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Self-Organization
▪ Unsupervised training:

• Self-organization and clustering

▪ Motivation:
• The network decides by itself what response fits best for the 

presented input pattern and adjusts its weights accordingly

▪ Problem:
• Determine the number and location of clusters present in the 

feature space
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Self-Organization (2)
Competitive learning:
▪ Compete for the „right to represent the patterns“
▪ Winner - Takes - All  rule (WTA)
▪ Inhibition of opponents
▪ Network plasticity
▪ Learning with conscience

Reinforcement learning:
▪ Emphasizes the best reproduction of inputs
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Unsupervised Competitive Learning

▪ 𝑛-dimensional input patterns are processed by such a 
number of neurons, that corresponds to the (assumed) 
number of clusters

▪ the neurons compute the (Euclidean) distance between  
the presented  pattern  and  their  weight vector 
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Unsupervised Competitive Learning (2)
 Competition „is won“ by 

the neuron situated the 
closest to the presented 
pattern

 The winning neuron 
becomes the most active 
one and will inhibit the 
activity of other neurons
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Unsupervised Competitive Learning (3)
▪ Inhibition by means of „lateral connections“ 

       lateral inhibition
▪ Global information about the state of all the neurons 

in the network is necessary to decide whether a 
neuron will be active or not

▪ The activity of a neuron signals the membership of the 
presented input to the cluster of vectors represented 
by this neuron
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▪ The winning neuron adjusts its weights towards the presented 
pattern:

Δ 𝑤 = 𝛼 ⋅ Ԧ𝑥 − 𝑤

   network plasticity (decays slowly during training)

Our objective:  
▪ Position the neurons into the cluster centers

▪ Keep the already formed network structure

Unsupervised Competitive Learning (4)
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Unsupervised Competitive Learning (5)
▪ Strategies speeding-up the training:

• An appropriate weight initialization, e.g., according to 
randomly selected patterns

▪ Problems:
• Dead (never used) neurons
o A grid in the Kohonen layer
o Topological neighborhood of neurons
o Controlled competition and the mechanism of conscience
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▪ During training, the weights of the neurons should be 
set in such a way that they correspond to the „centers 
of gravity of the respective clusters“

▪ The energy function of a set of 𝑛-dimensional (𝑛 ≥ 2) 
normalized input patterns 𝑋 = Ԧ𝑥1, … , Ԧ𝑥𝑚  is given for 1 
neuron with the weight vector 𝑤 by means of: 

𝐸𝑋 𝑤 = σ𝑖=1
𝑚 Ԧ𝑥𝑖 − 𝑤 2 ; 𝑤 ∈ 𝑅𝑛

Unsupervised Competitive Learning (6)

I. MRÁZOVÁ: NEURAL NETWORKS (NAIL002) 11



Unsupervised Competitive Learning (7)
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 in the optimum case, the weight vector is located in the center
of the input pattern cluster:

𝐸𝑋 𝑤  = σ𝑖=1
𝑚 Ԧ𝑥𝑖 − 𝑤 2 = σ𝑖=1

𝑚 σ𝑗=1
𝑛 𝑥𝑖𝑗 − 𝑤𝑗

2 =

= σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑥𝑖𝑗
2 − 2𝑥𝑖𝑗𝑤𝑗 + 𝑤𝑗

2  =

=  𝑚 σ𝑗=1
𝑛 𝑤𝑗

2 − 2
𝑚

σ𝑗=1
𝑛 𝑤𝑗 σ𝑖=1

𝑚 𝑥𝑖𝑗 + σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑥𝑖𝑗
2 =



𝐸𝑋 𝑤 = 𝑚 
𝑗=1

𝑛

𝑤𝑗
2 −

2
𝑚

𝑤𝑗 
𝑖=1

𝑚

𝑥𝑖𝑗 +
1

𝑚2 
𝑖=1

𝑚

𝑥𝑖𝑗 
𝑖=1

𝑚

𝑥𝑖𝑗 −

 −
1
𝑚


𝑗=1

𝑛


𝑖=1

𝑚

𝑥𝑖𝑗 
𝑖=1

𝑚

𝑥𝑖𝑗 + 
𝑖=1

𝑚


𝑗=1

𝑛

𝑥𝑖𝑗
2

= 𝐾

=

= 𝑚 σ𝑗=1
𝑛 𝑤𝑗 − 1

𝑚
σ𝑖=1

𝑚 𝑥𝑖𝑗
2

+ 𝐾 =

= 𝑚 𝑤 − Ԧ𝑥∗ 2  +  𝐾
 

Unsupervised Competitive Learning (8)
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Unsupervised Competitive Learning (9)

