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Associative Networks 
and Associative Memories  (1)
The goal of learning:  
  ~ associate known input vectors with the given output vectors

▪ The neighborhood of a known input pattern Ԧ𝑥 should also be mapped to 
the image Ԧ𝑦 of Ԧ𝑥

    →  „noisy“ input vectors can then be associated with the correct output
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Associative Networks 
and Associative Memories  (2)
▪ Associative memories can be implemented using 

networks with (or without) feedback
         →  the simplest kind of feedback:

• use the output of the network repetitively as a new input until the 
process converges to a stable state

    ×  but not all networks converge to a stable state after presenting
          a new input pattern
           →  additional restrictions on the network architecture are
               necessary
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The Function of an Associative Memory
▪ Recognize previously learned input vectors, even if some 

noise has been added
▪ The response of each neuron is determined exclusively 

by the information flowing through its own weights    
(Hebbian learning)

▪ Three types of associative networks: 
• heteroassociative, autoassociative and pattern recognition 

networks 
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Heteroassociative Networks

Map 𝑚 input vectors Ԧ𝑥1, … , Ԧ𝑥𝑚 from the 𝑛-dimensional 
space to 𝑚  output vectors Ԧ𝑦1, … , Ԧ𝑦𝑚 in the 𝑘-dimensional 

space, so that Ԧ𝑥𝑖 ↦ Ԧ𝑦𝑖. If ෨Ԧ𝑥 − Ԧ𝑥𝑖 2
< 𝜀, then ෨Ԧ𝑥 ↦ Ԧ𝑦𝑖 (𝜀 > 0).
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Autoassociative Networks

▪ A special subset of the heteroassociative networks (each 
vector is associated with itself: Ԧ𝑦𝑖 = Ԧ𝑥𝑖 for  𝑖 = 1, … , 𝑚).

▪ The function of autoassociative networks is to „correct 
noisy input patterns“.                 
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Pattern Recognition Networks

▪ A special type of heteroassociative networks (each vector 
Ԧ𝑥𝑖 is associated with the scalar value 𝑖).

▪ The goal is to identify the class of the input pattern
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Associative memories can be implem-
ented using a single layer of neurons    

▪ Let:  𝑤𝑖𝑗 … the weight between the
                          input 𝑖 and neuron 𝑗

             𝑊 ….  the 𝑛 × 𝑘 weight matrix

   →  vector Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛  yields the
         excitation vector Ԧ𝑒 = Ԧ𝑥 ⋅ 𝑊
   →  Afterwards, the value of the transfer
         function is computed for each neuron

• For the identity, we get a linear associator 
and the output Ԧ𝑦 is just Ԧ𝑥 ⋅ 𝑊

102

The Structure of an Associative Memory

In this part of the lecture, the vectors are always row vectors!
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Structure of an Associative Memory (2)
In general: 𝑚  different 𝒏-dimensional vectors Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚 have to be 
associated with 𝑚  𝑘-dimensional vectors Ԧ𝑦1, … , Ԧ𝑦𝑚

→   𝑋 .… 𝑚 × 𝑛  matrix (rows correspond to the respective input vectors)

       𝑌 .… 𝑚 × 𝑘  matrix (rows correspond to the output vectors)

→  we are looking for such a weight matrix 𝑊, for which  𝑋 ⋅ 𝑊 = 𝑌
      (and in the case of autoassociative memories:  𝑋 · 𝑊 = 𝑋)

Remark:  if  𝑚 = 𝑛, then 𝑋 is a square matrix 

                if it is invertible, the solution will be 𝑊 = 𝑋−1 · 𝑌 
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Recurrent Associative Network
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Recurrent Associative Network (2)

Question: is there a fixed point Ԧ𝜉 such that Ԧ𝜉 ⋅ 𝑊 = Ԧ𝜉 ?

   →  the vector Ԧ𝜉 is an eigenvector of the matrix 𝑊 with the
eigenvalue 1

   →  the network behaves as a first-order dynamical system,
since each new state Ԧ𝑥 𝑖 + 1  is completely determined 
by its most recent predecessor
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Eigenvector Automata
▪ Let 𝑊 be the weight matrix of an autoassociative network, 

        the individual neurons are linear associators

  →  look for fixed points of the  dynamical system

Remark:  not all weight matrices lead to a stable state
        Example:  rotation by 90° in two-dimensional space:

𝑊 = 0 1
−1 0

               →  cycles of length 4
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Eigenvector Automata (2)

→  Quadratic matrices with a complete set of eigenvectors
are more useful as memories

   an 𝑛 × 𝑛 matrix 𝑊 has at most 𝑛 linearly independent 
eigenvectors and 𝑛 eigenvalues

       →  the eigenvectors Ԧ𝑥1, … , Ԧ𝑥𝑛 then satisfy: Ԧ𝑥𝑖 ⋅ 𝑊 = 𝜆𝑖 Ԧ𝑥𝑖

    for 𝑖 = 1, … , 𝑛 and the matrix eigenvalues 𝜆1, … , 𝜆𝑛
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Eigenvector Automata (3)
▪ Each weight matrix with a full set of eigenvectors defines an 

„eigenvector automaton“

  →  given an initial input vector, the eigenvector with the largest
eigenvalue can be found (if it exists)

▪ Assume, w.l.o.g., that 𝜆1 is the eigenvalue of 𝑊 with the largest 
magnitude:  

   𝜆1 > 𝜆𝑖          ∀ 𝑖 = 2, … , 𝑛
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Eigenvector Automata (4)
▪ Let  𝜆1 > 0 and Ԧ𝑎0 be an 𝑛-dimensional randomly chosen

non-zero vector

   →   Ԧ𝑎0 can be expressed as a linear combination of the 
      𝑛 eigenvectors of the matrix 𝑊:

Ԧ𝑎0 = 𝛼1 Ԧ𝑥1 + 𝛼2 Ԧ𝑥2 + ⋯ + 𝛼𝑛 Ԧ𝑥𝑛

▪ Assumption:  all constants 𝛼𝑖 are non-zero
  →  After the first iteration with the matrix 𝑊 we get:

Ԧ𝑎1 = Ԧ𝑎0 ⋅ 𝑊 = 𝛼1 Ԧ𝑥1 + ⋯ + 𝛼𝑛 Ԧ𝑥𝑛 ⋅ 𝑊 =
= 𝛼1𝜆1 Ԧ𝑥1 + 𝛼2𝜆2 Ԧ𝑥2 + ⋯ + 𝛼𝑛𝜆𝑛 Ԧ𝑥𝑛
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Eigenvector Automata (5)
→  After 𝑡 iterations the result is: 

Ԧ𝑎𝑡 = 𝛼1𝜆1
𝑡 Ԧ𝑥1 + 𝛼2𝜆2

𝑡 Ԧ𝑥2 + ⋯ + 𝛼𝑛𝜆𝑛
𝑡 Ԧ𝑥𝑛

→  After a big enough number of iterations, the eigenvalue with
the largest magnitude will dominate –  𝜆1

→  the vector Ԧ𝑎𝑡 can thus be brought arbitrarily close to the eigenvector
Ԧ𝑥1 (with respect to the direction, not length)

→  in each iteration, the vector Ԧ𝑥1 attracts any other vector Ԧ𝑎0 with a
non-zero component for 𝛼1

                 →   Ԧ𝑥1 is an attractor 
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Eigenvector Automata (6)
Example:

▪ The matrix 𝑊 = 2 0
0 1   has 2 eigenvectors, 1, 0  and (0, 1) with 

the respective eigenvalues 2 and 1.

▪ After 𝑡 iterations, any initial vector 𝑥1, 𝑥2 ; 𝑥1 ≠ 0 will be 
transformed into the vector  (2𝑡𝑥1, 𝑥2).

