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Associative Networks
and Associative Memories (1)

The goal of learning:

~ associate known input vectors with the given output vectors

= The neighborhood of a known input pattern X should also be mapped to
the image y of X

— ,,hoisy“ input vectors can then be associated with the correct output

BP-network associative network
= M -
l/ \‘ (/ R /- \\
° I o | | ° | R
A A . ! y
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Associative Networks
and Associative Memories (2)

= Associative memories can be implemented using
networks with (or without) feedback

— the simplest kind of feedback:

* use the output of the network repetitively as a new input until the
process converges to a stable state

X but not all networks converge to a stable state after presenting
a new input pattern

— additional restrictions on the network architecture are
necessary
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The Function of an Associative Memory

= Recognize previously learned input vectors, even if some
noise has been added

" The response of each neuron is determined exclusively
by the information flowing through its own weights
(Hebbian learning)

= Three types of associative networks:
* heteroassociative, autoassociative and pattern recognition
networks
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Heteroassociative Networks

i—th — 1 heteroassociative g
vector i network
X

NV

Map m input vectors X1, ..., X™ from the n-dimensional

space to m output vectors y1,...,7™ in the k-dimensional

-7 -] > -7 2 > -7
space, so that x* = y'. If ||x — x‘|| < ¢, thenx » y' (e > 0).
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Autoassociative Networks
e N ,.-

X1

ik autoassociative
vector : network L

I
Xn \ / xn

= A special subset of the heteroassociative networks (each
vector is associated with itself: y* = x' for i = 1, ..., m).

= The function of autoassociative networks is to , correct
noisy input patterns®.
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Pattern Recognition Networks

S

X .
i—th : pattern recognition

vector § network

Xy \

= A special type of heteroassociative networks (each vector

x' is associated with the scalar value i).

= The goal is to identify the class of the input pattern
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‘ In this part of the lecture, the vectors are always row vectors!

The Structure of an Associative Memory

Associative memories can be implem-

Heteroassociative net- : .
ented using a single layer of neurons

work without feedback
" Let: w;; ... the weight between the

Vi input i and neuron j
X1 W .... the n X k weight matrix

- vector X = (x4, X5, ..., X, ) yields the
excitation vectore = x - W

X2

— Afterwards, the value of the transfer

function is computed for each neuron
* For the identity, we get a linear associator
Vi and the output y is just X - W

Xn
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Structure of an Associative Memory (2)

In general: m different n-dimensional vectors X1, X2, ..., X™ have to be

associated with m k-dimensional vectors y1, ..., y™

— X ... m Xn matrix (rows correspond to the respective input vectors)
Y ....m X k matrix (rows correspond to the output vectors)

- we are looking for such a weight matrix W, for which X - W =Y
(and in the case of autoassociative memories: X - W = X)

Remark: if m = n, then X is a square matrix

if it is invertible, the solution willbe W = X~1 .Y
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Recurrent Associative Network

Autoassociative network with feedback

Network output is used as the
new input

Assumption: all neurons
compute their outputs
simultaneously

— in each step, the network is fed
an input vector x(i) and
produces a new output x(i + 1)
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Recurrent Associative Network (2)

Question: is there a fixed pointg?such that g? - W = g??

— the vector g? is an eigenvector of the matrix W with the
eigenvalue 1

— the network behaves as a first-order dynamical system,
since each new state x(i + 1) is completely determined
by its most recent predecessor
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Eigenvector Automata

= Let W be the weight matrix of an autoassociative network,
the individual neurons are linear associators

— look for fixed points of the dynamical system

Remark: not all weight matrices lead to a stable state
Example: rotation by 90° in two-dimensional space:

W= (—01 (1))

— cycles of length 4
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Eigenvector Automata (2)

— Quadratic matrices with a complete set of eigenvectors
are more useful as memories

an n X n matrix W has at most n linearly independent
eigenvectors and n eigenvalues

- the eigenvectors X1, ..., X" then satisfy: X' - W = ;%"

fori =1, ...,n and the matrix eigenvalues 14, ..., 1,,
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Eigenvector Automata (3)

= Each weight matrix with a full set of eigenvectors defines an
,eigenvector automaton®

—> given an initial input vector, the eigenvector with the largest
eigenvalue can be found (if it exists)

= Assume, w.l.o.g., that 4, is the eigenvalue of W with the largest
magnitude:

Al >4 Yi=2..n
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Figenvector Automata (4)

= Let A, > 0and d, be an n-dimensional randomly chosen
non-zero vector

- @, can be expressed as a linear combination of the
n eigenvectors of the matrix W

a() — alfl + (XZD_C)Z + .-+ anfn
= Assumption: all constants «; are non-zero
— After the first iteration with the matrix W we get:
C_l)l — C_io W — (alfl‘l‘”"l'an)_én) W —
— al)llfl + az}{zfz + .-+ C(n/lnfn
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Eigenvector Automata (5)

— After t iterations the result is:

d, = a A5%1 + apA5%2 + -+ a ALK

— After a big enough number of iterations, the eigenvalue with
the largest magnitude will dominate — A,

- the vector a, can thus be brought arbitrarily close to the eigenvector
x1 (with respect to the direction, not length)

- in each iteration, the vector X! attracts any other vector a, with a
non-zero component for a4

> x1isan attractor
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Eigenvector Automata (6)

Example:

= Thematrix W = ((2) (1)) has 2 eigenvectors, (1,0) and (0, 1) with

the respective eigenvalues 2 and 1.

= After t iterations, any initial vector (x4, x,); x; # 0 will be
transformed into the vector (2tx4, x5).