→  the vector Ԧ𝑥∗ is the centroid of the cluster
Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚  and 𝐾 is a constant

→  the energy function has a global minimum at Ԧ𝑥∗
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Unsupervised Competitive Learning (10)
Clustering methods for empirical multidimensional data:
▪ Two basic approaches:

• 𝑘 nearest neighbors – for labeled data

• 𝑘-means algorithm – for unlabeled data

▪ 𝑘 nearest neighbors (supervised training)
• The training patterns are stored and classified into one of 𝑙 different 

classes
• A new input vector is classified into the class that contains the 

majority of its 𝑘 nearest neighbors (from the stored set)
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Unsupervised Competitive Learning (11)

▪ 𝑘-means clustering algorithm:
• unsupervised learning

• Input vectors are grouped into 𝑘 different clusters 

   (at the beginning, each cluster contains exactly 1 vector)

• A new vector Ԧ𝑥 is assigned to the cluster 𝑖, the centroid           
of which lies the closest to this pattern
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▪ 𝑘-means  clustering  algorithm (continue)
• The centroid Ԧ𝑐𝑖 is then adjusted by means of:

Ԧ𝑐𝑖 𝑛𝑒𝑤 =  Ԧ𝑐𝑖 𝑜𝑙𝑑 +
1
𝑛𝑖

Ԧ𝑥 − Ԧ𝑐𝑖 𝑜𝑙𝑑

  𝑛𝑖 … the number of vectors already assigned to cluster 𝑖

• This procedure is iteratively repeated for the entire data set 
(its structure is then captured by the „weight vectors“ Ԧ𝑐𝑖;  
𝑖 = 1, … , 𝑘).
→  Vector  quantization 

Unsupervised Competitive Learning (12)
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The Clustering Problem

▪ Two sets of vectors: 𝑃 and 𝑁

▪ Difficult to „separate“ the 
clusters by means of a simple 
perceptron   such that:

𝑤 ⋅ Ԧ𝑝 ≥ 0 ∀ Ԧ𝑝 ∈ 𝑃
∧ 𝑤 ⋅ 𝑛 < 0 ∀𝑛 ∈ 𝑁
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The Clustering Problem (2)

▪ Example: Three weight 
    vectors for three clusters

▪ 3 different vectors 𝑤1, 𝑤2          
 and 𝑤3 can be used as
  „representants“ of the

respective clusters 𝐴, 𝐵
and 𝐶
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The Clustering Problem (3)
▪ Each one of these vectors is „relatively close“ to any 

vector from the respective cluster 

▪ Each weight vector corresponds to a single neuron 
which is active only if the input vector is close enough 
to its own weight vector

==>   How could we determine the number and
          distribution of the clusters?
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▪ Let 𝑋 = Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑙  be a set of normalized input vectors in 
the 𝑛-dimensional space which we want to classify into 𝑘 
different clusters

▪ The neural network consists of 𝑘 neurons, each of which has 𝑛 
inputs and zero threshold

Initialization:
▪ The normalized weight vectors 𝑤1, … , 𝑤𝑘  are generated 

randomly

Competitive Learning: The Algorithm
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Test:
▪ Select randomly a vector Ԧ𝑥𝑗 ∈ 𝑋

▪ Compute 𝑤𝑖 ⋅ Ԧ𝑥𝑗  for 𝑖 = 1, … , 𝑘

▪ Select 𝑤𝑚 such that 𝑤𝑚 ⋅ Ԧ𝑥𝑗 ≥ 𝑤𝑖 ⋅ Ԧ𝑥𝑗 ∀𝑖 = 1, … , 𝑘

▪ Continue with Update

Update:
▪ Substitute 𝑤𝑚 𝑛𝑒𝑤  with 𝑤𝑚 𝑜𝑙𝑑 + Ԧ𝑥𝑗 and normalize

▪ Continue with Test 

Competitive Learning: The Algorithm (2)
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Competitive Learning: The Algorithm (3)
▪ The algorithm can be stopped after a pre-determined 

number of steps

▪ The weight vectors of the 𝑘 neurons are „attracted“ 
towards the centers of the respective clusters in the 
input space