   →   For large enough 𝑡 this vector will come arbitrarily close to 1, 0  

   =>   the vector 1, 0  is an attractor
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Associative Learning
Goal:  use associative networks as dynamical systems, whose

attractors are exactly those vectors we would like to store 
in the memory

▪ During network design, locate as many attractors in the 
input space as possible 
• each one of them should have a well-defined and bounded 

influence region 

× in the case of the linear eigenvector automaton, just one vector
absorbs almost the whole input space
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Associative Learning  (2)
→  a nonlinear dynamical systems

•   Nonlinear activation of neurons
         Hard-limiting transfer function:

sgn 𝑥 = ቊ 1
−1

𝑥 ≥ 0
𝑥 < 0

•   Bipolar coding is better than the binary one
     (bipolar vectors have a greater probability of being mutually

orthogonal than binary vectors)
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Hebbian Learning
Assumption:  
▪ single-layer network of 𝑘 neurons with the 𝑠𝑔𝑛 transfer function

Goal:  
▪ Find the appropriate weights to map the 𝑛-dimensional input 

vector Ԧ𝑥 to the 𝑘-dimensional output vector Ԧ𝑦   
Idea:  (Donald Hebb – 1949)
▪ Two neurons, which are simultaneously active, should develop a 

degree of interaction higher than those neurons, whose activities 
are uncorrelated. In the latter case, the interaction between the 
elements should be very low or zero. 
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Hebbian Learning (2)

     The Hebb rule: Δ𝑤𝑖𝑗 = 𝛾𝑥𝑖𝑦𝑗

    𝛾 …. learning parameter

   𝑊 … weight matrix (initialized to zeroes)
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Hebbian Learning   (3)
▪ the matrix 𝑊 maps the non-zero vector Ԧ𝑥1 exactly to the vector Ԧ𝑦1

Ԧ𝑥1 ⋅ 𝑊 = 𝑦1
1 ෍

𝑖=1

𝑛

𝑥𝑖
1𝑥𝑖

1 ,  𝑦2
1 ෍

𝑖=1

𝑛

𝑥𝑖
1𝑥𝑖

1 , … , 𝑦𝑘
1 ෍

𝑖=1

𝑛

𝑥𝑖
1𝑥𝑖

1 =

= Ԧ𝑦1 Ԧ𝑥1 ⋅ Ԧ𝑥1

▪ for Ԧ𝑥1 ≠ 0, it holds that Ԧ𝑥1 ⋅ Ԧ𝑥1 > 0 and  the output of the network is: 
𝑠𝑔𝑛 Ԧ𝑥1 ⋅ 𝑊 = 𝑦1

1, … , 𝑦𝑘
1 = Ԧ𝑦1

▪ for − Ԧ𝑥1, the output of the network is:
𝑠𝑔𝑛 − Ԧ𝑥1 ⋅ 𝑊 = − 𝑠𝑔𝑛 Ԧ𝑥1 ⋅ 𝑊 = − Ԧ𝑦1
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Hebbian Learning   (4)
In general:
▪ If we want to associate 𝑚 𝑛-dimensional non-zero vectors 

Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚 with 𝑚 𝑘-dimensional vectors Ԧ𝑦1, … , Ԧ𝑦𝑚, we
apply Hebbian learning to each INPUT/OUTPUT pair 

▪ The resulting weight matrix 𝑊 will have the form:

                 𝑊 =  𝑊1 + 𝑊2 + ⋯ + 𝑊𝑚,

  where each matrix 𝑊𝑙  is the 𝑛 × 𝑘 correlation matrix of the
vectors Ԧ𝑥𝑙  and Ԧ𝑦𝑙:   𝑊𝑙 = 𝑥𝑖

𝑙 𝑦𝑗
𝑙

𝑛×𝑘
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Hebbian Learning   (5)
▪ If the input to the network is the vector Ԧ𝑥𝑝, the excitation vector 

of the network will be equal to:

Ԧ𝑥𝑝 ⋅ 𝑊 = Ԧ𝑥𝑝 ⋅ 𝑊1 + 𝑊2 + ⋯ + 𝑊𝑚 =
= Ԧ𝑥𝑝 ⋅ 𝑊𝑝 + σ𝑙≠𝑝

𝑚 Ԧ𝑥𝑝 ⋅ 𝑊𝑙 =

= Ԧ𝑦𝑝 ⋅ Ԧ𝑥𝑝 ⋅ Ԧ𝑥𝑝 + σ𝑙≠𝑝
𝑚 Ԧ𝑦𝑙 ⋅ Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝

▪ The excitation vector thus corresponds to Ԧ𝑦𝑝 (multiplied by a 
positive constant) plus a perturbation term σ𝑙≠𝑝

𝑚 Ԧ𝑦𝑙 ⋅ Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝  
that is called the CROSSTALK
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Hebbian Learning   (6)
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▪ The network produces the desired vector Ԧ𝑦𝑝 as its output when the 
crosstalk is zero

   →  ~ whenever the input patterns Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚 are pairwise orthogonal

▪ The network can yield appropriate results even for non-zero crosstalks

     × crosstalk should be smaller than Ԧ𝑦𝑝 ⋅ Ԧ𝑥𝑝 ⋅ Ԧ𝑥𝑝

   →  The output of the network is then equal to:

𝑠𝑔𝑛 Ԧ𝑥𝑝 ⋅ 𝑊 = 𝑠𝑔𝑛 Ԧ𝑦𝑝 ⋅ Ԧ𝑥𝑝 ⋅ Ԧ𝑥𝑝 + ෍
𝑙≠𝑝

𝑚

Ԧ𝑦𝑙 ⋅ Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝



Hebbian Learning   (7)
▪ Since Ԧ𝑥𝑝 ⋅ Ԧ𝑥𝑝 is a positive constant, it holds that:

sgn Ԧ𝑥𝑝 ⋅ 𝑾 = sgn Ԧ𝑦𝑝 + ෍
𝑙≠𝑝

𝑚

Ԧ𝑦𝑙 ⋅
Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝

Ԧ𝑥𝑝 ⋅ Ԧ𝑥𝑝

▪ To produce the output Ԧ𝑦𝑝, it must hold:

Ԧ𝑦𝑝 = sgn Ԧ𝑦𝑝 + ෍
𝑙≠𝑝

𝑚

Ԧ𝑦𝑙 ⋅
Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝

Ԧ𝑥𝑝 ⋅ Ԧ𝑥𝑝

▪ This condition is satisfied, when the absolute value of all components of the 
perturbation term σ𝑙≠𝑝

𝑚  Ԧ𝑦𝑙⋅ Ԧ𝑥𝑙⋅ Ԧ𝑥𝑝

Ԧ𝑥𝑝⋅ Ԧ𝑥𝑝    is smaller than 1
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Hebbian Learning   (8)
→   This means that the scalar product Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝 must be smaller than
       the quadratic length of the vector Ԧ𝑥𝑝 (equal to 𝑛 for 𝑛-dimensional
       bipolar vectors)

→   If randomly selected bipolar vectors are associated with other also
       randomly selected bipolar vectors, the probability is high that they
       will be nearly pairwise orthogonal (as long as not too many of them
       are selected)

            →  In such a case, the crosstalk will be small and Hebbian learning will
                    lead to an efficient set of weights for the associative network
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Geometric Interpretation 
of Hebbian Learning
▪ For the matrices 𝑊𝑖 from 𝑊 = 𝑊1 + 𝑊2 + ⋯ + 𝑊𝑚 it holds in an 

autoassociative networks: 
𝑊𝑖 = Ԧ𝑥𝑖 𝑇 Ԧ𝑥𝑖

    → thus, for 𝑊1 = Ԧ𝑥1 𝑇 Ԧ𝑥1, the input vector Ԧ𝑧 will be projected into the
linear subspace 𝐿1 spanned by the vector Ԧ𝑥1, since

 Ԧ𝑧 ⋅ 𝑊1 = Ԧ𝑧 Ԧ𝑥1 𝑇 Ԧ𝑥1 = Ԧ𝑧 Ԧ𝑥1 𝑇 Ԧ𝑥1 = 𝑐1 Ԧ𝑥1

           ~ in general, a non-orthogonal projection of the vector Ԧ𝑧 into 𝐿1  
                 (𝑐1 represents a constant) 

