
Neural Networks
doc. RNDr. Iveta Mrázová, CSc.

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGIC

FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY IN PRAGUE

Neural Networks:

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGIC

FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVERSITY IN PRAGUE

Multi-layered Neural Networks

doc. RNDr. Iveta Mrázová, CSc.

Neural
Networks:

Contents:

 Perceptron and Linear Separability
• A Formal Neuron
• Perceptron and Linear Separability
• Perceptron Learning Algorithm
• Convergence of Perceptron Learning
• The Pocket Algorithm

 Multi-layered Neural Networks
• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 131

Multi-layered neural networks (1)
D A neural network is a 6-tuple , where:

• is a finite non-empty set of neurons,
• is a non-empty set of oriented interconnections among neurons
• is a non-empty set of input neurons
• is a non-empty set of output neurons
• is a weight function
• is a threshold function

(is the set of all real numbers)
• is called the inter-connection graph of

I. MRÁZOVÁ: NEURAL NETWORKS 132

I. MRÁZOVÁ: NEURAL NETWORKS 133

Multi-layered neural networks (2)
D A Back-Propagation network (BP-network) is a neural network with a directed

acyclic inter-connection graph. Its set of neurons consists of a sequence of
pairwise disjunctive non-empty subsets called layers.

• The first layer called the input layer is the set of all input neurons of , these
neurons have no predecessors in the inter-connection graph; their input value

equals their output value.

• The last layer called the output layer is the set of all output neurons of ;
these neurons are those having no successors in the inter-connection graph.

• All other neurons called hidden neurons are grouped in the remaining
hidden layers.

Neural
Networks:

Contents:

 Perceptron and Linear Separability
• A Formal Neuron
• Perceptron and Linear Separability
• Perceptron Learning Algorithm
• Convergence of Perceptron Learning
• The Pocket Algorithm

 Multi-layered Neural Networks
• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 134

I. MRÁZOVÁ: NEURAL NETWORKS 135

Back-propagation training algorithm (1)
The aim: find such a set of weights that ensure that for each input

vector, the output vector produced by the network is the same as
(or sufficiently close to) the desired output vector

The actual or desired output values of the hidden neurons are not
specified by the task.

 For a fixed, finite training set, the objective function represents the
total error between the desired and actual outputs of all the output
neurons in the BP-network taken for all the training patterns.

I. MRÁZOVÁ: NEURAL NETWORKS 136

 corresponds to the difference between the actual and desired network
output:

௝,௣ ௝,௣
ଶ

௝௣

 during training, this difference should be minimized on the given training

set the back-propagation training algorithm

Back-propagation training algorithm (2)
The Error Function

actual output

desired output

patterns output neurons

I. MRÁZOVÁ: NEURAL NETWORKS 137

Multi-layered neural networks
(BP-networks)

 produce the actual output for the
presented input pattern

 compare the actual and desired
outputs

 adjust the weights and thresholds
• against the gradient of the error

function

• from the output layer towards the input
layer

O U T P U T

I N P U T

BP-networks: adjustment rules (1)
Synaptic weights are adjusted against the gradient:

௜௝ ௜௝ ா ௜௝

ா ௜௝ ……. the change of ௜௝ to minimize

I. MRÁZOVÁ: NEURAL NETWORKS 138

potential of
the neuron 𝑗

connection weightactual output

error at network output

ா ௜௝
௜௝ ௝

௝

௝

௝

௜௝

BP-networks: adjustment rules (2)
Weight adjustment in the output layer:

ா ௜௝
డா

డ௪೔ೕ

డா
డ௬ೕ

డ௬ೕ

డకೕ

డకೕ

డ௪೔ೕ

డா
డ௬ೕ

డ௬ೕ

డకೕ

డ
డ௪೔ೕ

௜´௝ ௜´௜´

డா
డ௬ೕ

డ௬ೕ

డకೕ
௜

డா
డ௬ೕ

ᇱ
௝ ௜

௝ ௝
ᇱ

௝ ௜ ௝ ௜

I. MRÁZOVÁ: NEURAL NETWORKS 139

𝑖

𝑗

output layer

𝑤௜௝

BP-networks: adjustment rules (3)
Weight adjustment in hidden layers:

I. MRÁZOVÁ: NEURAL NETWORKS 140

ா ௜௝
௜௝ ௞

௞

௝௞

௝

௝
௜

డா
డకೖ

డ
డ௬ೕ

௞ ௝´௞ ௝´௝´
డ௬ೕ

డకೕ
௜

డா
డకೖ

௝௞௞
డ௬ೕ

డకೕ
௜

௞ ௝௞௞
ᇱ

௝ ௜ ௝ ௜ i

j

k

𝑤௜௝

BP-networks: adjustment rules (4)
 The derivative of the sigmoidal transfer function is:

ᇱ
௝ ௝ ௝

 Weight adjustment according to:

௜௝ ௜௝ ௝ ௜ ௠ ௜௝ ௜௝

where:

௝
௝ ௝ ௝ ௝ for an output neuron

௞ ௝௞௞ ௝ ௝ for a hidden neuron

I. MRÁZOVÁ: NEURAL NETWORKS 141

I. MRÁZOVÁ: NEURAL NETWORKS 142

Back-propagation training algorithm (1)
Step 1: Initialize the weights to small random values
Step 2: Present a new training pattern in the form of:

[input , desired output]
Step 3: Calculate actual output in each layer, the activity of the neurons

is given by:

௝ ௝
ଵ

ଵା௘షഊ഍ೕ ௝ ௜ ௜௝௜

The activities expressed in this way form the input of the

following layer.

I. MRÁZOVÁ: NEURAL NETWORKS 143

Back-propagation training algorithm (2)
Step 4: Weight adjustment starts at the output layer and proceeds back towards

the input layer according to:

௜௝ ௜௝ ௝ ௜ ௠ ௜௝ ௜௝

𝛿௝ =

𝑑௝ − 𝑦௝ 𝜆𝑦௝(1 − 𝑦௝) for an output neuron

෍ 𝛿௞𝑤௝௞
௞

𝜆𝑦௝ 1 − 𝑦௝ for a hidden neuron

𝑤௜௝ 𝑡 ……….. weight from neuron 𝒊 to neuron 𝒋 in time 𝒕
𝛼 , 𝛼𝑚 ……..... learning rate, resp. moment (𝟎 ≤ 𝜶, 𝜶𝒎 ≤ 𝟏)
𝜉௝, resp. 𝛿௝ …... potential, resp. local error on neuron 𝒋
𝑘 …………….. index for the neurons from the layer above the neuron 𝒋
𝝀 …………….. slope of the transfer function

Step 5: Repeat by going to Step 2

An alternative example:
the sample multi-class labels are one hot binary vectors

The SOFTMAX transfer function is used for the output neurons (indexed by 𝑗´):
(all the desired output values are either 0 or 1; when using one-hot encoding, there is just one
positive class (for the neuron 𝑗), all the other ones are negative)