▪ The algorithm is based on the principle known as 
„winner-takes-all“ 
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▪ Normalized vectors prevent the weight vectors from 
becoming so large that they would win the competition 
too often
• Other neurons would then never be updated and would remain 

useless  →  „dead neurons“

▪ Since both the input and weight vectors are normalized, 
the scalar product 𝑤𝑖 ⋅ Ԧ𝑥𝑗 of a weight and input vector is 
equal to the cosine of the angle between these two 
vectors

Competitive Learning: The Algorithm (4)
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▪ The selection rule guarantees that the weight vector 𝑤𝑚 of the 
cluster that is updated is the one that lies closest   to the tested 
input vector

▪ The update rule rotates the weight vector 𝑤𝑚 towards Ԧ𝑥𝑗

Different learning rules: 
▪ Update with a learning constant

Δ𝑤𝑚 = 𝜂 Ԧ𝑥𝑗;  𝜂 ∈ 0,1  decays slowly in time
    →   network plasticity

Competitive Learning: The Algorithm (5)
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Different learning rules (continue): 
▪ Difference update: Δ𝑤𝑚 = 𝜂 Ԧ𝑥𝑗 − 𝑤𝑚

• „correction“ proportional to the difference of both vectors

▪ Batch update  →  a more stable learning process
• Weight „corrections“ are computed for each respective 

pattern and then cumulated
• After a number of iterations, the weight corrections are 

added to the weights at once

Competitive Learning: The Algorithm (6)
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Competitive Learning: The Algorithm (7)
Stability of the solutions
▪ Necessity of a suitable measure for a „good clustering“

   → a simple approach: find the distance between clusters

▪ Two clusters of vectors and two
„representative weight vectors“:
• Both „representative vectors“
 lie close to the vectors from their

respective cluster
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Competitive Learning: The Algorithm (8)
Stability of the solutions (continue):
▪ 𝑤1 lies inside a „cone“ defined by the 

vectors from its cluster
▪ 𝑤2 lies outside of the „cone“ of 𝑤1
▪ The vector 𝑤1 will not jump outside
      of its „cone“ in future iterations
▪ The vector 𝑤2 will jump inside the
      cone defined by its cluster at some
      point and will remain there
→  such a solution will be stable
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Competitive Learning: The Algorithm (9)

The solution in a stable equilibrium:
▪ Intuitive idea:

• A stable equilibrium requires clearly delimited clusters

▪ If the clusters overlap or are very extended, it can be the 
case that no stable solution can be found

    ==>  unstable  equilibrium
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Definition:
 Let 𝑃 denote the set Ԧ𝑝1, … , Ԧ𝑝𝑚  of 𝑛-dimensional (𝑛 ≥ 2)  
vectors located in the same half-space (~ a formal restriction of 
the cluster size).

 The cone 𝐾 defined by 𝑃 is the set of all vectors Ԧ𝑥 of the form 
Ԧ𝑥 = 𝛼1 Ԧ𝑝1 + ⋯ + 𝛼𝑚 Ԧ𝑝𝑚, where  𝛼1, … , 𝛼𝑚 are positive real 
numbers.
▪ The cone of a cluster contains all vectors „within“ the cluster 
▪ The diameter of a cone defined by normalized vectors is proportional 

to the maximum possible angle between two vectors in the cluster

Stability of the Solutions: The Analysis
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Stability of the Solutions: The Analysis (2)
Definition:
 The (angular) diameter 𝜑 of a cone 𝐾 defined by normalized 
vectors Ԧ𝑝1, … , Ԧ𝑝𝑚  corresponds to:

𝜙 =  sup ቚarccos Ԧ𝑎 ⋅ 𝑏 ∀ Ԧ𝑎, 𝑏 ∈ 𝐾; Ԧ𝑎 = 𝑏 = 1

where 0 ≤ arccos Ԧ𝑎 ⋅ 𝑏 ≤ 𝜋

▪ A sufficient condition for stable equilibrium is that the angular 
diameter of the cluster´s cone must be smaller than the distance 
between clusters.  
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Definition:

 Let 𝑃 = Ԧ𝑝1, … , Ԧ𝑝𝑚  and 𝑁 = 𝑛1, … , 𝑛𝑘  be two non-empty sets of 
normalized vectors in an 𝑛-dimensional space (𝑛 ≥ 2) that define 
the cones 𝐾𝑃 and 𝐾𝑁

• If the intersection of the two cones is empty, the (angular) distance 
between 𝐾𝑁 and 𝐾𝑃 is given by:

𝜓𝑃,𝑁  =  inf arccos Ԧ𝑝 ⋅ 𝑛 ; Ԧ𝑝 ∈ 𝐾𝑃, 𝑛 ∈ 𝐾𝑁 and Ԧ𝑝 = 𝑛 = 1
where 0 ≤ arccos Ԧ𝑝 ⋅ 𝑛 ≤ 𝜋

• If the two cones 𝐾𝑃 and 𝐾𝑁 intersect, 𝜓𝑃,𝑁 = 0

Stability of the Solutions: The Analysis (3)
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Stability of the Solutions: The Analysis (4) 
▪ If angular distance between clusters is greater than angular 

diameter of the clusters, a stable solution exists
• The weight vectors will lie inside their respective cluster cones

• Once inside their respective cluster cones, the weight vectors will not 
leave them

Clustering quality control:
▪ A smaller number of „more compact“ clusters is usually preferred
▪ A cost function penalizing a too big number of clusters
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~  reduces the dimensionality of the input data
→  use fewer features without losing essential information
→  selection of the most important features

~  a set of 𝑚 𝑛-dimensional vectors is given: Ԧ𝑥1, Ԧ𝑥2, … , Ԧ𝑥𝑚

~  the first principal component of this set of vectors is a vector 𝑤
 which maximizes the expression 

1
𝑚


𝑖=1

𝑚

𝑤 ⋅ Ԧ𝑥𝑖
2

PCA – Principal Component Analysis
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▪ Distribution of the input data:
• The first principal component:  

direction of maximum variance in 
the data

• The second principal component:  
orthogonal to 1. PC and maximum 
variance  

         (~ subtract from Ԧ𝑥 its orthogonal
               projection on 1. PC)

PCA – Principal Component Analysis (2)
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PCA – Principal Component Analysis (3)

The applied model: 
▪ Linear associator –  outputs the weighted input as a result 
▪ Unsupervised reinforcement learning – Oja’s algorithm
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Oja’s learning algorithm (E. Oja, 1982)
(for the computation of the first principal component)

Assumption:
▪ The centroid of the input data is located at the origin 

Start:
▪ Let 𝑋 be a set of 𝑛-dimensional vectors
▪ The vector 𝑤 is initialized randomly (𝑤 ≠ 0)
▪ A learning constant 𝛾 with 0 < 𝛾 ≤ 1  is selected 

Computation of the Principal Components 
with Artificial Neural Networks
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Oja’s learning algorithm (continue):

Update:
▪ From the set 𝑋 a vector Ԧ𝑥 is selected randomly
▪ The dot product Φ = Ԧ𝑥 ⋅ 𝑤 is computed
▪ The new weight vector is set to: 𝑤 + 𝛾 Φ Ԧ𝑥 − Φ 𝑤
▪ Make 𝛾 smaller and go to „Update“

Stopping condition for update 
 - e.g., a predetermined number of iterations

Computation of the Principal Components 
with Artificial Neural Networks (2)
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Computation of the Principal Components 
with Artificial Neural Networks (3)
▪ The learning constant 𝛾

• The learning constant must be chosen small enough to guarantee 
adequate weight updates (limit big oscillations)

▪ „Automatic  normalization“ of the weight vector
• global information about all patterns is not necessary 
• local information about the updated weight, input, and scalar product of 

the associator is sufficient

▪ The first principal component is equivalent to the direction of the 
longest eigenvector of the correlation  matrix of the considered 
input vectors
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Convergence of The Oja’s Algorithm
When a unique solution to the task exists, 
Oja’s algorithm will converge:

 Idea of the proof:
 Update of 𝑤 towards Ԧ𝑥
▪ if Oja’s algorithm is started for a weight vector 

inside a cone, it will oscillate in it, but will not 
leave it

▪ for 𝑤 = 1 the dot product Φ = Ԧ𝑥 ⋅ 𝑤 
corresponds to the length of the projection of 
Ԧ𝑥 on 𝑤
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Convergence of The Oja’s Algorithm (2) 
Idea of the proof (continue):

    - )  the vector Ԧ𝑥 − Φ𝑤 is orthogonal to 𝑤
    - )  an iteration of Oja’s algorithm attracts 𝑤 to the vectors from cluster 𝑋
    - )  if the length of 𝑤 remains equal to 1 (or close to 1), 𝑤 will be brought 

into the middle of the cluster
    - )  further, it is necessary to show that the vector 𝑤 is automatically

normalized by the Oja’s learning algorithm:

          Idea: a)  the length of the vector 𝑤 is bigger than 1
                      b)  the length of the vector 𝑤 is smaller than  1
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a)  the length of the vector 𝑤 is bigger than 1

• The length of the  vector Ԧ𝑥 ⋅ 𝑤 𝑤 is bigger 
than the length of the orthogonal projection 
of Ԧ𝑥 on 𝑤

• Further, assume that Ԧ𝑥 ⋅ 𝑤 > 0, i.e., the 
vectors Ԧ𝑥 and 𝑤 are not too far away one 
from the other

• The vector Ԧ𝑥 − Ԧ𝑥 ⋅ 𝑤 𝑤 has a negative 
projection on 𝑤, as: 

Ԧ𝑥 − Ԧ𝑥 ⋅ 𝑤 𝑤 ⋅ 𝑤 = Ԧ𝑥 ⋅ 𝑤 − 𝑤 2 Ԧ𝑥 ⋅ 𝑤 < 0

Convergence of The Oja’s Algorithm (3) 
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▪ The result of many iterations:

• (the vector Ԧ𝑥 − Ԧ𝑥 ⋅ 𝑤 𝑤 has one 
component normal to 𝑤 and another  one 
with the opposite direction of 𝑤)

• 𝑤 will be brought into the middle of the 
cluster of vectors (and the normal 
component cancels in average)

• 𝑤 will become smaller with the growing 
number of iterations of this type (!avoid 
making 𝑤 too small or reversing its 
direction in an iteration!)

Convergence of The Oja’s Algorithm (4) 
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▪ A suitable choice of the learning parameter 𝛾 and normalization of 
the training vectors:
• if the vector Ԧ𝑥 has a positive dot product Φ with 𝑤, then this should hold 

also for the new weight vector; it should thus hold:

Ԧ𝑥 ⋅ 𝑤 + 𝛾Φ Ԧ𝑥 − Φ𝑤 > 0
 Φ + 𝛾Φ Ԧ𝑥 2 − 𝛾ΦΦ2 > 0

Φ 1 + 𝛾 Ԧ𝑥 2 − Φ2 > 0
 

> 0 ⇒ 𝛾 𝑥2 − Φ2 > −1

• For positive small enough 𝛾, is always satisfied

Convergence of The Oja’s Algorithm (5) 
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b)  the length of the vector 𝑤 is smaller than 1 

(similarly to a) )

• The  vector Ԧ𝑥 − Ԧ𝑥 ⋅ 𝑤 𝑤 has  a positive 
projection on 𝑤   

• growing of 𝑤

▪ Combining  a) and b) ⇒ 𝑤 will be brought 
into the middle of the cluster and the length 
of 𝑤 will oscillate around 1 (for a small 
enough 𝛾)

▪ Problems:   „sparse“ clusters
 

Convergence of The Oja’s Algorithm (6) 
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50

Problems:  
▪ „sparse“ clusters

▪ big differences in the length 
of the input vectors

Computation of more 
principal components:

Oja’s Learning Algorithm: 
Problems and Generalization
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▪ Teuvo Kohonen – phonetic typewriter
• Unsupervised training
• Recall
• Applications: economics, text and 

image processing, etc.
• topological neighborhood

Kohonen Self-Organizing Feature Maps

NEj(O)

NEj(t1)

output 
neurons

x0 x1 . . . .      XN-1
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Kohonen Model: The Training Algorithm
Motivation:
▪ The grid of (topologically ordered) neurons allows us to 

identify the immediate neighbors of a given neuron
          →  during training, the weights of the respective neurons and their  
                neighbors will be updated

                 The objective: neighboring neurons should respond to
                                  closely related signals



Kohonen Model: 
The Training Algorithm (2)

input Ԧ𝑥
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The problem (1-dimensional):
▪ divide the 𝑛-dimensional space by means of a one-dimensional chain of 

„Kohonen neurons“
▪ The neurons are arranged in a sequence and numbered from 1 to 𝑛

the neighborhood of neuron 2 (with radius 1)

A one-dimensional 
lattice of neurons

 

... 
1 2 3 m 

x 

w 1 w 2 w 3 w m -1 w m 

neighborhood of unit 2 with radius 1 

1                  2                  3                                  n-1               n

𝑤1 𝑤2 𝑤3 𝑤𝑛−1 𝑤𝑛



Problem (1-dimensional – continued):
▪ One-dimensional grid of neurons:

• Each neuron  receives an  𝑛-dimensional input Ԧ𝑥 and based on an 𝑛-
dimensional weight vector 𝑤 = 𝑤1, … , 𝑤𝑛 , it computes its excitation