         →  similarly for other weight matrices 𝑊2, … , 𝑊𝑚
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Geometric Interpretation
of Hebbian Learning  (2)

▪ The matrix 𝑊 = σ𝑖=0
𝑚 𝑊𝑖 projects a 

vector Ԧ𝑧 into the linear subspace 
spanned by the vectors Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚, 
because:

 Ԧ𝑧 ⋅ 𝑊 = Ԧ𝑧 ⋅ 𝑊1 + Ԧ𝑧 ⋅ 𝑊2 + ⋯ + Ԧ𝑧 ⋅ 𝑊𝑚

= 𝑐1 Ԧ𝑥1 + 𝑐2 Ԧ𝑥2 + ⋯ + 𝑐𝑚 Ԧ𝑥𝑚

        (in general, a non-orthogonal projection)

I. MRÁZOVÁ: NEURAL NETWORKS (NAIL002) 126

 

orthogonal projection non-orthogonal projection 

x 
ˆ x ˆ x 

x 

x 1 x 1 
x 2 x 2 

˜ x 

x 



Associative Networks: Behavior Analysis
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▪ Identification of attractors (fixed points of the system)
▪ The size of the basins of attraction

• Hamming distance  
~  the number of different components in 2 bipolar vectors

• Example:  the Hamming distance of the vectors 1 −1 1 1   and
1 1 −1 1   is equal to 2

• With the growing number of stored patterns, the basins of attraction 
become smaller  →  spurious stable states
o big crosstalk
o for the patterns inverse to the stored ones:

sgn − Ԧ𝑥 ⋅ 𝑊 = − sgn Ԧ𝑥 ⋅ 𝑊 = − Ԧ𝑥



▪ Recurrent networks (use feedback)
• Improved convergence when compared to associative memories 

without feedback
• Wider basins of attraction

      ×  not too many patterns can be stored
  →  PROBLEM:  the capacity of the weight matrix

• The sizes of the basins of attraction can be compared using an index

 𝐼 =  σℎ=0
Τ𝑛 2 ℎ 𝑝ℎ ,   

            where 𝑝ℎ denotes the percentage of vectors with the Hamming
distance ℎ from a stored pattern they converged to 

Associative Networks: Behavior Analysis (2)
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The Capacity Problem

▪ The basins of attraction of stored patterns deteriorate 
with every new pattern to be stored in the memory

▪ If the crosstalk term becomes too large, previously 
stored patterns can be even „forgotten“

× the probability that this could happen should be kept
low
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The Capacity Problem (2)
▪ Assess the number of patterns 𝑚, that can be stored 

safely in an autoassociative memory with a weight 
matrix 𝑊𝑛×𝑛

▪ Maximum capacity of the network:  𝑚 ~ 0.18 𝑛
• The number of stored patterns should be smaller than  

0.18 𝑛  (𝑛 is the dimension of the patterns)

• If the patterns are correlated, even 𝑚 < 0.18 𝑛 can produce 
problems
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▪ Let us consider the weight matrices set as  𝑊𝑖 = 1
𝑛

Ԧ𝑥𝑖 T Ԧ𝑥𝑖

▪ Crosstalk for 𝑛-dimensional bipolar vectors and 𝑚 patterns is 
in the case of an autoassociative network:

1
𝑛

෍
𝑙≠𝑝

𝑚

Ԧ𝑥 𝑙 Ԧ𝑥 𝑙 ⋅ Ԧ𝑥 𝑝

▪ If the magnitude of the above crosstalk term is larger than 1 
and the term has a sign opposite to the stored pattern, the 
considered pattern component can be flipped

Derivation of the Network Capacity: 
the Idea  (1)
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▪ Assume that the stored vectors are chosen randomly:
• In this case the crosstalk term for bit 𝑖 of the input vector is 

given by

1
𝑛

σ𝑙≠𝑝
𝑚 𝑥𝑖

𝑙 Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝  (∗)

• Since the components of each pattern have been selected 
randomly, we can think of 𝑚 ⋅ 𝑛 random bit selections

• The expected value of this sum (*) is 0

Derivation of the Network Capacity: 
the Idea (2)
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Derivation of the Network Capacity: 
the Idea (3)

▪ The sum (*) has a binomial distribution and for large 𝑚 ⋅ 𝑛, we 
can approximate it by a normal distribution with the standard 
deviation 𝜎 = Τ𝑚 𝑛

▪ Probability of error 𝑃, that the sum (*) becomes larger than 1 
(or smaller than −1), is given by 

𝑃 =
1

2 𝜋 𝜎
න
1

∞

𝑒 ൗ− 𝑥2 2𝜎2 d𝑥
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Derivation of the Network 
Capacity: the Idea (4)

That is:  𝑃 ∗ > 1  =  2 1 − Φ 1
Τ𝑚 𝑛

 ,

     where   Φ 𝑥 = 1
2 𝜋 ∞−׬

𝑥 𝑒 Τ−𝑡2 2 d𝑡

→  for the upper bound for one bit failure set 
        to 0.01 we obtain:

                         0.01 = 2 1 − Φ 1
Τ𝑚 𝑛

  →  therefore:   𝑚 ~ 0.18 𝑛
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▪ Hebbian learning produces good results when the stored patterns are 
nearly orthogonal  

~  when 𝑚 bipolar vectors are selected randomly from an 𝑛-dimensional space, 
𝑛 is „large enough“ and 𝑚 is „much smaller“ than 𝑛

× in real applications, the patterns are almost always correlated, and the 
crosstalk in the expression

Ԧ𝑥𝑝 ⋅ 𝑊 = Ԧ𝑦𝑝 ⋅ Ԧ𝑥𝑝 ⋅ Ԧ𝑥𝑝 + ෍
𝑙≠𝑝

𝑚

Ԧ𝑦𝑙 ⋅ Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝

    affects the recall process because the scalar products Ԧ𝑥𝑙 ⋅ Ԧ𝑥𝑝 are not
small enough for 𝑙 ≠ 𝑝.

Associative Memories: 
the Pseudoinverse Matrix  (1)
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Associative Memories: 
the Pseudoinverse Matrix (2)
→  mutual correlation of the stored patterns causes reduction 
      in the capacity of the associative network  

       ~  the number of patterns, that can be stored and recalled

      the stored patterns do not occupy the input space homogen-
      eously, but concentrate around a small region 
→  look for alternative learning methods capable of minimizing
      the crosstalk between stored patterns

→  use the pseudoinverse instead of the correlation matrix
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Definition:
     The pseudoinverse of a real 𝑚 × 𝑛 matrix is the real 

matrix ෨𝑋 with the following properties:
1. 𝑋 ෨𝑋𝑋 = 𝑋,
2. ෨𝑋𝑋 ෨𝑋 = ෨𝑋,
3. ෨𝑋𝑋 and 𝑋 ෨𝑋 are symmetrical.

     The pseudoinverse always exists and is unique.

Associative Memories: 
the Pseudoinverse Matrix (3)
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▪ Let Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚 be 𝑛-dimensional vectors to be associated 
with 𝑚  𝑘-dimensional vectors Ԧ𝑦1, … , Ԧ𝑦𝑚 

→  matrix notation:

             𝑋  ….  Matrix 𝑚 × 𝑛

                        the rows are the vectors Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚

             Y  ….  Matrix 𝑚 × 𝑘
                        the rows are the vectors Ԧ𝑦1, … , Ԧ𝑦𝑚

→  Look for a weight matrix 𝑊;  𝑋𝑊 = 𝑌

Pseudoinverse Matrix: Properties
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Pseudoinverse Matrix: Properties (2)
▪ Since in general 𝑚 ≠ 𝑛 and the vectors Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚 are

not necessarily linearly independent, the matrix 𝑋 does 
not have to be invertible

→ look for a matrix 𝑊, which minimizes 𝑋𝑊 − 𝑌 2

      (~ the sum of the squares of all its elements)
     minimization by means of  𝑊 = ෨𝑋𝑌

 ෨𝑋 ….  pseudoinverse of the matrix 𝑋
              (~ the best approximation to an inverse of 𝑋
             if 𝑋−1 exists, then 𝑋−1 = ෨𝑋) 
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Proposition:  

    Let 𝑋 be an 𝑚 × 𝑛 real matrix and 𝑌 be an 𝑚 × 𝑘 real matrix. 
The 𝑛 × 𝑘 matrix 𝑊 = ෨𝑋𝑌 minimizes the quadratic norm 𝑋𝑊 − 𝑌 2.  

