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Multi-layered neural networks  (1)
D A neural network is a 6-tuple 𝑀 = 𝑁, 𝐶, 𝐼, 𝑂, 𝑤, 𝑡 , where:

• 𝑁 is a finite non-empty set of neurons,
• 𝐶 ⊆ 𝑁 × 𝑁  is a non-empty set of oriented interconnections among neurons
• 𝐼 ⊆ 𝑁  is a non-empty set of input neurons
• 𝑂 ⊆ 𝑁  is a non-empty set of output neurons 
• 𝑤: 𝐶 → 𝑅  is a weight function
• 𝑡: 𝑁 → 𝑅 is a threshold function 

(𝑅 is the set of all real numbers) 
• (𝑁, 𝐶)  is called the inter-connection graph of 𝑀
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Multi-layered neural networks (2)
D A Back-Propagation network (BP-network)  𝐵 is a neural network with a directed 

acyclic inter-connection graph. Its set of neurons consists of a sequence of  𝑙 + 2  
pairwise disjunctive non-empty subsets called layers.

• The first layer called  the input layer is the set of all input neurons of 𝐵, these 
neurons have no predecessors in the inter-connection graph; their input value  
𝑥 equals their output value.

• The last layer called  the output layer  is the set of all output neurons of 𝐵; 
these neurons are those having no successors in the inter-connection graph.

• All other neurons called hidden neurons are grouped in the remaining 𝑙  
hidden layers.
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Back-propagation training algorithm (1)
The aim:  find such a set of weights that ensure that for each input 

vector, the output vector produced by the network is the same as 
(or sufficiently close to) the desired output vector

     The actual or desired output values of the hidden neurons are not 
specified by the task.

▪ For a fixed, finite training set, the objective function represents the 
total error between the desired and actual outputs of all the output 
neurons in the BP-network taken for all the training patterns.
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▪ corresponds to the difference between the actual and desired network 
output:      

𝐸 =
1
2


𝑝


𝑗

𝑦𝑗,𝑝 − 𝑑𝑗,𝑝
2

▪ during training, this difference should be minimized on the given training 

set the back-propagation training algorithm  
 

Back-propagation training algorithm (2) 
The Error Function

actual output

desired output

patterns output neurons

ClassicalMSE
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Multi-layered neural networks 
(BP-networks)

▪ produce the actual output for the 
presented input pattern

▪ compare the actual and desired 
outputs

▪ adjust the weights and thresholds 
• against the gradient of the error 

function
• from the output layer towards the input 

layer

O U T P U T
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BP-networks: adjustment rules (1)
Synaptic weights are adjusted against the gradient:

𝑤𝑖𝑗 𝑡 + 1  =  𝑤𝑖𝑗 𝑡  + Δ𝐸 𝑤𝑖𝑗 𝑡

 Δ𝐸𝑤𝑖𝑗 𝑡   ……. the change of  𝑤𝑖𝑗  to minimize 𝐸
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potential of
the neuron 𝑗

connection weightactual output

error at network output

Δ𝐸𝑤𝑖𝑗  =  −
𝜕𝐸

𝜕𝑤𝑖𝑗
 =  −

𝜕𝐸
𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑤𝑖𝑗
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BP-networks: adjustment rules (2)
Weight adjustment in the output layer:

Δ𝐸𝑤𝑖𝑗 ≅ − 𝜕𝐸
𝜕𝑤𝑖𝑗

= − 𝜕𝐸
𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝜉𝑗

𝜕𝜉𝑗

𝜕𝑤𝑖𝑗
= − 𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝜉𝑗

𝜕
𝜕𝑤𝑖𝑗

σ𝑖´ 𝑤𝑖´𝑗𝑦𝑖´ =

= − 𝜕𝐸
𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝜉𝑗
𝑦𝑖 = − 𝜕𝐸

𝜕𝑦𝑗
𝑓′ 𝜉𝑗 𝑦𝑖 =

= − 𝑦𝑗 − 𝑑𝑗 𝑓′ 𝜉𝑗 𝑦𝑖 = 𝛿𝑗 𝑦𝑖
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𝑖

𝑗

output layer

𝑤𝑖𝑗
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BP-networks: adjustment rules (3)
Weight adjustment in hidden layers:

I. MRÁZOVÁ: NEURONOVÉ SÍTĚ (NAIL002) 11

Δ𝐸𝑤𝑖𝑗 ≅ −
𝜕𝐸

𝜕𝑤𝑖𝑗
= − 

𝑘

𝜕𝐸
𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝜉𝑗
𝑦𝑖 =

= − σ𝑘
𝜕𝐸

𝜕𝜉𝑘

𝜕
𝜕𝑦𝑗

σ𝑗´ 𝑤𝑗´𝑘𝑦𝑗´
𝜕𝑦𝑗

𝜕𝜉𝑗
𝑦𝑖 =

= − σ𝑘
𝜕𝐸

𝜕𝜉𝑘
𝑤𝑗𝑘

𝜕𝑦𝑗

𝜕𝜉𝑗
𝑦𝑖 =

= σ𝑘 𝛿𝑘𝑤𝑗𝑘 𝑓′ 𝜉𝑗 𝑦𝑖 = 𝛿𝑗 𝑦𝑖 i

j

k

𝑤𝑖𝑗
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BP-networks: adjustment rules (4)
▪ The derivative of the sigmoidal transfer function is:

                                𝑓′ 𝜉𝑗  =  𝜆 𝑦𝑗 1 − 𝑦𝑗 

▪ Weight adjustment according to: 

  𝑤𝑖𝑗 𝑡 + 1 = 𝑤𝑖𝑗 𝑡 + 𝛼𝛿𝑗𝑦𝑖 + 𝛼𝑚 𝑤𝑖𝑗 𝑡 − 𝑤𝑖𝑗 𝑡 − 1

where:

𝛿𝑗 = ቐ
𝑑𝑗 − 𝑦𝑗 𝜆𝑦𝑗(1 − 𝑦𝑗) for an output neuron
σ𝑘 𝛿𝑘𝑤𝑗𝑘 𝜆𝑦𝑗 1 − 𝑦𝑗  for a hidden neuron 
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Back-propagation training algorithm (1)
Step 1:   Initialize the weights to small random values
Step 2:   Present a new training pattern in the form of: 

                        [input Ԧ𝑥, desired output Ԧ𝑑]
Step 3:   Calculate actual output in each layer, the activity of the neurons 
                is given by:

                 𝑦𝑗 = 𝑓 𝜉𝑗 = 1

1+𝑒−𝜆𝜉𝑗
, where 𝜉𝑗 = σ𝑖 𝑦𝑖𝑤𝑖𝑗

              The activities expressed in this way form the input of the

following layer.
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Back-propagation training algorithm (2)
Step 4: Weight adjustment starts at the output layer and proceeds back towards 

the input layer according to:

𝑤𝑖𝑗 𝑡 + 1 = 𝑤𝑖𝑗 𝑡 + 𝛼𝛿𝑗𝑦𝑖 + 𝛼𝑚 𝑤𝑖𝑗 𝑡 − 𝑤𝑖𝑗 𝑡 − 1

𝛿𝑗 =

𝑑𝑗 − 𝑦𝑗 𝜆𝑦𝑗(1 − 𝑦𝑗) for an output neuron


𝑘

𝛿𝑘𝑤𝑗𝑘 𝜆𝑦𝑗 1 − 𝑦𝑗  for a hidden neuron

                     𝑤𝑖𝑗 𝑡  ……….. weight from neuron  𝒊  to neuron  𝒋  in time  𝒕
                   𝛼 , 𝛼𝑚 …….....  learning rate, resp. moment  (𝟎 ≤ 𝜶, 𝜶𝒎 ≤ 𝟏 )
                   𝜉𝑗, resp. 𝛿𝑗  …... potential, resp. local error on neuron 𝒋
                  𝑘 …………….. index for the neurons from the layer above the neuron 𝒋  
                   𝝀 …………….. slope of the transfer function

Step 5:   Repeat by going to Step 2

pijderopening'msmiremodvistyper



An alternative example:
the sample multi-class labels are one hot binary vectors

The SOFTMAX transfer function is used for the output neurons (indexed by 𝑗´): 
  (all the desired output values are either 0 or 1; when using one-hot encoding, there is just one 
  positive class (for the neuron 𝑗), all the other ones are negative)

𝑦𝑗 = 𝑒ξ𝑗

σ𝑗´ 𝑒ξ𝑗´
, then:   