𝑦௝ = ௘ಖೕ

∑ ௘ಖೕ´
ೕ´

 , then:
డ௬ೕ

డஞೕ
= డ

డஞೕ
 ௘ಖೕ

∑ ௘ಖೕ´
ೕ´

=
 ௘ಖೕ ´

∑ ௘ಖೕ´ ି௘ಖೕ ∑ ௘ಖೕ´
ೕ´

´
ೕ´

∑ ௘ಖೕ´
ೕ´

మ =

=
 ௘ಖೕ ∑ ௘ಖೕ´

ೕ´

∑ ௘ಖೕ´
ೕ´

మ − ௘ಖೕ ௘ಖೕ

∑ ௘ಖೕ´
ೕ´

మ = 𝑦௝ 1 − 𝑦௝ for the derivative according to ξ௝

and:
డ௬ೕ

డஞೖ
= డ

డஞೖ
 ௘ಖೕ

∑ ௘ಖೕ´
ೕ´

=
 ௘ಖೕ ´

∑ ௘ಖೕ´ ି௘ಖೕ ∑ ௘ಖೕ´
ೕ´

´
ೕ´

∑ ௘ಖೕ´
ೕ´

మ =
଴ . ∑ ௘ಖೕ´

ೕ´

∑ ௘ಖೕ´
ೕ´

మ − ௘ಖೕ ௘ಖೖ

∑ ௘ಖೕ´
ೕ´

మ =

= 0 − ௘ಖೕ ௘ಖೖ

∑ ௘ಖೕ´
ೕ´

మ = − 𝑦௝ 𝑦௞ for the derivative according to ξ௞ with 𝑘 ≠ 𝑗

I. MRÁZOVÁ: NEURAL NETWORKS 144

An alternative example:
the sample multi-class labels are one hot binary vectors

Cross entropy loss function (~ negative log-likelihood)

௝´௝´ ௝´ , then

డ௅
డஞೕ

డ
డஞೕ

௝´௝´ ௝´ ௝´௝´
డ ୪୭୥ ௬ೕ´

డ௬ೕ´

డ௬ೕ´

డஞೕ

௝
ଵ

௬ೕ
௝ 1− ௝ ௝´

ଵ
௬ೕ´

௝´ஷ௝ ௝´ ௝

௝ 1− ௝ ௝´௝´ஷ௝ ௝ ௝ ௝ ௝´௝´

Altogether, we obtain: డ௅
డஞೕ

௝ ௝´௝´ ௝ ௝ ௝

I. MRÁZOVÁ: NEURAL NETWORKS 145

I. MRÁZOVÁ: NEURAL NETWORKS 146

BP-networks: analysis of the model
 Simple training algorithm
 A very often used approach
 Relatively good results
 Drawbacks:

• Internal knowledge representation – „black box“
• the number of neurons and generalization capabilities

o pruning and retraining
• error function (knowledge of the desired outputs)

o „bigger“ and „balanced“ training sets
o assessment of network outputs during recall

BP-networks: analysis of the model

Drawbacks:
needs „bigger“ and
„balanced“ training
sets

I. MRÁZOVÁ: NEURAL NETWORKS 147

Neural
Networks:

Contents:

 Perceptron and Linear Separability
• A Formal Neuron
• Perceptron and Linear Separability
• Perceptron Learning Algorithm
• Convergence of Perceptron Learning
• The Pocket Algorithm

 Multi-layered Neural Networks
• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 148

I. MRÁZOVÁ: NEURAL NETWORKS 149

Back-propagation training algorithm:
speeding-up the training process (1)
 The standard back-propagation training algorithm is rather slow

→ a malicious selecƟon of network parameters can make it even slower
 For artificial neural networks, the learning problem is NP-complete

in the worst case
→ computaƟonal complexity grows exponenƟally with the number of

the variables
→ despite of that the standard back-propagation performs often better

than many „fast learning algorithms“
- especially when the task achieves a realistic level of complexity and the

size of the training set goes beyond a critical threshold

I. MRÁZOVÁ: NEURAL NETWORKS 150

Back-propagation training algorithm:
speeding-up the training process (2)

Algorithms speeding-up the training process:
 Keeping a fixed network topology

 Modular networks
• considerable improvement of network approximation abilities

 Adjustment of both the parameters (weights, thresholds, etc.)
and the network topology

I. MRÁZOVÁ: NEURAL NETWORKS 151

Back-propagation training algorithm:
initial weight selection (1)
 The weights should be uniformly distributed over the interval

 Zero mean value
• leads to an expected zero value of the total input to each node in the

network (potential)

 The derivative of the sigmoidal transfer function is reached its
maximum for zero (~ 0.25)

• larger values of the backpropagated errors
• more significant weight updates when training starts

I. MRÁZOVÁ: NEURAL NETWORKS 152

Back-propagation training algorithm:
initial weight selection (2)

Problem:
 Too small weights paralyze learning

• The error backpropagated from the output layer to hidden layers
is too small

 Too large weights lead to saturation of neurons and slow
learning (in flat zones of the error function)

→ Learning then stops at a suboptimal local minimum
× the right choice of initial weights can significantly reduce

the risk of getting stuck in a local minimum

I. MRÁZOVÁ: NEURAL NETWORKS 153

Back-propagation training algorithm:
initial weight selection (3)
Reduce the danger of local minima:
~ initialize the weights with small random values

Motivation:
 Small weight values

• Large weight values impact saturation of hidden neurons (too active or too
passive for all training paƩerns) → such neurons are incapable of further
training (the derivative of the transfer function – sigmoid – is almost zero)

 Random weight values
• The goal is to „break the symmetry“ → hidden neurons should specialize in

the recognition of different features

IDEA:
 The potential of a hidden neuron is given by:

଴ ଵ ଵ ௡ ௡

௜ … the activity of the -th neuron from the preceding layer
௜ …the weight from the -th neuron from the preceding layer

 Expected value of the potential for hidden neurons:

௝ ௜௝ ௜

௡

௜ୀ଴
௜௝

௡

௜ୀ଴
௜

• the weights are independent of the input patterns
• the weights are random variables with zero mean

𝑤଴ is the threshold

I. MRÁZOVÁ: NEURAL NETWORKS 154

Back-propagation training algorithm:
initial weight selection (4)

IDEA - continue:
 The variance of the potential is given by:

క
ଶ

௝
ଶ ଶ

௝ ௜௝ ௜
௡
௜ୀ଴

ଶ

௜௝ ௞௝ ௜ ௞
௡
௜,௞ୀ଴

௜௝
ଶ௡

௜ୀ଴ ௜
ଶ

I. MRÁZOVÁ: NEURAL NETWORKS 155

Back-propagation training algorithm:
initial weight selection (5)

mutual independence for all j

I. MRÁZOVÁ: NEURAL NETWORKS 156

Back-propagation training algorithm:
initial weight selection (6)
IDEA - continue:
 Further, we assume that the training patterns are normalized and from

the interval . Then:

௜
ଶ

௜
ଶ

ଵ

଴

ଷ

଴

ଵ

 Assumed that the weights of the hidden neurons are also random
variables with a zero mean and uniformly distributed in the interval

, then:

௜௝
ଶ

௜௝
ଶ

௔

ି௔
௜௝

௜௝
ଷ

ି௔

௔ ଶ

 … number of weights leading to the considered neuron ()

I. MRÁZOVÁ: NEURAL NETWORKS 157

Back-propagation training algorithm:
initial weight selection (7)
IDEA - continue:

 Standard deviation will thus correspond to:

క

 Neuron potential should be a random variable with the standard deviation (that is
moreover independent of the number of weights leading to this neuron);

 Select initial weights (roughly) from the interval:

• especially for 𝐴 = 1 large gradient (i.e., quick learning)

Neural
Networks:

Contents:

 Perceptron and Linear Separability
• A Formal Neuron
• Perceptron and Linear Separability
• Perceptron Learning Algorithm
• Convergence of Perceptron Learning
• The Pocket Algorithm

 Multi-layered Neural Networks
• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 158

Back-propagation training algorithm:
speeding-up the training process (3)

I. MRÁZOVÁ: NEURAL NETWORKS 159

 first-order methods work with steepest-descent directions
 modifications to the basic form of steepest-descent:

• need to reduce step sizes with algorithm progression
o learning rate decay

• need a way of avoiding local optima
o add momentum term

• need to address widely varying slopes with respect to different
weight parameters