    (At the same time, ෨𝑋 minimizes 𝑋 ෨𝑋 − 𝐼 2
.) 

Proof:
    Define 𝐸 = 𝑋𝑊 − 𝑌 2

    → 𝐸 can be computed as  𝐸 = 𝑡𝑟(𝑆), where 𝑆 = 𝑋𝑊 − 𝑌 T 𝑋𝑊 − 𝑌
        (𝐸 ~ sum of all diagonal elements of 𝑆)

Pseudoinverse Matrix: Properties (3)
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Proof (continue):

→ 𝑆 can be rewritten as  
𝑆 = ෨𝑋𝑌 − 𝑊 T𝑋T𝑋 ෨𝑋𝑌 − 𝑊 + 𝑌T 𝐼 − 𝑋 ෨𝑋 𝑌

      (because:
𝑆 = ෨𝑋𝑌 − 𝑊 T 𝑋T𝑋 ෨𝑋𝑌 − 𝑋T𝑋𝑊 + 𝑌T 𝐼 − 𝑋 ෨𝑋 𝑌

        Since the matrix 𝑋 ෨𝑋 is symmetrical (def.), therefore:

𝑆 = ෨𝑋𝑌 − 𝑊 T 𝑋 ෨𝑋 𝑋
=𝑋 def.

T
𝑌 − 𝑋T𝑋𝑊 + 𝑌T 𝐼 − 𝑋 ෨𝑋 𝑌          

Pseudoinverse Matrix: Properties (4)
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Proof (continue):
(it follows: 𝑆 = ෨𝑋𝑌 − 𝑊 T 𝑋T𝑌 − 𝑋T𝑋𝑊 + 𝑌T 𝐼 − 𝑋 ෨𝑋 𝑌 =

= ෨𝑋𝑌 − 𝑊 T𝑋T 𝑌 − 𝑋𝑊 + 𝑌T 𝐼 − 𝑋 ෨𝑋 𝑌 =
= 𝑋 ෨𝑋𝑌 − 𝑋𝑊 T 𝑌 − 𝑋𝑊 + 𝑌T 𝐼 − 𝑋 ෨𝑋 𝑌 =
= −𝑋𝑊 T 𝑌 − 𝑋𝑊 + 𝑌T𝑋 ෨𝑋 𝑌 − 𝑋𝑊 + 𝑌T 𝐼 − 𝑋 ෨𝑋 𝑌 =
= −𝑋𝑊 T 𝑌 − 𝑋𝑊 + 𝑌T −𝑋𝑊 + 𝑌T𝑌 = 
= 𝑌 − 𝑋𝑊 T 𝑌 − 𝑋𝑊  )

→ E can be rewritten as

𝐸 = 𝑡𝑟 ෨𝑋𝑌 − 𝑊 𝑇𝑋𝑇𝑋 ෨𝑋𝑌 − 𝑊 + 𝑡𝑟 𝑌𝑇 𝐼 − 𝑋 ෨𝑋 𝑌
= 𝑐𝑜𝑛𝑠𝑡.

       

→  min 𝐸 for 𝑊 = ෨𝑋𝑌, QED.

Pseudoinverse Matrix: Properties (5)
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Pseudoinverse Matrix: Application

Motivation and application:
▪ The inverse matrix does not always exist
▪ An alternative represents the pseudoinverse matrix

• Minimization of the mean squared error (e.g., with multi-layered neural 
networks)

• The training set: Ԧ𝑥𝑝, Ԧ𝑑𝑝 ; 𝑝 = 1, … , 𝑃
•  Ԧ𝑥𝑝 ….  Input pattern (𝑛 – dimensional)

•  Ԧ𝑑𝑝  ….  Desired output (𝑚 – dimensional)
•  Ԧ𝑦𝑝   ….  Actual output (𝑚 – dimensional)
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Pseudoinverse Matrix: Application (2)
▪ Derivation:   𝐸 = σ𝑝=1

𝑃 𝐸𝑝 = σ𝑝=1
𝑃 σ𝑗=1

𝑚 𝑑𝑗,𝑝 − 𝑦𝑗,𝑝
2

        with Ԧ𝑦𝑝 to be determined according to: 𝑦𝑗,𝑝 = σ𝑖=1
𝑛 𝑤𝑖𝑗𝑥𝑖,𝑝

• Minimization of 𝐸 with respect to the weights  
    →  the partial derivatives of 𝐸 with respect to the weights:

ൗ𝜕𝐸
𝜕𝑤𝑖𝑗

=
𝜕

𝜕𝑤𝑖𝑗
෍
𝑝=1

𝑃

෍
𝑗=1

𝑚

𝑑𝑗,𝑝 − ෍
𝑖=1

𝑛

𝑤𝑖𝑗𝑥𝑖,𝑝

2

=

= − 2 ෍
𝑝=1

𝑃

෍
𝑖=1

𝑛

𝑑𝑗,𝑝 − 𝑤𝑖𝑗𝑥𝑖,𝑝 𝑥𝑖,𝑝 = 0
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Pseudoinverse Matrix: Application (3)
Matrix notation:   𝑊𝑋𝑋𝑇 = 𝐷𝑋𝑇            
▪ 𝑊  ….  matrix 𝑚 × 𝑛 with the elements 𝑤𝑖𝑗 
▪ 𝑋 ….  matrix 𝑛 × 𝑃 with the elements 𝑥𝑖,𝑝 
▪ 𝐷 ….  matrix 𝑚 × 𝑃 with the elements 𝑑𝑗,𝑝

  × in general, there does not have to exist an inverse matrix to the  
      matrix 𝑋𝑋𝑇

  →  it might be not possible to solve the equation directly (and find the
      weight matrix 𝑊) if 𝑋𝑋𝑇 does not have 𝑚 linearly independent rows
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Pseudoinverse Matrix: Application (4)
There can be several solutions   

→   an additional constraint on the weight values:

Minimization by means of partial derivatives
                  W ( X XT + λ I ) = DXT

      ( λ > 0   there exists an inverse matrix to  XXT +  λ I  )

W ( X XT + λ I ) ( X XT + λ I )- 1 =  DXT ( X XT + λ I )- 1 

𝐸 = 𝜆 ෍
𝑖=1

𝑛

෍
𝑗=1

𝑚

𝑤𝑖𝑗
2 ; 𝜆 > 0, 𝜆 = 𝑐𝑜𝑛𝑠𝑡.
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Pseudoinverse Matrix: Application (5)
For λ approaching in the limit zero ( λ → 0 ):

▪     ….  Pseudoinverse matrix to the matrix  X

▪ If there are more solutions,       will yield the lowest values 

▪ If the matrix inverse to X exists, it will hold

 ( )  XDIXXDXW TT ~lim 1

0
=+=

−

→




      
1 1

2
= =

n

i

m

j
ijw

X~

1~ −= XX

X~

I. MRÁZOVÁ: NEURAL NETWORKS (NAIL002)



I. MRÁZOVÁ: NEURONOVÉ SÍTĚ (NAIL002) 153



▪ Compute an approximation of the pseudoinverse using a 
backpropagation network

▪ The network used to find the weights for associative memories

Computation of the Pseudoinverse
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▪ The goal of training: Find such a weight matrix 𝑊 with the elements 
𝑤𝑖𝑗  that produces the best mapping from the  vectors Ԧ𝑥1, … , Ԧ𝑥𝑚 to 
the vectors Ԧ𝑦1, … , Ԧ𝑦𝑚

▪ For the 𝑖-th input vector, the actual network output will be 
compared with the vector Ԧ𝑦𝑖, and 𝐸𝑖  will be computed 

▪ The total quadratic error 𝐸 = σ𝑖=1
𝑚 𝐸𝑖 then corresponds to: 

𝑋𝑊 − 𝑌 2

▪ The backpropagation algorithm finds the matrix 𝑊, that is expected 
to minimize 𝑋𝑊 − 𝑌 2

Computation of the Pseudoinverse (2)
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Neural Networks:

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGI C
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BAM – Bidirectional Associative Memory

doc. RNDr. Iveta Mrázová, CSc.
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Bidirectional Associative Memory
BAM – a synchronous associative model with bidirectional edges
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Bidirectional Associative Memory (2)
▪ A recurrent associative memory

• Consists of 2 layers of units, which send 
 information recursively between them.