— For large enough t this vector will come arbitrarily close to (1, 0)

=> the vector (1,0) is an attractor
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Assoclative Learning

Goal: use associative networks as dynamical systems, whose
attractors are exactly those vectors we would like to store
in the memory

= During network design, locate as many attractors in the
input space as possible

* each one of them should have a well-defined and bounded
influence region

X in the case of the linear eigenvector automaton, just one vector
absorbs almost the whole input space
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Associative Learning (2)

— a nonlinear dynamical systems

* Nonlinear activation of neurons
Hard-limiting transfer function:

|1 x=0
gl = —1 x <0

* Bipolar coding is better than the binary one

(bipolar vectors have a greater probability of being mutually
orthogonal than binary vectors)
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Hebbian Learning

Assumption:

" single-layer network of k neurons with the sgn transfer function
Goal:

= Find thg appropriate weights to map the n—dimensional input
vector x to the k-dimensional output vector y

Idea: (Donald Hebb — 1949)

= Two neurons, which are simultaneously active, should develop a
degree of interaction higher than those neurons, whose activities

are uncorrelated. In the latter case, the interaction between the
elements should be very low or zero.
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Hebbian Learning (2)

The Hebb rule: Aw;j = yx;y;

Y .... learning parameter

Dw; =Y x;v; W ... weight matrix (initialized to zeroes)

The adjustment will be applied to all weights:

= atthe inputis the n-dimensional vector X, at the output is the
k-dimensional vector y!

- the updated weight matrix I/ is the correlation matrix for these two
. — [w.. — [ 11
vectors: W = [WU]TLXR = [xl Vj ]nxk
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Hebbian Learning (3)

= the matrix W maps the non-zero vector X! exactly to the vector y*

n n n
=1 _ 1 1.1 1 1.1
X -W-(ylzxixi,yZZx xl,...,ykalxl>—

i=1 i=1 i=

EACHED

= forx! # 0, it holds that X! - ¥ > 0 and the output of the network is:
sgn(x* - W) = (y1, ... yk) = ¥*
= for —x!, the output of the network is:

sgn(—xt - W) = —sgn(xt - W) = —y*

I. MRAZOVA: NEURAL NETWORKS (NAIL002) 112




Hebbian Learning (4)

In general:

= |f we want to associate m n-dimensional non-zero vectors
X1, %2, ..., ™ with m k-dimensional vectors y1, ..., 7™, we
apply Hebbian learning to each INPUT/OUTPUT pair

= The resulting weight matrix W will have the form:
W= W'+W?+..+Wm,
where each matrix W' is the n X k correlation matrix of the

vectors ¥' and y': W' = [x/y]] )
nx
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Hebbian Learning (5)

= |f the input to the network is the vector x?, the excitation vector
of the network will be equal to:

XP-W=xP - Wr+W*+.-+W™) =
=XP-WP + ¥ XP - W' =
= P (& - 2P) + Lk, 3 - (R 27)
= The excitation vector thus corresponds to yP (multiplied by a

positive constant) plus a perturbation term Zlip YA (3?1 : fp)
that is called the CROSSTALK
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Hebbian Learning (6)

= The network produces the desired vector y? as its output when the
crosstalk is zero

2

> ~ whenever the input patterns X1, X2, ..., X™ are pairwise orthogonal

" The network can yield appropriate results even for non-zero crosstalks

x crosstalk should be smaller than y? - (x? - xP)

- The output of the network is then equal to:

m
sgn(X?P - W) = sgn| yP - (¥P - XP) + Zyl (kb xP)
l£p
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Hebbian Learning (7)

= Since xP - XP is a positive constant, it holds that:

(%! - xP)

(xP - xP)

sgn(xP - W) = sgn| y? + ij’l :
l+p

= To produce the output y?, it must hold'

yP = sgn yp+z*l & %p)

(%P - XP)
l#p

= This condition is satisfied, when the absolute value of all components of the

L (2hxP)
Y GrEp)
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Hebbian Learning (8)

- This means that the scalar product X! - X must be smaller than
the quadratic length of the vector xP (equal to n for n-dimensional
bipolar vectors)

— If randomly selected bipolar vectors are associated with other also
randomly selected bipolar vectors, the probability is high that they

will be nearly pairwise orthogonal (as long as not too many of them
are selected)

— In such a case, the crosstalk will be small and Hebbian learning will
lead to an efficient set of weights for the associative network
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Geometric Interpretation
of Hebbian Learning

= For the matrices W! fromW = WL+ W?2 + ---+ W™ it holds in an
autoassociative networks:

. o T s
wt = (x‘) xt
> thus, for W1 = (¥1)T %%, the input vector Z will be projected into the
linear subspace L, spanned by the vector X*, since
Z-Wt = ZGHT% = ZGHHxt = ¢ xt

~ in general, a non-orthogonal projection of the vector Z into L,
(c, represents a constant)

- similarly for other weight matrices W2, ..., W™

118
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Geometric Interpretation
of Hebbian Learning (2)

orthogonal projection non-orthogonal projection = The matrix W = Z{ZO Wt prOJECtS d
vector Z into the linear subspace

spanned by the vectors X%, X2, ..., x™
x /¢ because:

g ZW=Z-W+Z-Wé+--+Z-Wm
| N i 2 = 1 X1 + X% + -+ cpX™

"'v (in general, a non-orthogonal projection)

)
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Associative Networks: Behavior Analysis

= |dentification of attractors (fixed points of the system)

= The size of the basins of attraction

 Hamming distance
~ the number of different components in 2 bipolar vectors

* Example: the Hamming distance of the vectors (1 =11 1) and
(1 1 -1 1) is equal to 2

* With the growing number of stored patterns, the basins of attraction
become smaller = spurious stable states

o big crosstalk

o for the patterns inverse to the stored ones:
sgn(—x - W) = —sgn(x - W) = —x
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Associative Networks: Behavior Analysis (2)

= Recurrent networks (use feedback)

* Improved convergence when compared to associative memories
without feedback

* Wider basins of attraction
X not too many patterns can be stored
— PROBLEM: the capacity of the weight matrix
* The sizes of the basins of attraction can be compared using an index

I = Zi% h py,

where p;, denotes the percentage of vectors with the Hamming
distance h from a stored pattern they converged to
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The Capacity Problem

"= The basins of attraction of stored patterns deteriorate
with every new pattern to be stored in the memory