Back-propagation training algorithm:
speeding-up the training process (4)

I. MRÁZOVÁ: NEURAL NETWORKS 160

Learning rate decay:
 initial learning rates should be high but decrease over time
 the two most common decay functions are exponential decay

and inverse decay
 the learning rate ௧ can be expressed in terms of the initial

decay rate ଴ and time t as follows:

௧ exp exponential decay

௧
ఈబ

ଵା௞ȉ௧
inverse decay

the parameter k controls the rate of the decay

Neural
Networks:

Contents:

 Perceptron and Linear Separability
• A Formal Neuron
• Perceptron and Linear Separability
• Perceptron Learning Algorithm
• Convergence of Perceptron Learning
• The Pocket Algorithm

 Multi-layered Neural Networks
• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 161

I. MRÁZOVÁ: NEURAL NETWORKS 162

Back-propagation training algorithm
with momentum (1)
Minimization of the error function with the gradient method

without the momentum term with the momentum term

iteration path

𝑤ଵ

𝑤ଶ

𝑤ଵ

𝑤ଶ

I. MRÁZOVÁ: NEURAL NETWORKS 163

Back-propagation training algorithm
with momentum (2)
 When the minimum of the error function lies in a

„narrow valley“ for the given task, following the
gradient direction can lead to wide oscillations of
the search process

 Solution: introduce a momentum term
• a weighted average of the current gradient and the

previous correction direction is computed at each step
→ Inertia ~ could help to avoid excessive oscillations

in „narrow valleys of the error function“

I. MRÁZOVÁ: NEURAL NETWORKS 164

Back-propagation training algorithm
with momentum (3)

 The idea of a marble rolling
down the hill:

 Use a friction parameter αm (0, 1)
to gain speed in the direction of
movement:

௠
డா
డ௪

ER
RO

R

VALUE OF NEURAL NETWORK PARAMETER

GD SLOWS DOWN
IN FLAT REGION

GD GETS TRAPPED
IN LOCAL OPTIMUM

I. MRÁZOVÁ: NEURAL NETWORKS 165

Back-propagation training algorithm
with momentum (4)

 For a network with different weights
the correction of at time is given by:

ೖ

ೖ

where: ….. learning rate

… momentum rate

I. MRÁZOVÁ: NEURAL NETWORKS 166

Back-propagation training algorithm
with momentum (5)

 In order to accelerate convergence to the minimum
of the error function:
• Increase the learning rate up to an optimum value , that

still guarantees convergence of the training process
• Introduction of the momentum rate allows to attenuate

the oscillations that might occur during training

 Optimal values for and highly depend on the
character of the respective learning task

I. MRÁZOVÁ: NEURAL NETWORKS 168

Back-propagation training algorithm
with momentum (6)

EXAMPLE: Linear transfer function, patterns

→ MINIMIZATION OF :
ଶ ் ் ் ் ்

ଵ
ଵ

௡
ଵ

ଵ
௣

௡
௣

ଵ

௣

+

ଵ
ଶ

௡

𝑤ଵ

𝑤ଶ

𝑤௡

௜ ௜

௡

௜ୀଵ

I. MRÁZOVÁ: NEURAL NETWORKS 169

Back-propagation training algorithm
with momentum (7)
 is a quadratic function

→ the minimum can be found using gradient descent

Interpretation: has the form of a paraboloid in the – dimensional
space; its shape is determined by the eigenvalues of the correlation
matrix ்

→ Gradient descent is most effective when the principal axes are all
of the same length

→ When the axes are of very different sizes, the gradient direction
can lead to oscillations

I. MRÁZOVÁ: NEURAL NETWORKS 170

Back-propagation training algorithm
with momentum (8)

 Excessive oscillations can be prevented by choosing
a small value for and a larger value for the
momentum parameter

× too small values of
→ the danger of local minima

× too big values of
→ the danger of oscillations

I. MRÁZOVÁ: NEURAL NETWORKS 171

Back-propagation training algorithm
with momentum (9)
In the nonlinear case, the gradient of the error function is almost
zero in the regions far from local minima – possibility of oscillations
→ in such a case, larger learning rates could help to return back to „convex“

regions of the error function

Solution:
 Nesterov momentum

 Adaptive learning rates

 Pre-processing of the training set
• decorrelation on input patterns (PCA, …)

I. MRÁZOVÁ: NEURAL NETWORKS 172

Back-propagation training algorithm
with momentum (10)
Nesterov Momentum:
~ a modification of the traditional momentum method:

the gradients are computed at a point that would be reached after
executing the ௠ discounted version of the previous step

 Computes the gradient at a point reached using the momentum portion of the
previous update:

௠
డா ௪ାఈ೘୼ ௪ ௜

డ௪

 Slows down as the marble reaches near bottom of the hill

 Should be used rather with mini-batch stochastic gradient descent (SGD)

Neural
Networks:

Contents:

 Perceptron and Linear Separability
• A Formal Neuron
• Perceptron and Linear Separability
• Perceptron Learning Algorithm
• Convergence of Perceptron Learning
• The Pocket Algorithm

 Multi-layered Neural Networks
• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 173

I. MRÁZOVÁ: NEURAL NETWORKS 174

Back-propagation training algorithm:
strategies using adaptive learning rates (1)

1. Adaptive learning rates:
a local parameter ௜ for each weight ௜

weight adjustment: ௜ ௜
డா

డ௪೔

 Variants of the algorithm:
• Silva & Almeida

• Delta-bar-delta

• Super SAB

I. MRÁZOVÁ: NEURAL NETWORKS 175

The algorithm of Silva & Almeida (1)
Assumed: the network has weights
 Quadratic error function:

ଵ
ଶ

ଵ
ଶ

ଶ
ଶ

ଶ
ଶ

௡
ଶ

௡
ଶ

௜௝ ௜ ௝
௜ஷ௝

 The step in the -th direction minimizes

௜
ଶ

௜
ଶ

ଵ ௜ ଶ

ଵ, ଶ are constants, which depend on the values
of the „frozen“ variables at the current iteration
point (𝑖 determine the curvature of the parabola)

𝑤௜

𝑤௝

𝑤௜

𝐸

I. MRÁZOVÁ: NEURAL NETWORKS 176

The algorithm of Silva & Almeida (2)
The heuristic:
 ACCELERATE, if in two successive iterations, the sign of the

partial derivative has not changed
 DECELERATE, if the sign changes

௜
௞ … partial derivative of the error function with respect

to the weight ௜ at the -th iteration

௜
଴ initial learning rates ()

initialized to a small positive value

I. MRÁZOVÁ: NEURAL NETWORKS 177

The algorithm of Silva & Almeida (3)
 In the -th iteration the value of the learning rate for the next step is

recomputed for each weight by:

௜
(௞ାଵ) ௜

(௞)
௜

௞
௜

௞ିଵ

௜
(௞)

௜
௞

௜
௞ିଵ

 The constants and are set by hand with and

 Weight adjustment: ௞
௜ ௜

௞
௜

௞

I. MRÁZOVÁ: NEURAL NETWORKS 178

The algorithm of Silva & Almeida (4)

Problems:
 The learning rates grow and decrease exponentially

with regard to and

→ Problems can occur if too many acceleration steps
are performed successively

I. MRÁZOVÁ: NEURAL NETWORKS 179

The algorithm Delta-Bar-Delta
 Acceleration is done with more caution than deceleration (especially from

small initial weights)

 –th iteration: ௜
(௞ାଵ)

௜
(௞)

௜
௞

௜
௞ିଵ

௜
(௞)

௜
௞

௜
௞ିଵ

௜
(௞)

, … fixed pre-set constants

௜
௞

௜
௞

௜
௞ିଵ

 Weight updates without momentum: ௞
௜ ௜

௞
௜

௞

What are the domains for 𝑢, 𝑑, Φ?