• The input layer sends the result of its                
computation to the output layer by the weights.

• The output layer then returns the result of its 
computation back to the input layer – by the same weights.

▪ Question:  Will the network achieve a stable state, in which the 
information being sent back and forth does not change after a 
few iterations?
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▪ a resonance network
▪ 𝑠𝑔𝑛 transfer function
▪ information is coded using bipolar values

▪ the network maps an 𝑛-dimensional vector Ԧ𝑥0 
      to a 𝑘-dimensional vector Ԧ𝑦0

▪ the weight matrix of the network is the 𝑛 × 𝑘 matrix 𝑊.
• after the first passage, we obtain: Ԧ𝑦0 = sgn( Ԧ𝑥0𝑊)
• after the feedback passage, the input will be: Ԧ𝑥1 = sgn(𝑊 Ԧ𝑦0

T)
• after the next forward passage, the output will be: Ԧ𝑦1 = sgn( Ԧ𝑥1𝑊)

Bidirectional Associative Memory (3)
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Bidirectional Associative Memory (4)
▪ After 𝑚 iterations, we have 𝑚 + 1 pairs of               

vectors Ԧ𝑥0, Ԧ𝑦0 , … , Ԧ𝑥𝑚, Ԧ𝑦𝑚  that fulfill                  
the condition:

Ԧ𝑦𝑖 = sgn( Ԧ𝑥𝑖𝑊)  and Ԧ𝑥𝑖+1 = sgn(𝑊 Ԧ𝑦𝑖
T)

▪ Question: Will the system find after some iterations  
a fixed point Ԧ𝑥, Ԧ𝑦  such that it holds

Ԧ𝑦  = sgn( Ԧ𝑥𝑊)  and Ԧ𝑥 = sgn 𝑊 Ԧ𝑦T  ?
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→  if a pair of vectors Ԧ𝑥, Ԧ𝑦  is given and we want to set the weights
of a BAM such that this pair of vectors will represent its fixed
point, Hebbian learning can be used to compute an adequate
weight matrix: 𝑊 = Ԧ𝑥𝑇 Ԧ𝑦

           → Ԧ𝑦 = sgn Ԧ𝑥𝑊 = sgn Ԧ𝑥 Ԧ𝑥T Ԧ𝑦 = sgn Ԧ𝑥 2 Ԧ𝑦 = Ԧ𝑦
      and also:

Ԧ𝑥T = sgn 𝑊 Ԧ𝑦T = sgn Ԧ𝑥T Ԧ𝑦 Ԧ𝑦T = sgn Ԧ𝑥T Ԧ𝑦 2 = Ԧ𝑥T

Bidirectional Associative Memory (5)
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Bidirectional Associative Memory (6)
▪ If we want to store several patterns Ԧ𝑥1, Ԧ𝑦1 , … , Ԧ𝑥𝑚, Ԧ𝑦𝑚 , 

Hebbian learning will be more efficient, if the vectors Ԧ𝑥1, … , Ԧ𝑥𝑚 
and Ԧ𝑦1, … , Ԧ𝑦𝑚 are pairwise orthogonal (negligible „crosstalk“) 

→ for 𝑚 pairs of vectors the matrix 𝑊 will be set to:
𝑊 = Ԧ𝑥1

T Ԧ𝑦1 + Ԧ𝑥2
T Ԧ𝑦2 + ⋯ + Ԧ𝑥𝑀

T Ԧ𝑦𝑚

→  a bidirectional associative memory can be used also to build
autoassociative networks, because the weight matrices produced
by the Hebb rule (or when computing the pseudoinverse) are
symmetric ( 𝑋 = 𝑋𝑊 and 𝑋T = 𝑊𝑋T )
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▪ Assume that a BAM is given for which the vector pair Ԧ𝑥, Ԧ𝑦  
is a stable state

▪ The initial vector presented to the network from the left is 
Ԧ𝑥0 (and after some iterations, the network shall converge to 
Ԧ𝑥, Ԧ𝑦 )

▪ The vector Ԧ𝑦0 is computed according to: Ԧ𝑦0 = sgn Ԧ𝑥0𝑊
▪ The output vector Ԧ𝑦0 is now used for a new iteration (from 

the right)

Energy function for BAM
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▪ Excitation of the neurons on the left is determined by 
the excitation vector Ԧ𝑒T = 𝑊 Ԧ𝑦0

T

    → Ԧ𝑥0, Ԧ𝑦0  corresponds to a stable state of the network, 

if 𝑠𝑔𝑛 Ԧ𝑒 = Ԧ𝑥0 , i.e., if Ԧ𝑒 is close enough

           →  the scalar product Ԧ𝑥0 Ԧ𝑒𝑇 should be larger than
                    for other vectors of the same length but further
        away from Ԧ𝑥0

Energy function for BAM   (2)
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Energy function for BAM (3)
→  The product  𝐸 ≅ − Ԧ𝑥0 Ԧ𝑒T = − Ԧ𝑥0𝑊 Ԧ𝑦0

T  is thus smaller, 
if the vector 𝑊 Ԧ𝑦0 lies closer to Ԧ𝑥0

      →  a sort of an indicator of convergence to stable states 
            of an associative memory

                 𝐸 ~  energy function

▪ Local minima of the energy function correspond 
to stable states
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Definition:

    Let 𝑊 be the weight matrix of a BAM and the output
     Ԧ𝑦𝑖 of the right layer of neurons is computed in the 𝑖-th
     iteration as Ԧ𝑦𝑖 = sgn Ԧ𝑥𝑖𝑊  and the output Ԧ𝑥𝑖+1 of the
     left layer of neurons is computed as Ԧ𝑥𝑖+1 = sgn 𝑊 Ԧ𝑦𝑖

𝑇 .
     The energy function of a BAM is then given by:

𝐸 Ԧ𝑥𝑖, Ԧ𝑦𝑖 = −
1
2

Ԧ𝑥𝑖 𝑊 Ԧ𝑦𝑖
𝑇

Energy function for BAM (4)
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▪ Considers also the thresholds and a stepwise transfer function

• Each 𝑛-dimensional vector Ԧ𝑥 will be transformed into the vector 
(𝑥1, … , 𝑥𝑛, 1)

• Each 𝑘-dimensional vector Ԧ𝑦, 𝑦𝑗 = σ𝑖 𝑤𝑖𝑥𝑖 − 𝜗𝑙,𝑗 will                        
   be transformed into the vector (𝑦1, … , 𝑦𝑘, 1)

• The weight matrix 𝑊 will be extended to a new matrix 𝑊′ with  
an additional row and column

Generalized Energy Function
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Generalized Energy Function (2)

▪ Negative thresholds of the neurons 
in the right layer of the BAM form 
the (𝑛 + 1)-th row of  𝑊′

▪ Negative thresholds of the neurons 
in the left layer form the (𝑘 + 1)-th 
column of 𝑾′