= |f the crosstalk term becomes too large, previously
stored patterns can be even ,forgotten”

X the probability that this could happen should be kept
low
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The Capacity Problem (2)

= Assess the number of patterns m, that can be stored

safely in an autoassociative memory with a weight
matrix W, «x

= Maximum capacity of the network: m ~ 0.18 n

* The number of stored patterns should be smaller than
0.18 n (n is the dimension of the patterns)

* If the patterns are correlated, even m < 0.18 n can produce
problems
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Derivation of the Network Capacity:
the Idea (1)

. . g j 1 ->7 T—)'
Let us consider the weight matrices setas W' = - (x‘) xt

Crosstalk for n-dimensional bipolar vectors and m patterns is
in the case of an autoassociative network:

1 m

o - 1 l.—>

" E X (3? xp)
l#p

If the magnitude of the above crosstalk term is larger than 1
and the term has a sign opposite to the stored pattern, the
considered pattern component can be flipped
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Derivation of the Network Capacity:
the Idea (2)

= Assume that the stored vectors are chosen randomly:

* In this case the crosstalk term for bit i of the input vector is
given by

~ Y, xf(3- 2P ()

* Since the components of each pattern have been selected
randomly, we can think of m - n random bit selections

* The expected value of this sum (*) is 0
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Derivation of the Network Capacity:
the Idea (3)

= The sum (*) has a binomial distribution and for large m - n, we
can approximate it by a normal distribution with the standard

deviation 0 = ™/n

= Probability of error P, that the sum (*) becomes larger than 1
(or smaller than —1), is given by

co

1
P = _xZ/(ZO.Z)d
\/Znalfe *
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®(z) on probability density function

<
o

< J
o

o~
o

S

°
=]

®(z) on cumulative
distribution function

»z2)

o

Derivation of the Network
Capacity: the |dea (4)

Thatis: P{|(x¥)| > 1} = 2[1 — dD(\/ni—m)] )

where ®(x) = \/%ffoo e t/2 gt

— for the upper bound for one bit failure set
to 0.01 we obtain:

1
0.01 = 2[1—(1)(\/1”_/71)]
- therefore: m~ 0.18n
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Associative Memories:
the Pseudoinverse Matrix (1)

= Hebbian learning produces good results when the stored patterns are
nearly orthogonal

~ when m bipolar vectors are selected randomly from an n-dimensional space,
nis ,large enough”and mis,much smaller thann

X in real applications, the patterns are almost always correlated, and the
crosstalk in the expression

m
,—C’p.Wzy,p.(,zp.,zp)+zj7l.(£l.fp)
l+p
affects the recall process because the scalar products ¥* - X¥P are not
small enough for [ # p.
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Associative Memories:
the Pseudoinverse Matrix (2)

— mutual correlation of the stored patterns causes reduction
in the capacity of the associative network

~ the number of patterns, that can be stored and recalled

the stored patterns do not occupy the input space homogen-
eously, but concentrate around a small region

— look for alternative learning methods capable of minimizing
the crosstalk between stored patterns

— use the pseudoinverse instead of the correlation matrix
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Assoclative Memories:
the Pseudoinverse Matrix (3)

Definition:

The pseudoinverse of a real m X n matrix is the real
matrix X with the following properties:

1. XXX =X,
2. XXX =X,
3. XX and XX are symmetrical.

The pseudoinverse always exists and is unique.
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The Pseudoinverse Matrix: Properties

= Letx!, X2, ..., x™ be n-dimensional vectors to be associated
with m k-dimensional vectors y1, ..., y™

— matrix notation:
X ... Matrixm Xn
the rows are the vectors X1, X2, ..., x™
Y ... Matrixm X k

the rows are the vectors 371, e 37"‘

—> Look for a weight matrix W,; XW =Y
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The Pseudoinverse Matrix: Properties (2)

2 >m

= Since in general m # n and the vectors x*, X2, ..., x™ are
not necessarily linearly independent, the matrix X does
not have to be invertible

- look for a matrix W, which minimizes ||[XWW — Y||?

(~ the sum of the squares of all its elements)
minimization by means of W = XY
X .... pseudoinverse of the matrix X

(~ the best approximation to an inverse of X
if X1 exists, then X1 = X)
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The Pseudoinverse Matrix: Properties (3)

Proposition:

Let X be an m X n real matrix and Y be an m X k real matrix.
The n X k matrix W = XY minimizes the quadratic norm ||[XW — Y]||?.

(At the same time, X minimizes || XX — I||2.)

PLO]C: trace of a matrix

Define E = || XW — Y||? 7
- E can be computed as E = tr(S), where S = (XW — Y)T(XW —Y)
(E ~ sum of all diagonal elements of S)
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The Pseudoinverse Matrix: Properties (4)

Proof (continue):

— S can be rewritten as
S = (XY —w) XTX(XY —W) +YT(I - XX)Y
(because:
S = (XY —w) (XTXXY — XTXW) + YT(I — XX)Y

Since the matrix XX is symmetrical (def.), therefore:

s=(Xy-w) (( XXX )TY—XTXW> +YT(1 - XX)Y

———

=x (def.)
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The Pseudoinverse Matrix: Properties (5)

Proof (continue):
(it follows: S = (XY —w) (XTY — XTXW) + YT(I — XX)Y =

= (XY = W) XT(¥ = XW) + YT(I - XX)Y =
= (XXY = XW) (v = XW) + YT(I - XX)Y =
= (=XW)T(Y —XW) + YTXX(Y — XW) + YT(I - XX)Y =
= (= XWTY - XW) + YT (—xW) +YTY =
= (Y = XW)T(Y — XW) )

—> E can be rewritten as

E=tr (()?Y —w) XTx(XY - W)) +er(YT(1 - xX)Y)

= const.