The objective:  „specialization“ of each neuron to a different 
region of the input space (this „specialization“ is characterized 
by maximum excitation of the respective neurons for patterns 
from the given region)

Kohonen Model: 
The Training algorithm (3)
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Problem (1-dimensional – continued):
→  „Kohonen“ neurons compute the Euclidean distance

between the input Ԧ𝑥 and the corresponding weight
vector 𝑤

→  „the closest“ neuron will be characterized by maximum
excitation

Kohonen Model: 
The Training algorithm (4)
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Kohonen Model: 
The Training Algorithm (5)
Neighborhood definition:
▪ In a one-dimensional Kohonen map, the neighborhood of neuron k with 

radius 1 contains neuron k–1 and k+1

▪ Neurons on both ends of a one-dimensional Kohonen map have an 
asymmetric neighborhood

▪ In a 1 – dimensional Kohonen map, the neighborhood of neuron k with 
radius r contains all the neurons located up to r positions from k to the left 
or to the right

▪ Similarly for multidimensional Kohonen maps and the chosen grid metrics 
(rectangular, hexagonal, …)
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Kohonen Model: 
The Training Algorithm (6)

Lateral interaction function  Φ(i,k):
~ „the strength of the lateral interconnection“ between neuron 𝑖 
     and 𝑘 during training

Example:
▪ Φ(i,k)=1 ∀ 𝑖 from the neighborhood 
     of 𝑘 with radius 𝑟 and Φ(i,k)=0   
    for all remaining 𝑖
▪ „Mexican hat“ function
▪ … and others …

|k-i|

Φ(i,k)
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Kohonen Self-Organizing Feature Maps: 
The Training Algorithm
Step 1: Initialize the weights between N input and M output neurons to small random
             values. Initialize also the neighborhood and the lateral interaction function Φ.

Step 2: Present a new training pattern to the network.

Step 3: Compute the distance dj between the input pattern and the weight vectors of 
             all output neurons j as:

𝑑𝑗 = 
𝑖=0

𝑁−1

𝑥𝑖 𝑡 − 𝑤𝑖𝑗 𝑡
2

             where xi(t) denotes the input of neuron i at time t and wij(t) corresponds to
             the synaptic weight between the input neuron i and the output neuron j at 
             time t. This distance can contain weight coefficients.
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Kohonen Self-Organizing Feature Maps: 
The Training Algorithm (2)

Step 4: Select (e.g., by means of lateral inhibition) the output neuron c with the
             minimum distance dj from the presented input pattern and denote it to be 
            „the winner“.

Step 5: Adjust the weights of the winning neuron c and all the neurons from its
             neighborhood Nc. The new weights are:

                                wij(t+1) = wij(t) + α(t) Φ(c,j) ( xi(t) – wij(t) )

             for j ∈ Nc  ;  0 ≤ i ≤ N-1
             α(t) is the vigilance coefficient (0 < α(t) < 1) decreasing with time.
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Kohonen Self-Organizing Feature Maps: 
The Training Algorithm (3)

For the choice of α(t) it should hold:


𝑡=1

∞

𝛼 𝑡 = ∞ ∧ 
𝑡=1

∞

𝛼2 𝑡 < ∞

             During training, the winning neuron adjusts its weight vector towards current
             input patterns. The same holds also for neurons from the neighborhood of 
             the winner.  

             The value of the function Φ(c,j) decreases with growing distance of the neurons

             from the center of the neighborhood Nc.

Step 6: Repeat by Going to Step 2.

e.g., for 𝛼 𝑡 = 1
𝑡
:  σ𝑡=1

∞ 1/𝑡 = ∞

σ𝑡=1
∞ 1/𝑡2 = 𝜋2

6
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Analysis of Convergence: 
Stability of The Solution and an Ordered State
Stability when supposed that the network has already 
arrived at an ordered state:

1) One-dimensional case:
  a)  interval [𝑎, 𝑏], 1 neuron with the weight 𝑤, no   
       neighborhood considered:

 

       →  convergence of 𝑤 towards the center of [𝑎, 𝑏] 
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𝐹2𝐹1

𝑤𝑎 𝑏



▪ The update rule: 𝑤𝑛 = 𝑤𝑛−1 + 𝛼(𝑥 − 𝑤𝑛−1) 
        𝑤𝑛, 𝑤𝑛−1 … weight values at time 𝑛 and 𝑛 − 1
         𝑥  …………. a random number from the interval [𝑎, 𝑏] 