▪ The entry (𝑛 + 1, 𝑘 + 1) of the 
matrix 𝑊′ is 0
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▪ The above transformation is equivalent to the introduction         
of an additional unit with output 1 into both layers

• The weights of these additional neurons correspond to negative 
thresholds of neurons fed by this information

  →   Energy  function of the extended BAM:

𝐸 Ԧ𝑥𝑖, Ԧ𝑦𝑖 =  −
1
2

Ԧ𝑥𝑖𝑊 Ԧ𝑦𝑖
𝑇 +

1
2

Ԧ𝜃𝑙 Ԧ𝑦𝑖
𝑇 +

1
2

Ԧ𝑥𝑖 Ԧ𝜃𝑟
𝑇

  Ԧ𝜃𝑙 ….  the vector of thresholds of the 𝑘 neurons (in the left layer)

  Ԧ𝜃𝑟
𝑇 ….  the vector of thresholds of the 𝑛 neurons (in the right layer)

Generalized Energy Function (3)
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Asynchronous BAM-networks
▪ Each unit computes its excitation at random

▪ Changes its state to 1 or −1 independently of the others 
(but according to the sign of its total excitation)

▪  The probability of two units firing simultaneously is zero

▪ Assumption: the state of a unit is not changed if the total 
excitation is zero
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Asynchronous BAM-networks (2)
▪ BAM arrives at a stable state after a finite number of iterations  

(sequential choice of neurons)
• a stable state ~ vector pair Ԧ𝑥, Ԧ𝑦 ; Ԧ𝑦 = sgn Ԧ𝑥𝑊  and xT = sgn 𝑊 Ԧ𝑦𝑇

▪ Proposition:
    A bidirectional associative memory with an arbitrary weight

matrix 𝑊 reaches a stable state in a finite number of
iterations using either synchronous or asynchronous updates.
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Proof:
▪ For the vectors Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 , Ԧ𝑦 = 𝑦1, 𝑦2, … , 𝑦𝑘 , and a 𝑛 × 𝑘 

weight matrix 𝑊 = {𝑤𝑖𝑗}, the energy function 𝐸 Ԧ𝑥, Ԧ𝑦  equals to:

𝐸 Ԧ𝑥, Ԧ𝑦  = − 1
2

𝑥1, … , 𝑥𝑛

𝑤11 𝑤12 ⋯ 𝑤1𝑘
𝑤21 𝑤22 ⋯ 𝑤2𝑘

⋮ ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 𝑤𝑛𝑘

𝑦1
𝑦2
⋮

𝑦𝑘
 

Asynchronous BAM-networks (3)
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Proof (continue):

▪ Product of the 𝑖-th row of 𝑊 and Ԧ𝑦T represents the excitation of the 𝑖-th 
neuron in the left layer 𝑔𝑖

    → then for the excitation vector of the left layer (𝑔1, … , 𝑔𝑛):

𝐸 Ԧ𝑥, Ԧ𝑦 = −
1
2

𝑥1, … , 𝑥𝑛

𝑔1
⋮

𝑔𝑛
     → similarly, it holds for the right layer and its excitation vector 𝑒1, … , 𝑒𝑘 :

𝐸 Ԧ𝑥, Ԧ𝑦 = −
1
2

𝑒1, … , 𝑒𝑘

𝑦1
⋮

𝑦𝑘

Asynchronous BAM-networks (4)
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Asynchronous BAM-networks (5)
Proof (continue):
▪ Energy function can be written in two equivalent forms:  

𝐸 Ԧ𝑥, Ԧ𝑦 = − 1
2

σ𝑖=1
𝑘 𝑒𝑖𝑦𝑖

and 𝐸 Ԧ𝑥, Ԧ𝑦 = − 1
2

σ𝑖=1
𝑛 𝑔𝑖𝑥𝑖

▪ In asynchronous networks at each iteration, we randomly select a neuron 
from the left or right layer:

• For the selected neuron, excitation and new state are computed
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Proof (continue):
• If the state remains the same, the energy of the network will not 

change 

• The state of neuron 𝑖 in the left layer will change only when the 
excitation 𝑔𝑖 has a different sign than its present state 𝑥𝑖

• Since the other neurons do not change their states (asynchronous 
dynamics), the difference between the previous energy 𝐸 Ԧ𝑥, Ԧ𝑦  and 
the new energy 𝐸 Ԧ𝑥´, Ԧ𝑦  will be:               

𝐸 Ԧ𝑥, Ԧ𝑦 − 𝐸 Ԧ𝑥´, Ԧ𝑦 = −
1
2

𝑔𝑖 𝑥𝑖 − 𝑥𝑖
′

Asynchronous BAM-networks (6)
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Proof (continue):
• Since 𝑥𝑖 − 𝑥𝑖

′ has a different sign than 𝑔𝑖, it follows that:
𝐸 Ԧ𝑥, Ԧ𝑦 − 𝐸 Ԧ𝑥′, Ԧ𝑦 > 0

  (if 𝑥𝑖 − 𝑥𝑖
′ would have the same sign like 𝑔𝑖, no change of the neuron 

state had been occurred)

 →  The new state Ԧ𝑥′, Ԧ𝑦  has thus a lower energy than the original state Ԧ𝑥, Ԧ𝑦  

▪ Analogically for the neurons from the right layer:
𝐸 Ԧ𝑥, Ԧ𝑦 − 𝐸 Ԧ𝑥, Ԧ𝑦′ > 0

        (Whenever the state of the neuron has been flipped.)

Asynchronous BAM-networks (7)
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Proof (continue):

▪ Any update of the network state reduces the total energy

▪ Since there are only a finite number of possible combinations of 
bipolar states, the process must stop at some state Ԧ𝑎, 𝑏  whose 
energy cannot be further reduced

→  the network has fallen into a local minimum of the energy
function and the state Ԧ𝑎, 𝑏  is an attractor of the system

QED

Asynchronous BAM-networks (8)
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Asynchronous BAM-networks (9)

Remark:
▪ The proposition holds also for synchronous networks

  →  any given real matrix 𝑊 possesses bidirectional stable 
        bipolar states 
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Neural Networks:

DEPARTMENT OF THEORETICAL COMPUTER SCIENCE AND MATHEMATICAL LOGI C

FACULTY OF MATHEMATICS AND PHYSICS ,  CHARLES UNIVERSITY IN PRAGUE

Hopfield Networks

doc. RNDr. Iveta Mrázová, CSc.



Neural 
Networks:

Contents:
▪ Associative Memories

• The Structure of Associative Memories
• Eigenvector Automata
• Hebbian Learning
• The Capacity Problem
• Pseudoinverse Matrix

▪ Associative Memories: BAM – The Bidirectional 
Associative Memory
• Training and Recall
• Energy Function
• Convergence to Stable States

▪ Associative Memories: Hopfield Networks
• The Hopfield Model: Training and Recall
• Energy Function and Convergence Analysis
• Equivalence of Hebbian and Perceptron Learning for the

Hopfield Model

Contents:
• Associative Memories
• Associative Memories: 

BAM – The
Bidirectional
Associative Memory

• Associative Memories: 
Hopfield Networks
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Hopfield Networks
• 𝑛 neurons with the hard-limiting 

transfer function
• Bipolar inputs and outputs +1, −1
• Synaptic weights 𝑤𝑖𝑗 (between all 

the neurons)
• 𝑚  training patterns (classes)
• Supervised training
• Recall
• Applications:

o Associative memory
o Optimization tasks

I. MRÁZOVÁ: NEURAL NETWORKS (NAIL002) 188

Hard-limiting transfer function:  𝑓ℎ

+1

-1
𝑥 → ∞

𝑥1

𝑥𝑖

𝑥2

𝑥𝑛

„for foundational discoveries and in-
ventions that enable machine learn-
ing with artificial neural networks“



Step 1:  Training – set the synaptic weights according to:

                          𝑤𝑖𝑗 = ൝
σ𝑠=1

𝑚 𝑥𝑖
𝑠𝑥𝑗

𝑠 for 𝑖 ≠ 𝑗 
0 for 𝑖 = 𝑗

               𝑤𝑖𝑗  ….  the synaptic weight between neuron 𝑖 and 𝑗

              𝑥𝑖
𝑠 ∈ −1, +1  ….. 𝑖-th component of the 𝑠-th pattern, 

1 ≤ 𝑖, 𝑗 ≤ 𝑛

The Hopfield Model (bipolar)
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The Hopfield Model (bipolar) (2)
Step 2:  Initialization – present a new input pattern: 
                         𝑦𝑖 0 = 𝑥𝑖  1 ≤ 𝑖 ≤ 𝑛
              𝑦𝑖 𝑡  …. …. …… the output of the neuron 𝑖 at time 𝑡 
             𝑥𝑖 ∈ −1, +1  …. the 𝑖-th element of the presented pattern

Step 3:  Iteration 

𝑦𝑗 𝑡 + 1 = 𝑓ℎ ෍
𝑖=1

𝑛

𝑤𝑖𝑗𝑦𝑖 𝑡 1 ≤ 𝑗 ≤ 𝑛

              𝑓ℎ …. the hard-limiting transfer function
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The Hopfield Model (bipolar) (3)

The iterative process is repeated during recall until
                neuron outputs stabilize. 
                The neuron outputs then represent that stored pattern,
                which best corresponds to the presented (new) pattern.

Step 4:   Go to Step 2.
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The Hopfield Model (bipolar) (4)
Convergence (Hopfield):
▪ Symmetric weights:        𝑤𝑖𝑗 = 𝑤𝑗𝑖

▪ Asynchronous output updates in single neurons

Drawbacks:
▪ Capacity  (𝑚 < 0.15 𝑛) 
▪ Stability  (→  orthogonalization)
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The Hopfield Model: Example

Training:
▪ Patterns:  [−1, −1, 1, 1]

     [1, −1, 1, −1]

▪ Weight setting:

 𝑤𝑖𝑗= σ𝑚=1
𝑀 𝑥𝑖

(𝑚) 𝑥𝑗
(𝑚)  𝑖 ≠ 𝑗

 𝑤𝑖𝑗 = 0   𝑖 = 𝑗



▪ Weight matrix:

𝑊 =

0 0 0 −2
0 0 −2 0
0 −2 0 0

−2 0 0 0

Recall:
▪ Pattern:  [−1, −1, 1, −1]

       [1, −1, 1, −1]         [−1, −1, 1, 1]

The Hopfield Model: Example (2)
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−2 −2



The Hopfield Model: Recall
▪ When initialized with Ԧ𝑥1, the vector of potentials is:

Ԧ𝜉 = Ԧ𝑥1 ⋅ 𝑊 = Ԧ𝑥1 ⋅ Ԧ𝑥1
𝑇 Ԧ𝑥1 + ⋯ + Ԧ𝑥𝑚

𝑇 Ԧ𝑥𝑚 − 𝑚𝐼 =

= ถԦ𝑥1 Ԧ𝑥1
𝑇

=𝑛
Ԧ𝑥1 + ถԦ𝑥1 Ԧ𝑥2

𝑇

=𝛼12

Ԧ𝑥2 + ⋯ + Ԧ𝑥1 Ԧ𝑥𝑚
𝑇

=𝛼1𝑚

Ԧ𝑥𝑚 − 𝑚 Ԧ𝑥1𝐼 =

= 𝑛 − 𝑚 Ԧ𝑥1 + σ𝑗=2
𝑚 𝛼1𝑗 Ԧ𝑥𝑗

𝑃𝐸𝑅𝑇𝑈𝑅𝐵𝐴𝑇𝐼𝑂𝑁
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The Hopfield Model: Recall (2)
𝛼12 

, … , 𝛼1𝑚 …. the scalar (dot) products of Ԧ𝑥1 with each of the
  (pattern) vectors Ԧ𝑥2, … , Ԧ𝑥𝑚

→  State Ԧ𝑥1 is stable, if 𝑚 < 𝑛 and the perturbation term
σ𝑗=2

𝑚 𝛼1𝑗 Ԧ𝑥𝑗  is small  ⇒ sgn Ԧ𝜉 = sgn( Ԧ𝑥1)
 
➔ A small number of orthogonal patterns
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The Hopfield Model: Recall (3)
▪ States of neurons not selected for update remain the same
▪ Random selection for update
▪ Neurons are fully interconnected
▪ Symmetric weights:     𝑤𝑖𝑗 = 𝑤𝑗𝑖

▪ 𝑤𝑖𝑖 = 0

  →  Necessary conditions for convergence to a stable solution:
• symmetric weight matrix with zero diagonal
• and asynchronous dynamics
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The Hopfield Model: Examples
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▪ A weight matrix with nonzero 
diagonal does not have to yield 
stable states, e.g.:

          𝑊 =
−1 0 0
0 −1 0
0 0 −1

▪ Synchronous dynamics:       
           (−1, −1, −1)   (1, 1, 1)
▪ Asynchronous dynamics:

• Random selection of one out of eight 
possible patterns

𝑥1 𝑥2
0

0

𝑥3

0
0

0

0

−1 −1

−1



The Hopfield Model: Examples (2)
▪ Asymmetric weight matrix: 𝑊 = 0 1

−1 0
 

• Asynchronous dynamics:
                          (1, 1)

    (1, −1)                                       (−1, 1)

                            (−1, −1)
                             cyclic changes of states
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𝑥1 𝑥2

1

−1



Energy Function
▪ Energy function 𝐸 Ԧ𝑥  of a Hopfield network with 𝑛 neurons  

and the weight matrix 𝑊 shows the energy of the network 
in state Ԧ𝑥:

𝐸 Ԧ𝑥 = −
1
2

Ԧ𝑥 𝑊 Ԧ𝑥𝑇 = −
1
2

෍
𝑗=1

𝑛

෍
𝑖=1

𝑛

𝑤𝑖𝑗 𝑥𝑖 𝑥𝑗

(Similarly, also for networks with thresholds:

𝐸 Ԧ𝑥 = − 1
2

Ԧ𝑥 𝑊 Ԧ𝑥𝑇 + Ԧ𝜃 Ԧ𝑥𝑇 =

 = − 1
2

σ𝑗=1
𝑛 σ𝑖=1

𝑛 𝑤𝑖𝑗 𝑥𝑖 𝑥𝑗 + σ𝑖=1
𝑛 𝜗𝑖 𝑥𝑖 .)
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Energy Function (2)
Proposition:
 A Hopfield network with 𝑛 neurons and asynchronous dynamics, 

which starts from any given network state, eventually reaches a 
stable state at a local minimum of the energy function.