> min E for W = XY, QED.
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The Pseudoinverse Matrix: Application

Motivation and application:

= The inverse matrix does not always exist
= An alternative represents the pseudoinverse matrix

* Minimization of the mean squared error (e.g., with multi-layered neural
networks)

The training set: {(fp, cip) ;p=1,..,P }

* Xp ... Input pattern (n — dimensional)

. cip .... Desired output (m — dimensional)

* Yp ... Actual output (m - dimensional)
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The Pseudoinverse Matrix: Application (2)

2
L P _ VP
= Derivation: E=X0_1E, =Y5_ Y™ (djp —¥;p)
with 37p to be determined according to: Yip = e WijXip

e Minimization of E with respect to the weights
— the partial derivatives of E with respect to the weights:

p P m n 2
0E _ _ —
Jowy = Gy (ZZ(% | W) >—
=

p=1j=1

P n
= Z (2 dip — Wijxi.p) Xip =0
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The Pseudoinverse Matrix: Application (3)

Matrix notation: WXXT = DXT

= W ... matrixm X n with the elements w;;

= X ... matrixn X P with the elements x; ,,
= D ... matrixm X P with the elements d; ,,

X in general, there does not have to exist an inverse matrix to the
matrix XX

— it might be not possible to solve the equation directly (and find the
weight matrix W) if XX' does not have m linearly independent rows
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The Pseudoinverse Matrix: Application (4)

There can be several solutions

— an additional constraint on the weight values:

n m
E:AZZW‘% ; A >0, A = const.

i=1j=1

Minimization by means of partial derivatives
W(XX +Al)=DX"

(A>0 there exists an inverse matrixto XX+ Al )
W(XX +A1)(XXT+A1)2=DX" (XX +A1)1
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The Pseudoinverse Matrix: Application (5)

For A approaching in the limit zero (A - 0):
w =lim |Dx 7 (xx7 + 1) |= DX
——

A—0

n~~

= X.... Pseudoinverse matrix to the matrix X

= |f there are more solutions, .X will yield the lowest values

n m
2

2.2

i=1 j=1

= |If the matrix inverse to X exists, it will hold X X
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Computation of the Pseudoinverse

= Compute an approximation of the pseudoinverse using a

backpropagation network

* The network used to find the weights for associative memories

I. MRAZOVA: NEURAL NETWORKS (NAIL002)
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Computation of the Pseudoinverse (2)

= The goal of training: Find such a weight matrix W with the elements
w;; that produces the best mapping from the vectors xt ..., XM to

the vectors y1, ..., y™

= For the i-th input vector, the actual network output will be
compared with the vector y*, and E; will be computed

= The total quadratic error E = )/ | E; then corresponds to:
IXW —Y||*

= The backpropagation algorithm finds the matrix W, that is expected
to minimize || XW — Y||?
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Neural Networks:
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Bidirectional Associative Memory

BAM — a synchronous associative model with bidirectional edges

X, Wi
V1
N
Xy —(U O,
N Vi
" Wnk
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Bidirectional Associative Memory (2)

= A recurrent associative memory

Wi
* Consists of 2 layers of units, which send i

information recursively between them. 5 ¥,

* The input layer sends the result of its ’
computation to the output layer by the weights. X ¢

" Wnk
* The output layer then returns the result of its
computation back to the input layer — by the same weights.

= Question: Will the network achieve a stable state, in which the

information being sent back and forth does not change after a
few iterations?
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Bidirectional Associative Memory (3)

= aresonance network . W,

= sgn transfer function Y1

" information is coded using bipolar values 2 Vs

= the network maps an n-dimensional vector X, Y,
to a k-dimensional vector y, & W

= the weight matrix of the network is the n X k matrix .
« after the first passage, we obtain: y, = sgn(x,W)
- after the feedback passage, the input will be: ¥; = sgn(W )

« after the next forward passage, the output will be: y; = sgn(x; W)
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Bidirectional Associative Memory (4)

= After m iterations, we have m + 1 pairs of v,
vectors (Xg, Vo), ... » (X, Vi) that fulfill X, ”

the condition: ,

y; =sgn(x;W) and x;.4 = sgn(ij’;F) " W

= Question: Will the system find after some iterations
a fixed point (X, y) such that it holds

y =sgn(¥W) and X =sgn(WyT) ?
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Bidirectional Associative Memory (5)

- if a pair of vectors (X, y) is given and we want to set the weights
of a BAM such that this pair of vectors will represent its fixed
point, Hebbian learning can be used to compute an adequate

weight matrix: W = x'y
>y = sgn(XW) = sgn(%x7y) = sgn(||¥[I*y) = y
and also:

xT =sgn(WyT) = sgn(xTyyT) = sgn(xT||y]|?) = xT
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Bidirectional Associative Memory (6)

= |f we want to store several patterns (X1, V1), ..., (X1, Vi),
Hebbian learning will be more efficient, if the vectors x4, ..., X,,
and y4, ..., ¥,,, are pairwise orthogonal (negligible , crosstalk”)

—> for m pairs of vectors the matrix W will be set to:

- >T = >T -

W =X{J; + %9, + -+ ZpyVm

— a bidirectional associative memory can be used also to build
autoassociative networks, because the weight matrices produced
by the Hebb rule (or when computing the pseudoinverse) are
symmetric (X = XW and XT = WXT)
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Energy function for BAM

Assume that a BAM is given for which the vector pair (X, y)
is a stable state

The initial vector presented to the network from the left is
X, (and after some iterations, the network shall converge to

(x,3))
The vector y, is computed according to: y, = sgn(x,W)

The output vector y, is now used for a new iteration (from
the right)
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Energy function for BAM (2)

= Excitation of the neurons on the left is determined by
the excitation vector éT = Wy

> (%, Y,) corresponds to a stable state of the network,
if sgn(e) = x,, i.e., if € is close enough

- the scalar product X, € should be larger than
for other vectors of the same length but further
away from X,
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Energy function for BAM (3)

> Theproduct E = — X, €1 = — X,Wy_ isthus smaller,
if the vector Wy, lies closer to x,

— a sort of an indicator of convergence to stable states
of an associative memory

E ~ enerqy function

= Local minima of the energy function correspond
to stable states
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Energy function for BAM (4)