▪ If  0 < 𝛼 ≤ 1, the series  𝑤1, 𝑤2, …  cannot leave [𝑎, 𝑏]
▪ Bounded is also the expected value 𝑤  of the weight 𝑤 

▪ The expected value of the derivative of 𝑤 with respect to 𝑡 is zero: 
d𝒘
d𝑡

= 0, otherwise 𝑤  would be 𝑤 < 𝑎 or 𝑤 > 𝑏

▪ As d𝒘
d𝑡

= 𝛼 𝑥 − 𝑤 = 𝛼 𝒂 + 𝒃
2

− 𝑤 , it follows: 𝑤 = Τ𝑎 + 𝑏 2
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Analysis of Convergence: 
Stability of The Solution and an Ordered State (2)



b)  interval [𝑎, 𝑏], 𝑛 neurons with the weights 𝑤1, 𝑤2, … , 𝑤𝑛  
• no neighborhood considered, 
• the weights are assumed to be monotonically ordered: 

𝑎 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < 𝑏

     →  the weights converge to: 𝑤𝑖 =  𝑎 + 2𝑖 − 1 𝑏−𝑎 
2𝑛

Analysis of Convergence: 
Stability of The Solution and an Ordered State (3)
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𝑎 𝑤1 𝑤2 𝑤3  … 𝑤𝑛 𝑏

𝑏 − 𝑎
2𝑛  

𝑏 − 𝑎
𝑛  

𝑏 − 𝑎
𝑛  

𝑏 − 𝑎
2𝑛



2) Two-dimensional case: 
▪ interval  𝑎, 𝑏 × [𝑐, 𝑑], 𝑛 × 𝑛 

neurons
▪ no neighborhood considered, 

monotonically ordered weights:

𝑤1
𝑖𝑗 < 𝑤1

𝑖𝑘     for 𝑗 < 𝑘
𝑤2

𝑖𝑗 < 𝑤2
𝑘𝑗      for 𝑗 < 𝑘

→  The problem will be reduced 
to two 1-dimensional problems

Analysis of Convergence: 
Stability of The Solution and an Ordered State (4)
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𝑁𝑖𝑗 is the neuron at row 𝑖 and column 
𝑗 with the  weights 𝑤1

𝑖𝑗 and 𝑤2
𝑖𝑗

 

w 1 n 1 

w 2 n 1 
N n 1 

w 2 11 

w 1 11 

w 1 nn 

w 2 nn 

N 11 

N nn 

a b 
c 

d 



2) Two-dimensional case (continued): 

▪ Let 𝑤𝑗
1 = 1

𝑛
σ𝑖=1

𝑛 𝑤1
𝑖𝑗  denote the average weight value of the neurons 

from the 𝑗-th column

▪ Since 𝑤1
𝑖𝑗 < 𝑤1

𝑖𝑘  for 𝑗 < 𝑘, these average values 𝑤1
𝑗 will be 

monotonically arranged: 𝑎 < 𝑤1
1 < 𝑤1

2 < ⋯ < 𝑏
▪ In the first column, the average weight value will oscillate around the 

expected value 𝑤1
1

▪ Similarly for the average weight values in each row
→ convergence to a stable state (for small enough learning rates)

Analysis of Convergence: 
Stability of The Solution and an Ordered State (5)
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PROBLEMS:
▪ „unfolding“ a planar mesh and conditions, under which it will happen

Analysis of Convergence: 
Stability of The Solution and an Ordered State (6)
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But sometimes    



PROBLEMS:
▪ „meta-stable states“ and improper choice of lateral interaction (a too fast 

decrease)

 → convergence of 1-dimensional Kohonen networks to an ordered state if the input is
selected from a uniform distribution and the following update rule is used                      

𝑤𝑘
𝑛𝑒𝑤 = 𝑤𝑘

𝑜𝑙𝑑 + 𝛾 𝑥 − 𝑤𝑘
𝑜𝑙𝑑

  where 𝑘 denotes the winning neuron and its two neighbors (Cottrell & Fort, 1986)

Analysis of Convergence: 
Stability of The Solution and an Ordered State (7)
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Supervised training: 
(LVQ ~ Learning Vector Quantization)

LVQ1:
▪ Motivation:       

- ) Ԧ𝑥 should belong to the same class as the closest 𝑤𝑖

▪ let 𝑐 = arg min
𝑖

{ Ԧ𝑥 − 𝑤𝒊 } denotes the 𝑤𝑖 that is the closest 
one to Ԧ𝑥 ( 𝑐 ~ the winning neuron)