I. MRÁZOVÁ: NEURAL NETWORKS 180

Algorithm Super SAB
 SAB ~ Self-Adapting Back-propagation
 Adaptive acceleration strategy for the back-propagation

training algorithm
• Of order quicker that the original back-propagation algorithm
• Relatively stable
• Robust against the choice of initial parameters

 Uses momentum:
• Accelerates convergence in flat areas of the weight space
• In steep areas of the weight space, the momentum term curbs

oscillations caused by changed signs of the gradient

I. MRÁZOVÁ: NEURAL NETWORKS 181

Super SAB – the training algorithm (1)
ା ……..... multiplicative constant to increase the learning rates (ା)
ି ……..... multiplicative constant to decrease the learning rates (ି)
ௌ்஺ோ் …. initial value for the parameter ௜௝ , ௌ்஺ோ்

௠ ……..... momentum (௠)

Step 1: set all ௜௝ to the initial value ௌ்஺ோ்

Step 2: perform Step() of back-propagation with momentum

Step 3: if the derivative (according to ௜௝) did not change its sign, increase

the learning rates (௜௝): ௜௝
ା

௜௝

I. MRÁZOVÁ: NEURAL NETWORKS 182

Super SAB – the training algorithm (2)

Step 4: if the derivative (according to ௜௝) changed its sign:
- annul the previous weight change (that caused the change in the sign

of the gradient): ௜௝ ௜௝

- use smaller learning rates: ௜௝ ௜௝
ି

- and set: ௜௝
(the change from the previous step will be thus not considered in the
next training step)

Step 5: go to Step 2

I. MRÁZOVÁ: NEURAL NETWORKS 183

AdaGrad – Adaptive Gradients (1)
~ Aggregate squared magnitudes of the -th partial derivative ௜

in the form of ௜

 The square root of Ai is proportional to the root-mean-square slope
• the absolute value of ௜ will increase over time:

௜ ௜
డா

డ௪೔

ଶ

• The update for the -th parameter ௜ is as follows:

௜ ௜
ఈ
஺௜

డா
డ௪೔

• Use 𝑖 in the denominator to avoid ill-conditioning; is a small
positive number, e.g., ି଼

I. MRÁZOVÁ: NEURAL NETWORKS 184

AdaGrad – Adaptive Gradients (2)
Intuition:

 Scaling the derivative inversely with ௜ (the square root of the
aggregated squared gradient) encourages faster relative movements
along gently sloping directions

• Absolute movements tend to slow down prematurely due to the
aggregated values of the entire history of partial derivatives

• Scaling parameters use stale values that can increase inaccuracy

I. MRÁZOVÁ: NEURAL NETWORKS 185

RMSProp: Root Mean Squared Propagation (1)
 uses exponential smoothing of the aggregated values using the

parameter ρ (0, 1) in the relative estimations of the gradients
• Absolute magnitudes of scaling factors ௜ do not grow with time.

• Problem of staleness is ameliorated

௜ ௜
డா

డ௪೔

ଶ

௜ ௜
ఈ
஺௜

డா
డ௪೔

• Use 𝑖 in the denominator to avoid ill-conditioning; is a small
positive number, e.g., ି଼

I. MRÁZOVÁ: NEURAL NETWORKS 186

RMSProp: Root Mean Squared Propagation (2)

 Possibility to combine RMSProp with Nesterov Momentum:

m
௜
 ೔ m ೔

೔

 Maintenance of is done with shifted gradients as well

೔ m ೔

೔

I. MRÁZOVÁ: NEURAL NETWORKS 187

AdaDelta and Adam
 Both methods derive intuition from RMSProp

• AdaDelta keeps track of an exponentially smoothed value of
the incremental changes of weights in previous iterations
to decide parameter-specific learning rates

• Adam keeps track of exponentially smoothed gradients from
previous iterations (in addition to normalizing like RMSProp)

• Adam is an extremely popular method

I. MRÁZOVÁ: NEURAL NETWORKS 188

Adam – Adaptive Moment Estimation (1)
 Efficient first-order stochastic optimization method

 Combines the advantages of:
• AdaGrad – works well with sparse gradients

• RMSProp – works well in non-stationary settings

 The main idea:
• Maintain exponential moving averages for the gradient and its square

• Update the parameters proportionally to 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕
𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒔𝒒𝒖𝒂𝒓𝒆𝒅 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕

 Properties: scale-invariance, bounded norm, bias correction

I. MRÁZOVÁ: NEURAL NETWORKS 189

Adam – weight update algorithm (2)
Initialization: ௜ ௜

Iteratively adjust the weights: for , set :

 ௜ ଵ ௜ ଵ
డா

డ௪೔
1st moment (gradient) estimate

 ௜ ଶ ௜ ଶ
డா

డ௪೔

ଶ
2nd moment (squared gradient) estimate

 ௜ ௜ ଵ
௧ାଵ 1st moment bias correction

 ௜ ௜ ଶ
௧ାଵ 2nd moment bias correction

 ௜ ௜
ே෩೔ ௧ାଵ
஺෨೔ ௧ାଵ ାఌ

Return the weight matrix .

Hyper-parameters:
α > 0 … learning rates (typical choice: 0.001)
𝛽ଵ; 0 ≤ 𝛽ଵ < 1 … 1st moment decay rate (typical choice: 0.9)
𝛽ଶ; 0 ≤ 𝛽ଶ < 1 … 2nd moment decay rate (typical choice: 0.999)
𝜀 > 0 … numerical term (typical choice: 10ି଼)

I. MRÁZOVÁ: NEURAL NETWORKS 190

Adam – weight update algorithm (3)
 Adam’s step at iteration (we assume):

௜
ே෩೔ ௧ାଵ

஺෨೔ ௧ାଵ

 Properties:
• Scale-invariance:

௜ ௜ ==> ௜ ௜ ௜ ଶ ௜

==> ௜ does not change

• Bounded norm:

∆ 𝑤௜ 𝑡 ஶ ≤ ൝ 𝛼 ȉ 1 − 𝛽ଵ 1 − 𝛽ଶ⁄ , 1 − 𝛽ଵ > 1 − 𝛽ଶ
𝛼 , otherwise

I. MRÁZOVÁ: NEURAL NETWORKS 191

Adam – bias correction (4)
 When considering the initialization ௜ , we get:

௜ ଵ ௜ ଵ
డா

డ௪೔ ௧
ଵ ଵ

௧ିఛ௧
ఛୀ଴

డா
డ௪೔ ఛ

 As ଵ ଵ
௧ିఛ௧

ఛୀ଴ ଵ
௧ାଵ , we shall divide ௜

by ଵ
௧ାଵ to obtain an unbiased estimate:

௜ ௜ ଵ
௧ାଵ

 Use an analogous argument to derive the bias correction for ௜ .