𝜕𝑦𝑗

𝜕ξ𝑗
= 𝜕

𝜕ξ𝑗

𝑒ξ𝑗

σ𝑗´ 𝑒ξ𝑗´
=

𝑒ξ𝑗
´

σ𝑗´ 𝑒ξ𝑗´ −𝑒ξ𝑗 σ𝑗´ 𝑒ξ𝑗´
´

σ𝑗´ 𝑒ξ𝑗´
2 =

=
𝑒ξ𝑗 σ𝑗´ 𝑒ξ𝑗´

σ𝑗´ 𝑒ξ𝑗´
2 − 𝑒ξ𝑗 𝑒ξ𝑗

σ𝑗´ 𝑒ξ𝑗´
2 = 𝑦𝑗 1 − 𝑦𝑗 for the derivative according to ξ𝑗

and:      
𝜕𝑦𝑗

𝜕ξ𝑘
= 𝜕

𝜕ξ𝑘

𝑒ξ𝑗

σ𝑗´ 𝑒ξ𝑗´
=

𝑒ξ𝑗
´

σ𝑗´ 𝑒ξ𝑗´ −𝑒ξ𝑗 σ𝑗´ 𝑒ξ𝑗´
´

σ𝑗´ 𝑒ξ𝑗´
2 =

0 . σ𝑗´ 𝑒ξ𝑗´

σ𝑗´ 𝑒ξ𝑗´
2 − 𝑒ξ𝑗 𝑒ξ𝑘

σ𝑗´ 𝑒ξ𝑗´
2 =

= 0 − 𝑒ξ𝑗 𝑒ξ𝑘

σ𝑗´ 𝑒ξ𝑗´
2 = − 𝑦𝑗 𝑦𝑘 for the derivative according to ξ𝑘 with 𝑘 ≠ 𝑗
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An alternative example:
the sample multi-class labels are one hot binary vectors

Cross entropy loss function (~ negative log-likelihood)

𝐿 = − σ𝑗´ 𝑑𝑗´ log 𝑦𝑗´ ,   then

𝜕𝐿
𝜕ξ𝑗

= 𝜕
𝜕ξ𝑗

− σ𝑗´ 𝑑𝑗´ log 𝑦𝑗´ = − σ𝑗´ 𝑑𝑗´
𝜕 log 𝑦𝑗´

𝜕𝑦𝑗´

𝜕𝑦𝑗´

𝜕ξ𝑗
=

= −𝑑𝑗
1

𝑦𝑗
𝑦𝑗 1− 𝑦𝑗 − σ𝑗´≠𝑗 𝑑𝑗´

1
𝑦𝑗´

−𝑦𝑗´𝑦𝑗 =

= −𝑑𝑗 1− 𝑦𝑗 + σ𝑗´≠𝑗 𝑑𝑗´ 𝑦𝑗 = −𝑑𝑗 +𝑦𝑗 σ𝑗´ 𝑑𝑗´

Altogether, we obtain: 𝜕𝐿
𝜕ξ𝑗

= 𝑦𝑗 σ𝑗´ 𝑑𝑗´ − 𝑑𝑗 = 𝑦𝑗 − 𝑑𝑗
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BP-networks: analysis of the model
▪ Simple training algorithm 
▪ A very often used approach
▪ Relatively good results
▪ Drawbacks:

• Internal knowledge representation – „black box“
• the number of neurons and generalization capabilities 

o pruning and retraining
• error function (knowledge of the desired outputs)

o „bigger“ and „balanced“ training sets
o assessment of network outputs during recall



BP-networks: analysis of the model

Drawbacks:
needs „bigger“ and 
„balanced“ training 
sets
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Back-propagation training algorithm: 
speeding-up the training process  (1)
▪ The standard back-propagation training algorithm is rather slow

    →  a malicious selection of network parameters can make it even slower
▪ For artificial neural networks, the learning problem is NP-complete 

in the worst case
    →  computational complexity grows exponentially with the number of

               the variables
    →  despite of that the standard back-propagation performs often better

                  than many „fast learning algorithms“
        -  especially when the task achieves a realistic level of complexity and the 

              size of the training set goes beyond a critical threshold 
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Back-propagation training algorithm: 
speeding-up the training process  (2)

Algorithms speeding-up the training process:
▪ Keeping a fixed network topology

▪ Modular  networks
• considerable improvement of network approximation abilities