Definition:

Let W be the weight matrix of a BAM and the output

y; of the right layer of neurons is computed in the i-th
iteration as y; = sgn(x;W) and the output x;,; of the
left layer of neurons is computed as X;,, = sgn(Wy, ).
The enerqy function of a BAM is then given by:

1
E(xuyl) - Exl Wyl
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Generalized Energy Function

= Considers also the thresholds and a stepwise transfer function

* Each n-dimensional vector x will be transformed into the vector
(X1, e, Xp, 1)

* Each k-dimensional vector v, Vi = Xiwix; — 9 ; will
be transformed into the vector (v, ... , Vi, 1)

* The weight matrix W will be extended to a new matrix W' with
an additional row and column
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Generalized Energy Function (2)

= Negative thresholds of the neurons
in the right layer of the BAM form
the (n + 1)-th row of W’

= Negative thresholds of the neurons
in the left layer form the (k + 1)-th
column of W'

= Theentry(n+ 1,k + 1) of the
matrix W' is 0
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Generalized Energy Function (3)

= The above transformation is equivalent to the introduction
of an additional unit with output 1 into both layers

* The weights of these additional neurons correspond to negative
thresholds of neurons fed by this information

— Energy function of the extended BAM:

o R D
E(x,yi) = _ExiWYiT-l' EHIYL'T‘F > iOr

6; ... the vector of thresholds of the k neurons (in the left layer)

-

Q,T .... the vector of thresholds of the n neurons (in the right layer)
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Asynchronous BAM-networks

= Each unit computes its excitation at random

= Changes its state to 1 or —1 independently of the others
(but according to the sign of its total excitation)

= The probability of two units firing simultaneously is zero

= Assumption: the state of a unit is not changed if the total

excitation is zero
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Asynchronous BAM-networks (2)

= BAM arrives at a stable state after a finite number of iterations
(sequential choice of neurons)

- astable state ~ vector pair (¥,¥); y = sgn(¥W) and X' = sgn(Wy")

= Proposition:
A bidirectional associative memory with an arbitrary weight
matrix W reaches a stable state in a finite number of
iterations using either synchronous or asynchronous updates.
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Asynchronous BAM-networks (3)

Proof:

=  Forthe vectors X = (X1, %5, ..., %), ¥V = (V1, V2, ..., Vi), and an X k
weight matrix W = {w;;}, the energy function E (%, y) equals to:

Wi1 Wiz 0 Wik V1

N 1 Wy1 Wpp o Wog Y2
E(xJY) = 5 (xl»---;xn) : : .. : :
Wn1t Wpo 0 Whg Yk
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Asynchronous BAM-networks (4)

Proof (continue):

= Product of the i-th row of W and ¥ represents the excitation of the i-th
neuron in the left layer g;

—> then for the excitation vector of the left layer (g4, ..., 9n):

1 g1
E5) = —E(xl,...,xn)< : )

In
—> similarly, it holds for the right layer and its excitation vector (ey, ..., ex):
1 Vi
E(x,y) = - > (eq,...,er) | :
Yk
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Asynchronous BAM-networks (5)

Proof (continue):

= Energy function can be written in two equivalent forms:

1 ok

E(f)}_]}) = = o 4i=1 €iYVi
- - 1
and E(x,y) = — 5 2i=19iXi

= |n asynchronous networks at each iteration, we randomly select a neuron
from the left or right layer:

* For the selected neuron, excitation and new state are computed
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Asynchronous BAM-networks (6)

Proof (continue):

* |f the state remains the same, the energy of the network will not
change

* The state of neuron i in the left layer will change only when the
excitation g; has a different sign than its present state x;

* Since the other neurons do not change their states (asynchronous
dynamics), the difference between the previous energy E(x,y) and
the new energy E (x’,y) will be:

- - >, > 1 /
E(x,y) —E(X",y) = _Egi(xi — X;)
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Asynchronous BAM-networks (7)

Proof (continue):
* Since x; — x; has a different sign than g;, it follows that:
E(X,y)—EX,y)>0
(if x; — x; would have the same sign like g;, no change of the neuron
state had been occurred)

> The new state (X', ¥) has thus a lower energy than the original state (X, y)

= Analogically for the neurons from the right layer:
E(X,y)—EX,y") >0
(Whenever the state of the neuron has been flipped.)
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Asynchronous BAM-networks (8)

Proof (continue):

= Any update of the network state reduces the total energy

= Since there are only a finite number of possible combinations of

bipolar states, the process must stop at some state (&, 1_5) whose
energy cannot be further reduced

— the network has fallen into a local minimum of the energy
function and the state (&, 1_5) is an attractor of the system

QED
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Asynchronous BAM-networks (9)

Remark:

= The proposition holds also for synchronous networks

— any given real matrix W possesses bidirectional stable
bipolar states
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Hopfield Networks

* m neurons with the hard-limiting
transfer function

,for foundational discoveries and in- ° Bip0|ar inputs and outputs {_|_ 1, _1}

ventions that enable machine learn- . )
ing with artificial neural networks” i ; * Synaptic WE|ghtS Wi (between all

the neurons)
* m training patterns (classes)

Hard-limiting transfer function: fj, 1 ' e Supervised training
e * Recall

* Applications:

o Associative memory

o Optimization tasks
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The Hopfield Model (bipolar)

Step 1: Training — set the synaptic weights according to:

s=1x;x;  for i #j
wij = -
& 0 for i =

w;j; .... the synaptic weight between neuron i and j

x; € {—1,+1} ..... i-th component of the s-th pattern,
1<ij<n
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The Hopfield Model (bipolar) (2)

Step 2: Initialization — present a new input pattern:
y;(0) = x; 1<i<n
Vi(t) oo e e the output of the neuron i at time ¢t
x; € {—1,+1} .... the i-th element of the presented pattern

Step 3: [teration

o _
yit+1) = fp Zwijyi(t) 1<j<n
=1 |

fn -... the hard-limiting transfer function
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The Hopfield Model (bipolar) (3)

The iterative process is repeated during recall until
neuron outputs stabilize.

