝑡 + = 𝑤𝑖 𝑡 − 𝑥𝑖 𝑡   if the actual output is  1  but should be  0
Step 5:   If the time 𝑡 is smaller than the pre-set value, go to Step 2 

g xtW
stiyco
Wetix
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Perceptron learning algorithm (5)
Heuristics for weight initialization:

     Start with the averaged „positive“ input vector minus the averaged 
„negative“ vector.

Modification  learning rates  𝛼 0 ≤ 𝛼 ≤ 1  
(adaptivity level of the weights ~ network plasticity)
• Weight adjustment according to:

  𝑤𝑖 𝑡 + = 𝑤𝑖 𝑡                if the actual output is correct
              𝑤𝑖 𝑡 + = 𝑤𝑖 𝑡 + 𝛼 𝑥𝑖 𝑡  if the actual output is  0  but should be  1
 𝑤𝑖 𝑡 + = 𝑤𝑖 𝑡 − 𝛼 𝑥𝑖 𝑡   if the actual output is  1  but should be  0
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Convergence of perceptron learning  
(Rosenblatt, 1959)

T If the sets 𝑃 and 𝑁 are finite and linearly separable, the perceptron 
learning algorithm updates the weight vector 𝑤𝑡 a finite number of 
times.  

        (If the vectors in 𝑃 and 𝑁 are tested cyclically one after the other, a 
weight vector 𝑤𝑡 is found after a finite number of steps  t  which can
separate the two sets 𝑃 and 𝑁.)

  Proof:  We will show that the perceptron learning works by bringing the 
initial vector 𝑤𝑡 sufficiently close to the „solution vector“ 𝑤∗.

Only ifdataare linearlysepamble