Neural
Networks:

Contents:

 Perceptron and Linear Separability
 Multi-layered Neural Networks

• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
- Quickprop
- Levenberg-Marquardt Algorithm
- Conjugate Gradient Methods

o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 192

predchozi file

I. MRÁZOVÁ: NEURAL NETWORKS 193

Back-propagation training algorithm:
strategies speeding-up the training process (2)
 Second-order algorithms:

• Consider more information about the shape of the error function than
gradient → curvature of the error function

• Second-order methods use a quadratic approximation of the error
function

ଵ ௡ …… weight vector of the network
…………………….error function

→ The Taylor series approximaƟng the error funcƟon :

் ் ଶ

I. MRÁZOVÁ: NEURAL NETWORKS 194

Second-order algorithms (2)
…differential ଶ ……. Hessian matrix of second-

order partial derivatives:

ଵ

ଶ

௡

ଶ

ଶ

ଵ
ଶ

ଶ

ଵ ଶ

ଶ

ଵ ௡
ଶ

ଶ ଵ

ଶ

ଶ
ଶ

ଶ

ଶ ௡

ଶ

௡ ଵ

ଶ

௡ ଶ

ଶ

௡
ଶ

𝐸 𝑤 + ℎ   ≈  𝐸 𝑤   + ∇𝐸 𝑤 ்ℎ  + 
1
2 ℎ்∇ଶ𝐸 𝑤  ℎ

I. MRÁZOVÁ: NEURAL NETWORKS 195

Second-order algorithms (3)
→ Gradient of the error funcƟon (by differentiating w.r.t.):

்  ்  ் ଶ

→ Gradient equal to zero (looking for the minimum of):
ଶ ିଵ

==> Newton´s methods:
• Work iteratively
• Weight adjustment in the -th iteration according to:

௞ାଵ ௞ ଶ ିଵ

• Quick convergence
• × A problem might represent the inverse Hessian matrix

𝐸 𝑤 + ℎ   ≈  𝐸 𝑤   + ∇𝐸 𝑤 ்ℎ  + 
1
2 ℎ்∇ଶ𝐸 𝑤  ℎ

I. MRÁZOVÁ: NEURAL NETWORKS 196

Second-order algorithms (4)
 Pseudo-Newton methods:

• Work with a „simplified form“ of the Hessian matrix

• Only the diagonal elements are computed: డమா ௪
డ௪೔

మ

• The non-diagonal elements are all set to zero

• Weight adjustment according to: ௜
௞ାଵ

௜
௞ ௜

ଶ

௜
ଶ

I. MRÁZOVÁ: NEURAL NETWORKS 197

Second-order algorithms (5)
 Pseudo-Newton methods:

• No matrix inversion necessary
• Limited computational effort involved in finding the required second partial

derivatives
• Work well when the error function has a quadratic form, otherwise problems

might occur since a small second-order partial derivative can lead to extremely
large corrections

• Variants of Newton´s method:
o Quickprop
o Levenberg-Marquardt algorithm

Neural
Networks:

Contents:

 Perceptron and Linear Separability
 Multi-layered Neural Networks

• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
- Quickprop
- Levenberg-Marquardt Algorithm
- Conjugate Gradient Methods

o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 198

I. MRÁZOVÁ: NEURAL NETWORKS 199

The algorithm Quickprop (1)
 Takes into account also second-order information

× Only one-dimensional minimization steps are taken

→ Information about the curvature of the error function in the update

direction is obtained from the current and past partial derivative

of the error function

 Independent optimization steps for each weight
 A quadratic one-dimensional approximation of the error

function is used

I. MRÁZOVÁ: NEURAL NETWORKS 200

The algorithm Quickprop (2)
 Weight adjustment in the -th iteration according to:

௜
௞ାଵ

௜
௞ ௞

௜ , where

௞
௜

௞ିଵ
௜

∇೔ா ೖ

∇೔ா ೖషభ ି∇೔ா ೖ

Assumed: the error function has been computed at steps and
using the weight difference ௞ିଵ

௜ obtained from a previous Quickprop
or standard gradient descent step

I. MRÁZOVÁ: NEURAL NETWORKS 201

The algorithm Quickprop (3)
 Weight adjustment rules can be written as:

௞
௜

௜
௞

௜
௞

௜
௞ିଵ

௞ିଵ
௜

 The denominator is just a discrete approximation to the
second-order derivative

 Quickprop ~ discrete pseudo-Newton method, that uses the
so-called „SECANT STEP“

Neural
Networks:

Contents:

 Perceptron and Linear Separability
 Multi-layered Neural Networks

• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
- Quickprop
- Levenberg-Marquardt Algorithm
- Conjugate Gradient Methods

o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 202

I. MRÁZOVÁ: NEURAL NETWORKS 203

Levenberg-Marquardt algorithm (1)
 Quicker around the minimum of the error function

 A combination of a gradient and Newton´s method

• Gradient only update rule: (௞ାଵ) (௞) (௞)

• Second-order update rule: ௞ାଵ ௞ ଶ ௞ ିଵ (௞)

• Levenberg – blends them together:

௞ାଵ ௞ ଶ (௞)  ିଵ (௞)

௞  ିଵ (௞)

I. MRÁZOVÁ: NEURAL NETWORKS 204

Levenberg-Marquardt algorithm (2)
 Hessian matrix can be approximated

• for a single output ௜
డ ௘

డ ௪೔

డ ௬
డ ௪೔

ଶ

௜ ௝ ௜ ௝

ଶ

୧ ୨

• thus instead of in ௞ାଵ ௞ ିଵ (௞)

we use ௞ାଵ ௞ ௞ ் ௞
ିଵ

(௞)

where (௞) డ௬భ
(ೖ)

డ௪ ೖ
డ௬೘

(ೖ)

డ௪ ೖ

்

𝐸 𝑤 =
1
2 ෍ 𝑒௝ 𝑤

௠

௝ୀଵ

=
1
2 ෍ 𝑦௝ − 𝑑௝

ଶ
௠

௝ୀଵ

; 𝛻𝐸 𝑤 = 𝜕𝐸/𝜕𝑤

I. MRÁZOVÁ: NEURAL NETWORKS 205

Levenberg-Marquardt algorithm (3)
௜

డ ௘
డ ௪೔

డ ௬
డ ௪೔

; డ మ௘
డ ౟ డ ౠ

డ ௬
డ ௪೔

డ ௬
డ ௪ೕ

డ మ௬
డ௪೔ డ௪ೕ

 Hence instead of in ௞ାଵ ௞  ିଵ (௞)

it is used ௞ାଵ ௞ ௞ ் ௞
 ିଵ

(௞)

where (௞)

డ௬భ
(ೖ)

డ௪భ
(ೖ)

డ௬భ
(ೖ)

డ௪మ
(ೖ)

డ௬భ
(ೖ)

డ௪೙
(ೖ)

డ௬మ
(ೖ)

డ௪భ
(ೖ)

డ௬మ
(ೖ)

డ௪మ
(ೖ)

డ௬మ
(ೖ)

డ௪೙
(ೖ)

డ௬೘
(ೖ)

డ௪భ
(ೖ)

డ௬೘
(ೖ)

డ௪మ
(ೖ)

డ௬೘
(ೖ)

డ௪೙
(ೖ)

I. MRÁZOVÁ: NEURAL NETWORKS 206

Levenberg-Marquardt algorithm (4)
 Away from the minimum, in regions of

negative curvature, the Gauss-Newton
approximation is not very good

 In such regions, a simple steepest-
descent step is probably the best plan

 The Levenberg-Marquardt method is
a mechanism for varying between
steepest-descent and Gauss-Newton
steps depending on how good is the
approximation 𝑇 locally

I. MRÁZOVÁ: NEURAL NETWORKS 207

Levenberg-Marquardt algorithm (5)
 Weight adjustment according to:

 When is small, the step approximates the second order
Gauss-Newton method

 When is large, steepest-descent steps are taken.

I. MRÁZOVÁ: NEURAL NETWORKS 208

Levenberg-Marquardt algorithm (6)
The training algorithm:

1. Set (say)

2. Compute new weights: ௞ାଵ ௞ (௞)் ௞
ିଵ

(௞)

3. If the error increases, retract the step (i.e., reset the weights to their
previous values) and increase (say). Then try an update again by
going to 2.