The neuron outputs then represent that stored pattern,
which best corresponds to the presented (new) pattern.

Step 4: Go to Step 2.
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The Hopfield Model (bipolar) (4)

Convergence (Hopfield):

= Symmetric weights: Wij = Wj;

= Asynchronous output updates in single neurons

Drawbacks:

= Capacity (m < 0.15n)
= Stability (= orthogonalization)
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The Hopfield Model: Example

Training:
= Patterns: |—1,—1,1,1]
11,—1,1,—1]

= Weight setting:

Wij: %=1 Xl(m) X](m) l 7'—']
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The Hopfield Model: Example (2)

= Weight matrix:

0O 0 0 -=2] | i

_|0 0 -2 0 : Q |
=lo -2 0o o - LT

—2 0 0 0 i |

Recall: i ° @ i
= Pattern: [=1,—1,1,=1] e e |

[1,-1,1,—1] [—1,—-1,1,1]




The Hopfield Model: Recall

= When initialized with x,, the vector of potentials is:

E=x%, - W=2% GI%, +-+xL%, —ml) =

— _— ~————
=n =12 =d1m

_ - m -
=(n—-—m)x; + ijz X1jXj
PERTURBATION
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The Hopfield Model: Recall (2)

1, ..., A1 ... the scalar (dot) products of x; with each of the
(pattern) vectors X5, ..., Xy,

- State X, is stable, if m < n and the perturbation term

}7”=2 aljfj is small (=> sgn (f) = sgn(a?l))

=» A small number of orthogonal patterns
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The Hopfield Model: Recall (3)

= States of neurons not selected for update remain the same

= Random selection for update
= Neurons are fully interconnected
= Symmetric weights:  w;; = wy;

= w; =0

— Necessary conditions for convergence to a stable solution:

* symmetric weight matrix with zero diagonal

* and asynchronous dynamics
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The Hopfield Model: Examples

= A weight matrix with nonzero
diagonal does not have to yield
stable states, e.g.:

-1 0 0
wW=10 -1 0
0 0 -1

= Synchronous dynamics:

* Random selection of one out of eight
possible patterns

(-1,-1,-1) & (1,1,1) @
= Asynchronous dynamics: Q
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The Hopfield Model: Examples (2)

= Asymmetric weight matrix: W = ( L 1)

-1 0
* Asynchronous dynamics: <
1,1 -
= (1,1) — @ 1 @
(L=D. _— 1D
(=1,-1)

cyclic changes of states
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Energy Function

= Energy function E(x) of a Hopfield network with n neurons
and the weight matrix W shows the energy of the network
in state x:

- 1—) ->T
E(x)=—§xWx = ZZWuxl X;

j=1 i=
(Similarly, also for networks with thresholds:

E@R)=—2¥WxT+6xT =
2

1
=75 n12n1WuxLX]+Z Ui x; .)
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Energy Function (2)

Proposition:

A Hopfield network with n neurons and asynchronous dynamics,
which starts from any given network state, eventually reaches a
stable state at a local minimum of the energy function.

Proof (idea):

= |nitial state:

* Presented pattern: x = (xl, ey Xge) ...,xn) and the energy is evaluated
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Energy Function (3)

Proof (idea - continue):

. R 1
according to: E(x) = — E =1 Xi=1Wij Xi X;

= Neuron k is selected for adjustment
* if k does not change its state - the value of E(x) does not change, too

* if k changes its state - the vector X' = (xl, ...,x,'c, ) xn) yields the energy:

SN 1 on n 1 on ’
E(X') = = 2 Xj=1 Zi=1 Wij X Xj — 5 Xi=1 Wik X; X —
j#k i£k £k
1 ¢on ’ 1 I
— 5 Zj:l Wrj Xp Xj = =5 Wgki X X
j£k
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Energy Function (4)

Proof (idea - continue):
1 n n
EX') = - > z Z Wij Xi Xj — Z Wik Xi X

because of symmetric weights

n
— z Wik Xi X;c =R J
i=1

and a zero feed-back wy;, = 0
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Energy Function (5)

Proof (idea - continue):

= The difference between the old and new energies:

E(X)—E@X') = =X Wik x; xp — (= 21y Wig X Xp) =

n
= — (g —xg) 7 Wi X; >0
i=1

A’

Both x; — x;, and the new potential value have a different sign than the
potential (otherwise no change of state would occur)

POTENTIAL
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Energy Function (6)

Proof (idea - continue):

—> every time the state of a neuron is altered, the total energy
of the network is reduced
= due to the finite number of possible (bipolar) states
— the network must eventually reach a stable state for which

the energy cannot be further reduced

QED
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model

= Sometimes Hebbian learning cannot find a weight
matrix for which m given vectors are stable states
(although such a matrix exists)

—> if the vectors to be stored lie near each other, the
perturbation term can grow too large

- worse results of Hebbian learning

= Alternative: Perceptron learning for Hopfield networks
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (2)

Perceptron learning in Hopfield networks

" Hopfield networks are composed of neurons with
a non-zero threshold and the hard-limiting
transfer function

* Neurons adopt state 1 for potentials greater than 0

* Neurons adopt state —1 for potentials smaller than or
equalto 0




Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (3)

= Let us consider a Hopfield network:

T ceeeerreerisreeenes the number of neurons
W = {WU} . the n X n weight matrix
Vi veeererriceennnaeen the threshold of the neuron i

= |favector x = (xq, ..., x,) is given to be ,imprinted” in the
network, this vector will correspond to a stable state only if
the network does not change its state after presenting this

vector at its input
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (4)

— neuron potentials should have the same sign like their
previous states

* Minus sign will be assigned to zero values

 The following inequalities should therefore hold:

Neuron 1: sgn(x;) (0 + xowyo + -+ x,Wwi, —91) > 0
Neuron 2: sgn(x,) (x;wy; + 0+ -+ x,Wwy,, —9,) > 0