Proof (idea):

▪ Initial state:
• Presented pattern:   Ԧ𝑥 = 𝑥1, … , 𝑥𝑘, … , 𝑥𝑛  and the energy is evaluated
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Energy Function (3)
Proof (idea - continue):

            according to:  𝐸 Ԧ𝑥 = − 1
2

σ𝑗=1
𝑛 σ𝑖=1

𝑛 𝑤𝑖𝑗 𝑥𝑖 𝑥𝑗

▪  Neuron 𝑘 is selected for adjustment
• if 𝑘 does not change its state → the value of 𝐸 Ԧ𝑥  does not change, too

• if 𝑘 changes its state → the vector Ԧ𝑥′ = 𝑥1, … , 𝑥𝑘
′ , … , 𝑥𝑛 yields the energy:  

𝐸 Ԧ𝑥′ = − 1
2

σ𝑗=1
𝑗≠𝑘

𝑛 σ𝑖=1
𝑖≠𝑘

𝑛 𝑤𝑖𝑗 𝑥𝑖 𝑥𝑗 − 1
2

σ𝑖=1
𝑖≠𝑘

𝑛 𝑤𝑖𝑘 𝑥𝑖 𝑥𝑘
′ −

− 1
2

σ𝑗=1
𝑗≠𝑘

𝑛 𝑤𝑖𝑘 𝑥𝑘
′ 𝑥𝑗 − 1

2
𝑤𝑘𝑘 𝑥𝑘

′ 𝑥𝑘
′
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Energy Function (4)
Proof (idea - continue):

𝐸 Ԧ𝑥′ = −
1
2

෍
𝑗=1
𝑗≠𝑘

𝑛

෍
𝑖=1
𝑖≠𝑘

𝑛

𝑤𝑖𝑗 𝑥𝑖 𝑥𝑗 − ෍
𝑖=1

𝑛

𝑤𝑖𝑘 𝑥𝑖 𝑥𝑘
′

because of symmetric weights

− ෍
𝑖=1

𝑛

𝑤𝑖𝑘 𝑥𝑖 𝑥𝑘
′  =

−
1
2

෍
𝑗=1

𝑛

𝑤𝑘𝑗 𝑥𝑘
′  𝑥𝑗

−
1
2

෍
𝑖=1

𝑛

𝑤𝑖𝑘 𝑥𝑖 𝑥𝑘
′

and a zero feed-back 𝑤𝑘𝑘 = 0
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Energy Function (5)
Proof (idea - continue):
▪ The difference between the old and new energies:

𝐸 Ԧ𝑥 − 𝐸 Ԧ𝑥′ = − σ𝑖=1
𝑛 𝑤𝑖𝑘 𝑥𝑖 𝑥𝑘 − − σ𝑖=1

𝑛 𝑤𝑖𝑘 𝑥𝑖 𝑥𝑘
′ =

= − 𝑥𝑘 − 𝑥𝑘
′ ෍

𝑖=1

𝑛

𝑤𝑖𝑘 𝑥𝑖

𝑃𝑂𝑇𝐸𝑁𝑇𝐼𝐴𝐿

> 0
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Both 𝑥𝑘 − 𝑥𝑘
′  and the new potential value have a different sign than the 

potential (otherwise no change of state would occur)



Energy Function (6)
Proof (idea - continue):
  →  every time the state of a neuron is altered, the total energy

of the network is reduced

▪ due to the finite number of possible (bipolar) states

  →  the network must eventually reach a stable state for which

the energy cannot be further reduced
 QED

I. MRÁZOVÁ: NEURAL NETWORKS (NAIL002) 206



Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model

▪ Sometimes Hebbian learning cannot find a weight
matrix for which 𝑚 given vectors are stable states 
(although such a matrix exists)

   →  if the vectors to be stored lie near each other, the
perturbation term can grow too large

            →  worse results of Hebbian learning

▪ Alternative:  Perceptron learning for Hopfield networks
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (2)

Perceptron learning in Hopfield networks

▪ Hopfield networks are composed of neurons with 
a non-zero threshold and the hard-limiting 
transfer function

• Neurons adopt state 1 for potentials greater than 0

• Neurons adopt state −1 for potentials smaller than or 
equal to 0
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (3)

▪ Let us consider a Hopfield network:
𝑛 ……………..… the number of neurons
𝑊 = 𝑤𝑖𝑗  …. the 𝑛 × 𝑛 weight matrix
𝜗𝑖 ……………….. the threshold of the neuron 𝑖

▪ If a vector Ԧ𝑥 = 𝑥1, … , 𝑥𝑛  is given to be „imprinted“ in the 
network, this vector will correspond to a stable state only if 
the network does not change its state after presenting this 
vector at its input
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (4)

→  neuron potentials should have the same sign like their
      previous states

• Minus sign will be assigned to zero values

• The following inequalities should therefore hold:

Neuron 1: sgn 𝑥1 0 + 𝑥2𝑤12 + ⋯ + 𝑥𝑛𝑤1𝑛 − 𝜗1 > 0
Neuron 2: sgn 𝑥2 𝑥1𝑤21 + 0 + ⋯ + 𝑥𝑛𝑤2𝑛 − 𝜗2 > 0

… … … …
Neuron n: sgn 𝑥𝑛 𝑥1𝑤𝑛1 + 𝑥2𝑤𝑛2 + ⋯ + 0 − 𝜗1 > 0
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (5)
▪ 𝑤𝑖𝑗 = 𝑤𝑗𝑖    →  𝑛 ⋅ (𝑛 − 1)/2 non-zero elements of the weight 

matrix and 𝑛 thresholds

        →  let Ԧ𝑣 denote a vector of dimension 𝑛 + 𝑛 · (𝑛 − 1)/2

              (the components of Ԧ𝑣 correspond to the elements 𝑤𝑖𝑗 
               above the diagonal of the matrix 𝑊; 𝑖 < 𝑗, and the
               𝑛 thresholds with minus sign)

         Ԧ𝑣 = (𝑤12, 𝑤13, … , 𝑤1𝑛
𝑛−1 components

, 𝑤23, 𝑤24, … , 𝑤2𝑛
𝑛−2 components

, … , 𝑤𝑛−1,𝑛
1 component

, −𝜗1, … , −𝜗𝑛)
𝑛 components
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (6)
→  transformation of the vector Ԧ𝑥 into 𝑛 „auxiliary“ vectors Ԧ𝑧1, Ԧ𝑧2, … , Ԧ𝑧𝑛

of the dimension 𝑛 + 𝑛(𝑛−1)
2

 :

Ԧ𝑧1 = (𝑥2, 𝑥3, … , 𝑥𝑛
𝑛−1 components

, 0, 0, …  , 0, 1 , 0, …  , 0)
𝑛 components

 

Ԧ𝑧2 = (𝑥1, 0, …  , 0
𝑛−1 components

, 𝑥3, …  , 𝑥𝑛
𝑛−2 components

, 0 , 0 , … , 0, 1, …  , 0)
𝑛 components

 

 ⋮ ⋮ ⋮ 
Ԧ𝑧𝑛 = (0, 0, …  , 𝑥1

𝑛−1 components
, 0, 0, …  , 𝑥2

𝑛−2 components
, 0, 0, … , 0, 0, … , 1)

𝑛 components
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (7)

▪ the components of the vectors Ԧ𝑧1, Ԧ𝑧2, … , Ԧ𝑧𝑛 allow to write 
the above inequalities as: 

Neuron 1: sgn 𝑥1 Ԧ𝑧1 ⋅ Ԧ𝑣 > 0
Neuron 2: sgn 𝑥2 Ԧ𝑧2 ⋅ Ԧ𝑣 > 0

⋮ ⋮ ⋮ ⋮
Neuron n: sgn 𝑥𝑛 Ԧ𝑧𝑛 ⋅ Ԧ𝑣 > 0
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (8)

→ to linearly separate the vectors Ԧ𝑧1, Ԧ𝑧2, … , Ԧ𝑧𝑛 (based on
           sgn 𝑥𝑖 − Ԧ𝑧𝑖 should be positive if 𝑠𝑔𝑛 𝑥𝑖 = 1), we can
           use perceptron learning

         → Compute the weight vector Ԧ𝑣 needed for the linear
               separation of the vectors Ԧ𝑧1, Ԧ𝑧2, … , Ԧ𝑧𝑛 and set the weight
               matrix 𝑊
▪ If the Hopfield network has to „remember“ 𝑚  vectors 

Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚, we have to use the above transformation 
for everyone of them
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (9)

▪ 𝑚 ⋅ 𝑛 „auxiliary“ vectors, which must be linearly 
separated

▪ If the (auxiliary) vectors are actually linearly separable, 
perceptron learning will find the solution to the 
problem, encoded as the vector Ԧ𝑣    
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (10)
Example:

Remark:  „local application of the delta-rule“ instead of perceptron
learning algorithm 
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Training of a Hopfield 
network with 𝑛 neurons

Perceptron learning with 
the input space dimension   

𝑛 + 𝑛 · (𝑛 − 1)/2   (= 𝑛 · (𝑛 + 1)/2)