4. Otherwise, accept the step done for weight adjustment (i.e., keep the
weights at their new values) and decrease (say). Then go to 2.

Neural
Networks:

Contents:

 Perceptron and Linear Separability
 Multi-layered Neural Networks

• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
- Quickprop
- Levenberg-Marquardt Algorithm
- Conjugate Gradient Methods

o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 209

I. MRÁZOVÁ: NEURAL NETWORKS 210

Conjugate gradient methods
Useful notions:
 Definition (orthogonality): Given that ௗ, then and are

said to be mutually orthogonal if ் (where
denotes the scalar product).

 Definition (conjugacy): Given that ௗ, then and are
said to be mutually conjugate with respect to a symmetric positive
definite matrix if and are mutually orthogonal, i.e.,

் .

 Note: If two vectors are mutually conjugate with respect to the
identity matrix, that is , then they are mutually orthogonal.

I. MRÁZOVÁ: NEURAL NETWORKS 211

Conjugate gradients on 2D quadratic

 If we select any set of (not necessarily orthogonal) vectors (଴), …, (ௗିଵ), satisfying the
mutual conjugacy condition, then movement along any of these directions does not
disturb the projected gradient along other directions.

Line search is used to determine the optimum step
size by searching over different step sizes
 optimum step is taken along each direction and never

undone by subsequent steps
=> 𝑑 linearly independent steps are necessary to find the

optimum of a 𝑑-dimensional function.

Mutual conjugacy of ௜ and ௝ with respect to a
symmetric positive definite matrix if ௜ and

௝ are mutually orthogonal: ௜
்

௝ .

Two conjugate
directions required
to reach optimality

I. MRÁZOVÁ: NEURAL NETWORKS 212

Conjugate gradient methods
 For quadratic functions, get to the optimum in steps (instead of a single

Newton step), where is the number of parameters

 Use optimal step-sizes to get the best point along each direction:
௞ାଵ ௞ ௞ ௞ ; ௞ is computed by means of line search

 Conjugate direction: The gradient of the error function at any point of an
update direction is always orthogonal to previous update directions; start
with ଴ ଴ :

௞ାଵ ௞ାଵ ௤ ೖ ೅
 ு ఇ ா ௪ ೖశభ

௤ ೖ ೅
ு ௤ ೖ

௞ and increment by

 For non-quadratic functions, approximate the error function with the Taylor expansion
and perform of the above steps. Then repeat.

Efficiently computing projection of Hessian
 The update requires the computation of the projection of the Hessian

rather than the inversion of the Hessian:

௞ାଵ ௞ାଵ ௤ ೖ ೅
 ு ఇ ா ௪ ೖశభ

௤ ೖ ೅
ு ௤ ೖ

௞

 Easy to perform numerically, e.g., in the Scaled Conjugate Gradient
algorithm (SCG) using:

௞ ௞ ௞ ∇ ா ௪ ೖ ାఈ ೖ ௤ ೖ ି∇ ா ௪ ೖ

ఈ ೖ

213I. MRÁZOVÁ: NEURAL NETWORKS

Neural
Networks:

Contents:

 Perceptron and Linear Separability
 Multi-layered Neural Networks

• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
- Quickprop
- Levenberg-Marquardt Algorithm
- Conjugate Gradient Methods

o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 214

I. MRÁZOVÁ: NEURAL NETWORKS 215

Back-propagation training algorithm:
speeding-up the training process (3)
Relaxation methods ~ weight perturbation:
 Discrete approximation to the gradient is made at each iteration

by comparing the errors for the initial weights and for the
altered weights - a small perturbation was added
to the weight

 Weight adjustment by:
ᇲ

 This adjustment is repeated iteratively, randomly selecting the
weight to be updated

I. MRÁZOVÁ: NEURAL NETWORKS 216

Relaxation methods (2)
An alternative providing a faster convergence:
 Perturbation of the output of the -th neuron ௜ by ௜

 The difference in the error function is computed

 If the difference is positive (), the new error could be achieved with
the output ௜ ௜ for the -th neuron

 In the case of the sigmoidal transfer function, the desired potential of the
neuron can be determined as: ௞

ᇱ
௞

ିଵ
௜ ௜

௠
௞ୀଵ

(for ଵ
ଵାୣష഍ the potential is ିଵ ௬

ଵି௬
)

I. MRÁZOVÁ: NEURAL NETWORKS 217

Relaxation methods (3)
 If the previous potential was ௞ ௞

௠
௞ୀଵ , then the new weights are given

by:

௞
ᇱ

௞

ିଵ
௜ ௜

௞ ௞
௠
௞ୀଵ

 Weights are updated in proportion to their size: ೖ
ᇲ

ᇲ
ೖ

this can be avoided by means of stochastic factors or node perturbation

can be alternated with weight perturbation

Neural
Networks:

Contents:

 Perceptron and Linear Separability
 Multi-layered Neural Networks

• Back-Propagation Training Algorithm
• Strategies to Speed-up the Training Process

o Initial Weight Selection
o First-order Methods

- Learning Rate Decay
- Training with Momentum
- Adaptive Learning Rates

o Second-order Algorithms
- Quickprop
- Levenberg-Marquardt Algorithm
- Conjugate Gradient Methods

o Relaxation Methods
o Other Techniques

Contents:
• Perceptron and Linear

Separability

• Multi-layered Neural
Networks

• Multi-layered Neural
Networks: analysis of
their properties

I. MRÁZOVÁ: NEURAL NETWORKS 218

Back-propagation training algorithm:
speeding-up the training process (4)

Other strategies relevant to the training of feed-forward networks:

 Vanishing and exploding gradient problems

 Batch normalization

 Regularization

 Dropout

I. MRÁZOVÁ: NEURAL NETWORKS 219

Vanishing and exploding gradient problems (1)
The Effect of Varying Slopes in Gradient Descent:
 Neural network learning is a multivariable optimization problem

 Different weights have different magnitudes of partial derivatives

 Widely varying magnitudes of partial derivatives affect the learning

 Gradient descent works best when the different weights have
derivatives of similar magnitude.

• The path of the steepest descent is, in most loss functions, only an instantan-
eous direction of the best movement and is not the correct direction of
descent in the longer term.

I. MRÁZOVÁ: NEURAL NETWORKS 220

Vanishing and exploding gradient problems (2)
Example:

The loss function is a circular bowl L = x2 +y2 The loss function is an elliptical bowl L = x2 +4y2

I. MRÁZOVÁ: NEURAL NETWORKS 221

Vanishing and exploding gradient problems (3)

Revisiting feature normalization:
 Loss functions with varying sensitivity to different attributes cause

bouncing

• When features have very different magnitudes, gradient ratios of
different weights are likely very different

 Feature normalization helps even out gradient ratios to some extent

• Exact behavior depends on target variable and loss function

I. MRÁZOVÁ: NEURAL NETWORKS 222

Vanishing and exploding gradient problems (4)

The problem:
 An extreme manifestation of varying sensitivity occurs in deep

networks

 The weights/activation derivatives in different layers affect
backpropagated gradient in a multiplicative way

• This effect is magnified with increasing depth

• The partial derivatives can either increase or decrease with depth

I. MRÁZOVÁ: NEURAL NETWORKS 223

Vanishing and exploding gradient problems (5)
Example:

 A neural network with one node per layer
 Forward propagation multiplicatively depends on each weight and activation

function evaluation
 Backpropagated partial derivative get multiplied by weights and activation function

derivatives
 Unless the values are exactly one, the partial derivatives will either continuously

increase (explode) or decrease (vanish)
 Hard to initialize weights exactly right