Neuron n: sgn(x,) (x;wy; + xowyp +-4+0—-9;) > 0
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (5)

"= w;; =w;; » n-(n—1)/2 non-zero elements of the weight
matrix and n thresholds

> let v denote a vector of dimensionn +n - (n—1)/2

(the components of ¥ correspond to the elements w;;

above the diagonal of the matrix W; i < j, and the
n thresholds with minus sign)

9
V= (W12,W13, vy Win »Wa3, Wog, ooy, Won oy Wn—l,n ,_191, "'1_1971)
N v — N v - \ , N— v —
n—1 Components n—2 Components 1 Component n Components
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (6)

%

- transformation of the vector x into n ,,auxiliary” vectors 7, Z,, ..., Z,,
n(n—1)

of the dimension n +

N
Zq1 = (36'2,3(:3, cer x@, O, O, e 0,1, O, ey 9)

n—1 comvponents n Comiaonents

N

Z, = (x1, 0, ... , O, X3, o , Xp ,0,0, ...,0,1, ... ,0)
n-—1 Corﬁponents n—2 corﬁponents n Components

Z,=(0,0, .. ,%,0,0,.,%,00 ..,00 .,1)

n—1 Components n-—-2 components n Components
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (7)

= the components of the vectors Z;, Z,, ..., Z,, allow to write
the above inequalities as:

Neuron1: sgn(xy) z;-v > 0
Neuron 2: sgn(x,) Z, v > 0

Neuronn: sgn(x,) Z, v > 0

I. MRAZOVA: NEURAL NETWORKS (NAIL002)

201



Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (8)

- to linearly separate the vectors z;, Z,, ..., Z,, (based on

sgn(x;) — Z; should be positive if sgn x; = 1), we can
use perceptron learning

- Compute the weight vector v needed for the linear
separation of the vectors Z;, Z,, ..., Z, and set the weight
matrix W

= |f the Hopfield network has to ,,remember® m vectors
X1,Xq, ..., Xm, We have to use the above transformation
for everyone of them
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (9)

= m-n ,auxiliary” vectors, which must be linearly
separated

= |f the (auxiliary) vectors are actually linearly separable,
perceptron learning will find the solution to the
problem, encoded as the vector v
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Equivalence of the Hebbian and Perceptron
Learning for the Hopfield Model (10)

Example:
W12 Wi3
192 193
W23
Perceptron learning with
Training of a Hopfield the input space dimension
network with n neurons n+n-n—1)/2 (=n-(n+1)/2)

Remark: ,local application of the delta-rule” instead of perceptron
learning algorithm
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Hopfield Networks
Used to Solve Optimization Problems

= Binarycoding: 0/1
= Multiflop:

* X{,..,Xn ... binary states of the individual neurons in the considered

Hopfield network

* The network should adopt a state, when exactly one neuron will be active;
all other neurons will be in the state 0

* Objective: find a minimum of E' (x4, ..., x,,) with

E(xq,..,x,) = (i X; — 1)

i=1

2
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Hopfield Networks
Used to Solve Optimization Problems (2)

n n n n
Bl = (Y 5= 1) =Y a4 =2y 1
i=1 =1 %] i=1
n n
= Z xl.xj — z X; + 1= = x; for binary states
comparison with the ] _
: L] 1=1
energy function of
the Hopfield model n n

—> setting of network’s weights and thresholds
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Hopfield Networks
Used to Solve Optimization Problems (3)

1
E(xl, ...,xn) — _E l__/_.](_Z)xlx] + Z?=1(_1)xi + 1

\ /

setting of network’s weights and thresholds
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Hopfield Networks
Used to Solve Optimization Problems (4)

= The n-rooks problem:

* Position n rooks in an X n chessboard so that no one figure can take
another

— each rook shall be in a different row and column than the other ones

> Xjj cwereeenes the state of the neuron at the position i, j of the board

n o ° M
i=1 Xij --- number of the states ,1“ in column j

X in each column, only a single ,, 1“ is allowed
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Hopfield Networks
Used to Solve Optimization Problems (5)

= Minimize:

2
E1(x11) ) Xnn) = Xj=q (Z?=1 Xij — 1)4 = ?=1( i (—2)xj;0 j+ 2z (D5 + 1)
~ MULTIFLOP

= Similarly for the rows:
- n n _ 2 - n _ —
E;(x11) s Xpp) = i=1(zj=1xij 1) — 4ij=1 ( ]:t]’( Z)xl]xl]’ + Z —1( Dxi}' + 1)

= Minimize £ =E; + E,5

Warning: the thresholds cannot be simply set to the sum of thresholds for E; and
E, as this would enable two ones in a row or column. = set the thresholds to —1
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= Set the weights
and thresholds
of the network:

Hopfield Networks

Used to Solve Optimization Problems (6)
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Hopfield Networks
Used to Solve Optimization Problems (7)

= The traveling salesman
problem:

(~ NP-complete problem)

= We are looking for a path
E through n cities M4, ..., M,
such that every city is visited
at least once, and the length
of a round trip is minimal
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Hopfield Networks
Used to Solve Optimization Problems (8)

= Representation of the solution using a matrix:

10 0 0 Convention:
Clty i M1
h 1)- | is th
\Mz 01 0 0 the (n + ?stcou.mnlste
the order” of visits /M' 01 0 same one like the first column
M, 0 0—0-1 - round trip

N —— neuron state ~ entry i, k of the matrix

* Xik = Xjk+1 = 1...city M;is visited in step k and M; in step (k + 1)

N distance between M; and M;

— add d; ; to the length of the round trip
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Hopfield Networks
Used to Solve Optimization Problems (9)

= Minimize the length of the trip: L = —ZU e di jXi kXj k+1

X at the same time, a single ,1“ is allowed in each column and row
—> include the constraints for a valid round trip

-> minimize E:

E=%221kdljxlkxjk+1+ (21 1(21 1X4,j — 1) U 1(21 1Xij 1)2)
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Hopfield Networks
Used to Solve Optimization Problems (10)