▪ Adjustment of both the parameters (weights, thresholds, etc.) 
and the network topology 
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Back-propagation training algorithm: 
initial weight selection  (1)
▪ The weights should be uniformly distributed over the interval

−𝑎, +𝑎   

▪ Zero mean value 
• leads to an expected zero value of the total input to each node in the 

network (potential)

▪ The derivative of the sigmoidal transfer function is reached its 
maximum for zero (~ 0.25)

• larger values of the backpropagated errors
• more significant weight updates when training starts



I. MRÁZOVÁ: NEURONOVÉ SÍTĚ (NAIL002) 22

Back-propagation training algorithm: 
initial weight selection (2)
Problem:
▪ Too small weights paralyze learning

• The error backpropagated from the output layer to hidden layers 
is too small

▪ Too large weights lead to saturation of neurons and slow 
learning  (in flat zones of the error function)

→  Learning then stops at a suboptimal local minimum
 × the right choice of initial weights can significantly reduce 
  the risk of getting stuck in a local minimum

anditmightevendisappear

2s cant converge
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Back-propagation training algorithm: 
initial weight selection (3)
Reduce the danger of local minima:
~ initialize the weights with small random values 

Motivation:
▪ Small weight values

• Large weight values impact saturation of hidden neurons (too active or too 
passive for all training patterns) → such neurons are incapable of further 
training (the derivative of the transfer function – sigmoid – is almost zero)

▪ Random weight values
• The goal is to „break the symmetry“  →  hidden neurons should specialize in 

the recognition of different features 



IDEA:
▪ The potential of a hidden neuron is given by:

𝜉 = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛

𝑥𝑖  … the activity of the 𝑖-th neuron from the preceding layer
𝑤𝑖 …the weight from the 𝑖-th neuron from the preceding layer

▪ Expected value of the potential for hidden neurons:

E 𝜉𝑗 = E 
𝑖=0

𝑛

𝑤𝑖𝑗𝑥𝑖 = 
𝑖=0

𝑛

E 𝑤𝑖𝑗 E 𝑥𝑖 = 0

• the weights are independent of the input patterns
• the weights are random variables with zero mean 

𝑤0 is the threshold
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Back-propagation training algorithm: 
initial weight selection (4)



IDEA - continue:
▪ The variance of the potential 𝜉 is given by:

𝜎𝜉
2 = E 𝜉𝑗

2 − E2 𝜉𝑗 = E σ𝑖=0
𝑛 𝑤𝑖𝑗 𝑥𝑖

2 − 0 =

= σ𝑖,𝑘=0
𝑛 E 𝑤𝑖𝑗𝑤𝑘𝑗 𝑥𝑖 𝑥𝑘 =

= σ𝑖=0
𝑛 E 𝑤𝑖𝑗

2 E 𝑥𝑖
2

= 0
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Back-propagation training algorithm: 
initial weight selection (5)

mutual independence for all  j
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Back-propagation training algorithm: 
initial weight selection (6)
IDEA - continue:
▪ Further, we assume that the training patterns are normalized and from 

the interval 0,1 . Then:

E 𝑥𝑖
2 = න

0

1

𝑥𝑖
2 d𝑥 = อ

𝑥3

3
0

1

=
1
3

▪ Assumed that the weights of the hidden neurons are also random 
variables with a zero mean and uniformly distributed in the interval 
⟨−𝑎, 𝑎⟩, then:

E 𝑤𝑖𝑗
2  = න

−𝑎

𝑎

𝑤𝑖𝑗
2 ⋅

1
2𝑎

d𝑤𝑖𝑗 = ቤ𝑤𝑖𝑗
3

6𝑎 −𝑎

𝑎

=
𝑎2

3

▪ 𝑁 … number of weights leading to the considered neuron (= 𝑛 + 1)
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Back-propagation training algorithm: 
initial weight selection  (7)
IDEA - continue:

▪ Standard deviation will thus correspond to:

𝐴 = 𝜎𝜉 = 𝑁
𝑎
3

→ 𝑎 = 𝐴
3
𝑁

▪ Neuron potential should be a random variable with the standard deviation 𝐴  (that is 
moreover independent of the number of weights leading to this neuron);

▪ Select initial weights (roughly) from the interval:

−
3
𝑁

⋅ 𝐴,
3
𝑁

⋅ 𝐴

• especially for 𝐴 = 1 large gradient (i.e., quick learning)

I
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