I. MRÁZOVÁ: NEURAL NETWORKS 224

x w1 ∑ ∑w2 wm-1w3 ∑
h1 h2 hm-1

wm ∑ o

Vanishing and exploding gradient problems (6)

Propensity of the transfer function to vanishing gradients:
 Partial derivative of the sigmoid with output is

• Its maximum value at is equal to

• For layers, the transfer function alone will yield less than ଵ଴ ି଺

 At the extremes of the output values, the partial derivative is close to ,
which is called saturation

 The transfer function with the partial derivative of ଶ has the
maximum value of at , but saturation will still cause problems

I. MRÁZOVÁ: NEURAL NETWORKS 225

Vanishing and exploding gradient problems (7)
Exploding gradients:
 Initializing the weights to very large values (to compensate for the transfer

functions) can cause exploding gradients

 Exploding gradients can also occur when weights across different layers are
shared (e.g., in recurrent neural networks)

• The effect of a finite change in the weight is extremely unpredictable across
different layers

• A small finite change changes the loss negligibly, but a slightly larger value
might change the loss drastically

I. MRÁZOVÁ: NEURAL NETWORKS 226

Vanishing and exploding gradient problems (8)

Cliffs:

 Often occur with
the exploding
gradient problem

I. MRÁZOVÁ: NEURAL NETWORKS 227

Vanishing and exploding gradient problems (9)
A partial fix to vanishing gradients:

 The ReLU transfer function has a linear activation for
nonnegative potential values and otherwise sets its outputs to

 The ReLU transfer function has a partial derivative of for
nonnegative inputs

x However, it can have a partial derivative of in some cases and
never get updated weights
• Such a neuron is permanently dead!

I. MRÁZOVÁ: NEURAL NETWORKS 228

Vanishing and exploding gradient problems (10)

Leaky ReLU:
 For negative inputs, leaky ReLU can still propagate some gradient backwards

• At the reduced rate of α < 1 times the learning case for non-negative inputs:

otherwise

 The value of is a hyperparameter chosen by the user

 Gains with the leaky ReLU are not guaranteed

I. MRÁZOVÁ: NEURAL NETWORKS 229

Vanishing and exploding gradient problems (11)

Maxout:
 The activation used is ଵ ଶ with two coefficient vectors

 One can view the maxout transfer function as a generalization of the ReLU

• ReLU is obtained by setting one of the coefficient vectors to

• Leaky ReLU can also be simulated by setting the other coefficient vector to
ଶ ଵ

 The main disadvantage is that it doubles the number of parameters

I. MRÁZOVÁ: NEURAL NETWORKS 230

Vanishing and exploding gradient problems (12)

Gradient clipping for exploding gradients:
 Try to make the different components of the partial derivatives more even

• Value-based clipping: All partial derivatives outside the ranges are set to range
boundaries

• Norm-based clipping: The entire gradient vector is normalized by the ଶ-norm
of the entire vector

 One can achieve a better conditioning of gradient values, so that the
updates from mini-batch to mini-batch are similar

 Prevents anomalous gradient explosion during training

I. MRÁZOVÁ: NEURAL NETWORKS 231

Vanishing and exploding gradient problems (13)

Other comments on vanishing and exploding gradients:

 The methods discussed above are only partial fixes

 Other options to fix the issue:

• Initializations improved with pretraining

• Second-order learning methods that make use of second-order
derivatives (~ curvature of the loss function).

I. MRÁZOVÁ: NEURAL NETWORKS 232

Batch normalization (1)
Mini-batch stochastic gradient descent:
 One can improve the accuracy of gradient computation by using

a batch of instances
• Instead of holding a vector of activations, we hold a matrix of activations

in each layer
• Matrix-to-matrix multiplications required for forward and backward

propagation
• Increases the memory requirements

 Typical sizes are powers of like , , ,

I. MRÁZOVÁ: NEURAL NETWORKS 233

Batch normalization (2)

Why does mini-batching work?
 At early learning stages, the weight vectors are poor

• The training data is highly redundant in terms of important patterns
• Small batch sizes provide correct direction of gradient

 Later on, the gradient direction becomes less accurate
x But some amount of noise helps avoid overfitting anyway!

 Performance on out-of-sample data does not deteriorate!

I. MRÁZOVÁ: NEURAL NETWORKS 234

Batch normalization (3)
Revisiting the vanishing and exploding gradient problems:

 Neural network with one node per layer
 Forward propagation multiplicatively depends on each weight and transfer function

evaluation
 Backpropagated partial derivative gets multiplied by weights and transfer function

derivatives
 Unless the values are exactly one, the partial derivatives will either continuously

increase (explode) or decrease (vanish)
 Hard to initialize weights exactly right

I. MRÁZOVÁ: NEURAL NETWORKS 235

x w1 ∑ ∑w2 wm-1w3 ∑
h1 h2 hm-1

wm ∑ o

Batch
normalization (4)

Revisiting the bowl:

 Varying scale of different
parameters will cause
bouncing

 Varying scale of features
causes varying scale of
parameters

I. MRÁZOVÁ: NEURAL NETWORKS 236

The loss function is a
circular bowl L = x2 +y2

The loss function is an
elliptical bowl L = x2 +4y2

Batch normalization (5)
Input shift:
 One can view the input to each layer as shifting a data set of

hidden activations during training
 A shifting input causes problems during training

• Convergence becomes slower
• The final result may not generalize well because of unstable inputs

 Batch normalization ensures (somewhat) more stable inputs
to each layer

I. MRÁZOVÁ: NEURAL NETWORKS 237

Batch
normalization (6)
Solution: batch normalization
 Add an additional layer that

normalizes in a batch-wise
fashion

 Additional learnable parameters
to ensure that an optimal level of
nonlinearity is used

 Pre-activation normalization
more common than the post-
activation one

I. MRÁZOVÁ: NEURAL NETWORKS 238

∑ ɸ
ADD BATCH
NORMALIZATION

BN∑ ɸ

∑ ɸ

BREAK UP

∑ ɸ ∑ ɸ
ai

BN
vi

Post-activation normalization

Pre-activation normalization

Batch normalization (7)
Batch normalization node:
 The -th neuron has two parameters ௜ and ௜ that need to be learned

 Normalize its (pre-activation) potential values ௜
௥ over a batch of instances;

is a small constant added for numerical stability

• batch mean: 𝜇௜ =
∑ ஞ೔

ೝ೘
ೝసభ

௠
∀𝑖

• batch variance: 𝜎௜
ଶ =

∑ ஞ೔
ೝ ି ఓ೔

మ೘
ೝసభ

௠
+ 𝜀 ∀𝑖

• normalize batch instances: ξመ௜
௥ = ஞ೔

ೝ ି ఓ೔

ఙ೔
∀ 𝑖, 𝑟

• scale with learnable parameters: 𝑎௜
௥ = 𝛾௜ ȉ ξመ௜

௥ + 𝛽௜ ∀ 𝑖, 𝑟

 Why do we need ௜ and ௜ most potentials will be near zero (near-linear regime)

I. MRÁZOVÁ: NEURAL NETWORKS 239

Batch normalization (8)

Changes to backpropagation:

 We need to backpropagate through the newly added layer of
normalization neurons
• The BN node can be treated like any other node

 We want to optimize the parameters and
• The gradients with respect to these parameters have to be computed

during backpropagation, too

I. MRÁZOVÁ: NEURAL NETWORKS 240

Batch normalization (9)
Issues in inference:
 The transformation parameters ௜ and ௜ depend on the batch
 How should one compute them during testing when a single test instance

is available?
 The values of ௜ and ௜ are computed up front using the entire population

(of training data), and then treated as constants during testing time
• One can also maintain exponentially weighted averages during training