= Set the weights and thresholds of the network according to:

(—d;x (=K and[G+1=Dor(=1+1)]
-y if(i=k)and (j # 1)

Wiin, = <
LIk —y if (i #k)and (j =1)
L 0 otherwise
191"]' = = )//2

* 7y is usually found by trial and error

* |n practice, problems can occur even for a moderate number of cities
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Stochastic Models of Neural Networks

= Hopfield networks can be used to provide solutions to
optimization problems that can be expressed as the
minimization of an energy function (although without
guaranteeing global optimality)

= Problem: avoid ,falling” into local minima of the
energy function
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Stochastic Models of Neural Networks (2)

Modifications of the Hopfield model:

1. strategy: increase the number of paths in the search space
— real-valued states are possible, too (sigmoidal transfer function)

==> continuous model

2. strategy: avoid local minima of the energy function by introducing ,,noise”
into the network dynamics

—> the network is occasionally allowed to update its state despite of
a temporarily increased energy level

==> simulated annealing, Boltzmann machine
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Continuous Hopfield Model

= The new state of neuron i selected for updating is given by:

1
1+e7W

u; denotes the excitation (i.e., potential) of neuron i

x; =s(u;) =

= Additional assumption of slow changes in neuron’s excitation according to:

o n n
E =Y\l U + Z Winj =Y\ —U; + z WijS(uj)
j:]_ ]:1

y > 0 .... learning parameter

Uk cosocos weight between neuron i and j
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Continuous Hopfield Model (2)

= For a stimulation we will compute a discrete approximation of du;
which is added to the current value of u;; the result leads to the
new state

x; = s(u;) (henceu; = s~ 1(x;))
= Asynchronous dynamics — leads to equilibrium

= Energy function for the continuous model:

n X

:—%iiwux x]+2j “1(x) dx

i=1 j=1 =19
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1 n n n X
— —EZZWLJXLXJ+ZJ S_l(X) dx

=10 =1 i=19

Continuous Hopfield Model (3)

= We have to show that the energy becomes lower after each state update;
the change in time is:

n

NN SN

p=n= =1

= Since the network is symmetric, i.e., w;; = wj; and simultaneously
u; =57 (x):

dE dx;
L P

=
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Continuous Hopfield Model (4)

= Because:
du; n dE. 1 op dxjdy;
E_y(zlewiij ui) = &y &islg ar
= Since x; = s(u;)
de _ 1 Zn ds(ul) du; _ 1 Zn ds(u;) du; du;
dt dt  y <=1 du; dt dt

= - S s ()
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Continuous Hopfield Model (5)

= We know that s'(x;) > 0
(the sigmoid is a strictly monotone function)

. dE
Sincey > 0, ES 0

— astable state is reached when dE /dt vanishes
- this happens when du; /dt reaches the saturation
region of the sigmoid where du; /dt ~ 0

QED




Continuous Hopfield Model (6)

= For combinatorial problems, the continuous Hopfield model can find
better solutions than the discrete model

= However, in the case of really hard problems (e.g., the TSP) the continuous
model has no definite advantage over the discrete model

= Modern Hopfield networks with continuous states (and a new update rule)
can store exponentially many patterns, retrieve the patterns with one
update, and have exponentially small retrieval errors. Further, they can be
integrated into deep learning architectures as layers to allow the storage of

and access to raw input data, intermediate results, or learned prototypes.
(H. Ramsauer et al.: Hopfield Networks is All You Need, in: Proc. of ICLR 2021.)
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Simulated Annealing

IDEA:




Simulated Annealing (2)

= When minimizing the energy function E, this phenomenon can
be simulated as it follows:

* the value of the variable x is changed always if the update Ax can reduce
the value of the energy function E

* But if the increment of x actually increases the value of E by AE, the
new value for x (i.e., x + Ax) is accepted with probability p5 :

1
PaE = 1+ eAE/T

where T is a temperature constant
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Simulated Annealing (3)

= For bigvalues of T, we get: p,p = %

and the state update is accepted about half the time

= IfT = 0, only those updates are accepted which reduce the
value of E

= Avarying value of T from very large values down to zero
corresponds to the heating and cooling phases in the
annealing process
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Simulated Annealing (4)

= |t can even be shown that with this simulation strategy
the global minimum of the energy function can be
(asymptotically) reached

= The sigmoid best corresponds to those functions used in
thermodynamics (for the analysis of thermal equilibria)
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Boltzmann Machine

Definition:

A Boltzmann machine is a Hopfield network composed of n neurons with
the states x4, x5, ..., X,,.

The state of a neuron i is updated asynchronously according to the rule:

o 1 with probability Di
i = 0 with probability 1 — p;

1
1+ e—(Z}Ll Wijxj—ﬁi)/T

where p; =
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Boltzmann Machine (2)

In the relationship: e 1
i —
1+ e~ (Zjea wijxi=00)/7

T denotes a positive temperature constant, w;; are the weights of
the network and 9, its thresholds

Energy function for a Boltzmann machine:
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Boltzmann Machine (3)

= The difference between a Boltzmann machine and a

Hopfield network consists in the stochastic activation of the
neurons

= |f T is very small, then p; ~ 1, when Z?=1 wijix; —9; >0
x if the excitation is negative, then p; ~ 0

— the dynamics of the Boltzmann machine approximates the discrete

Hopfield network and the Boltzmann machine finds a local minimum
of the energy function
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Boltzmann Machine (4)

= IfT > 0, the probability of a transition, or a sequence of
transitions, from a network state x4, ..., x,, to another state is
never zero

— The Boltzmann machine cannot settle on a single state
— possibility to both reduce and increase the energy of the system

= For very large values of T, the network visits almost the
complete state space

X During the cooling phase, the network begins to stay longer in the

basins of attraction of the local minima
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Boltzmann Machine (5)

If the temperature is reduced according to a correct
schedule, we can expect the system to reach a global
minimum with probability 1.
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