 The normalization is a simple linear transformation during inference

I. MRÁZOVÁ: NEURAL NETWORKS 241

Batch normalization (10)
Batch normalization as a regularizer:
 Batch normalization also acts as a regularizer
 Same data points can cause somewhat different updates

depending on which batch it is included in
 One can view this effect as a kind of noise added to the update

process
 Regularization can be shown to be equivalent to adding a small

amount of noise to the training data.
 This sort of regularization is relatively mild

I. MRÁZOVÁ: NEURAL NETWORKS 242

Penalty-based regularization (1)

Revisiting example – predict from :

 First impression:
A polynomial model such as

଴ ଵ ଶ
ଶ

ଷ
ଷ

ସ
ସ

is “better” than the linear model

଴ ଵ

x However, with less data, using the linear
model is better

I. MRÁZOVÁ: NEURAL NETWORKS 243

Penalty-based regularization (2)

Economy in parameters:

 A lower-order model has an economy in parameters
• A linear model uses two parameters, whereas an order-four model uses

five parameters

• The economy in parameters discourages overfitting

 Choosing a neural network with fewer neurons per layer
enforces economy

I. MRÁZOVÁ: NEURAL NETWORKS 244

Penalty-based regularization (3)
Soft economy vs. hard economy:

 Fixing the architecture up front is an inflexible solution

 A softer solution uses a larger model but imposes a (tunable) penalty
on the used parameters: ௜

ௗ
௜ୀ଴

௜

 Loss function: ଶ
௫,௬ො ∈஽ ௜

ଶௗ
௜ୀ଴

L2−Regularization

 The (tuned) value of decides the level of regularization
 Softer approach with a complex model performs better!

I. MRÁZOVÁ: NEURAL NETWORKS 245

Penalty-based regularization (4)
Effect on updates:
 The effect of the learning rate on the update is to multiply the

parameter with :

௜ ௜
డ ௅

డ ௪೔

• Interpretation: decay-based forgetting!

 Unless a parameter is important, it will have a small absolute value
• The model decides what is important!
• Works better than inflexibly deciding upfront

I. MRÁZOVÁ: NEURAL NETWORKS 246

Penalty-based regularization (5)
-regularization:
 In ଵ-regularization, an ଵ-penalty is imposed on the loss function:

ଶ
௫,௬ො ∈஽ ௜ ଵ

ௗ
௜ୀ଴

 The update has a slightly different form:

௜ ௜ ௜
డ ௅

డ ௪೔

 The value of ௜ is the partial derivative of ௜ w.r.t. ௜:

௜
௜
௜

I. MRÁZOVÁ: NEURAL NETWORKS 247

Penalty-based regularization (6)

- or -Regularization?

 -regularization leads to sparse parameter learning
 Zero values of can be dropped

 Equivalent to dropping edges from a neural network

 -regularization generally provides better performance.

I. MRÁZOVÁ: NEURAL NETWORKS 248

Penalty-based regularization (7)

Connections to Noise Injection:
 -regularization with parameter is equivalent to adding

Gaussian noise with variance to input
• Intuition: The negative effect of noise will be minimized with

simpler models (smaller parameters)
• Result is only true for single-layer networks (linear regression)
o The main value of the result is in providing general intuition
o Similar results can be shown for denoising autoencoders

I. MRÁZOVÁ: NEURAL NETWORKS 249

Penalty-based regularization (8)
Penalizing Hidden Units:
 One can also penalize hidden units
 Applying -penalty leads to sparse activations
 More common in unsupervised applications for sparse

feature learning
 Straightforward modification of backpropagation

• Penalty contributions from hidden units are picked up in the
backward phase

I. MRÁZOVÁ: NEURAL NETWORKS 250

Dropout (1)

Feature Co-Adaptation:
 The process of training a neural network often leads to a high level

of dependence among features

 Different parts of the network train at different rates:
• That causes some parts of the network to adapt to others

 This is referred to as feature co-adaptation

 Uninformative dependencies are sensitive to nuances of specific
training data overfitting

I. MRÁZOVÁ: NEURAL NETWORKS 253

Dropout (2)
One-Way Adaptation:
 Consider a single-hidden layer neural network

• All weights into and out of half the hidden nodes are fixed to random
values

• Only the other half are updated during backpropagation

 Half the features will adapt to the other half (random features)
 Feature co-adaptation is natural in neural networks where the

rates of training vary across their different parts over time
• This is partially a manifestation of training inefficiency (over and above

true synergy)

I. MRÁZOVÁ: NEURAL NETWORKS 254

Dropout (3)
Why is Feature Co-Adaptation Bad?
 We want features working together only when essential for prediction

• We do not want features adjusting to each other because of the inefficiencies
in training

• The final trained network, namely, does not generalize well to new test data

 We prefer many groups of minimally essential features for robust prediction
better redundancies

 We do not want a few large and inefficiently created groups of co-adapted
features

I. MRÁZOVÁ: NEURAL NETWORKS 255

Dropout (4)

The Basic Dropout Training Procedure:

 For each training pattern do:
• Sample each neuron in the network in each layer (except the output layer)

with probability

• Keep only those weights for which both ends are included in the network

• Perform forward propagation and backpropagation only on the sampled
network

 Note that the weights are shared between different sampled networks

I. MRÁZOVÁ: NEURAL NETWORKS 256

Dropout (5)
Basic Dropout Testing Procedures:
 The first procedure:

• Performs repeated sampling (like during training) and averages the results
• Geometric averaging is then used to assess probabilistic outputs for class

~ an equivalent to averaging log-likelihood

௜
஽ோை௉ை௎்

௜
ଵ

௜
ଶ

௜
௦೙

ೞ೙

௜
௝௦೙

௝ୀଵ
ଵ ௦೙⁄

௡ denotes the number of sampled networks

• Normalization over all classes: ௜
஽ோை௉ை௎் ௣೔

ವೃೀುೀೆ೅

∑ ௣೔
ವೃೀುೀೆ೅೎

೔సభ

I. MRÁZOVÁ: NEURAL NETWORKS 257

Dropout (6)
Basic Dropout Testing Procedures:
 The second procedure with weight scaling inference rule:

• Is more common

• Multiplies the weight of each outgoing synapse of a sampled
neuron with its sampling probability ௜

• Performs a single inference on the full network with down-scaled
weights

I. MRÁZOVÁ: NEURAL NETWORKS 258

Dropout (7)
Why Does Dropout Help?

 By dropping the neurons, we force the network to learn without the
presence of some inputs (in each layer)

 Each of the sampled subnetworks is trained with a small subset of
sampled data instances

 Will resist co-adaptation unless the features are truly synergistic
 Will create many (smaller) groups of self-sufficient predictors
 Many groups of self-sufficient predictors will have a model-averaging

effect

I. MRÁZOVÁ: NEURAL NETWORKS 259

Dropout (8)
The Regularization Perspective:

 One can view the dropping of a neuron to be the same process
as adding masking noise
• Noise is added to both input and hidden layers

 Adding noise is equivalent to regularization
 Forces the weights to become more spread out

• Updates are distributed across the weights based on sampling

I. MRÁZOVÁ: NEURAL NETWORKS 260

Dropout (9)
Practical Aspects of Dropout:
 Typical dropout rate (i.e., probability of exclusion) is somewhere

between to

 Use rather a larger network with dropout to enable learning of
independent representations

 Dropout is applied to both input layers and hidden layers

 Use large learning rates with decay and large momentum

 Impose a max-norm constraint on the size of network weights
• The norm of the input weights to a neuron is upper bounded by a constant

I. MRÁZOVÁ: NEURAL NETWORKS 261