Variants of The Training Algorithm 
for Kohonen Maps
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Variants of The Training Algorithm 
for Kohonen Maps   (2)
LVQ1  (continued):

→  adjustment rules (0 < 𝛼(𝑡) < 1):

• 𝑤𝑐 𝑡 + 1 = 𝑤𝑐 𝑡 + 𝛼 𝑡 Ԧ𝑥 𝑡 − 𝑤𝑐 𝑡

 if Ԧ𝑥 and 𝑤𝑐  are classified identically

• 𝑤𝑐 𝑡 + 1 = 𝑤𝑐 𝑡 − 𝛼 𝑡 Ԧ𝑥 𝑡 − 𝑤𝑐 𝑡  

  if Ԧ𝑥 and 𝑤𝑐  are classified differently

• 𝑤𝑖 𝑡 + 1 = 𝑤𝑖 𝑡 if 𝑖 ≠ 𝑐
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Variants of The Training Algorithm 
for Kohonen Maps (3)
LVQ2.1:
▪ Motivation: mutual update of 2 nearest neighbors of Ԧ𝑥

• One must belong to the correct class, the other to the incorrect 

• Furthermore, Ԧ𝑥 must be from the area close to the separating 
hyperplane between 𝑤𝑖  and 𝑤𝑗  (~ from „the window“)

• If 𝑑𝑖 (resp. 𝑑𝑗)  denotes the Euclidean distance between Ԧ𝑥 and 𝑤𝑖  
(resp. between Ԧ𝑥 and 𝑤𝑗), „the window“ can be defined by means of:

   (recommended values for 𝜔 (~ the width of the window):  0.2 – 0.3)

min
𝑑𝑖
𝑑𝑗

,
𝑑𝑗

𝑑𝑖
> 𝑠 , where 𝑠 =

1 − 𝜔
1 + 𝜔
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Variants of The Training Algorithm 
for Kohonen Maps (4)

LVQ2.1  (continued):
→  adjustment rules (0 < 𝛼(𝑡) < 1):

• 𝑤𝑖 𝑡 + 1 = 𝑤𝑖 𝑡 − 𝛼 𝑡 Ԧ𝑥 𝑡 − 𝑤𝑖 𝑡

• 𝑤𝑗 𝑡 + 1 = 𝑤𝑗 𝑡 + 𝛼 𝑡 Ԧ𝑥 𝑡 − 𝑤𝑗 𝑡
‐ 𝑤𝑖 and 𝑤𝑗 are the closest to Ԧ𝑥      

‐ at the same time, Ԧ𝑥 and 𝑤𝑗 belong to the same class

‐ and Ԧ𝑥 and 𝑤𝑖 belong to different classes 

‐ Ԧ𝑥 comes from the „window“
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Variants of The Training Algorithm 
for Kohonen Maps (5)
LVQ3 (motivation):  
▪ approximation of the class distributions and stabilization of the solution
→ adjustment rules (0 < 𝛼(𝑡) < 1):

• 𝑤𝑖 𝑡 + 1 = 𝑤𝑖 𝑡 − 𝛼 𝑡 Ԧ𝑥 𝑡 − 𝑤𝑖 𝑡

• 𝑤𝑗 𝑡 + 1 = 𝑤𝑗 𝑡 + 𝛼 𝑡 Ԧ𝑥 𝑡 − 𝑤𝑗 𝑡
‐ 𝑤𝑖  and 𝑤𝑗  are the closest to Ԧ𝑥; Ԧ𝑥 and 𝑤𝑗  belong to the same class; while Ԧ𝑥 and 𝑤𝑖 

belong to different classes and Ԧ𝑥 comes from the „window“

• 𝑤𝑘 𝑡 + 1 = 𝑤𝑘 𝑡 + 𝜀𝛼 𝑡 Ԧ𝑥 𝑡 − 𝑤𝑘 𝑡
‐ for 𝑘 ∈ {𝑖, 𝑗} if Ԧ𝑥, 𝑤𝑖 and 𝑤𝑗  belong to the same class

• The choice of parametersfor the „window“: 0.1 ≤ 𝜀 ≤ 0.5 and 0.2 ≤ 𝜔 ≤ 0.3
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Variants of The Training Algorithm 
for Kohonen Maps (7)

Further variants:
▪ Multi-layered Kohonen maps 

• Abstraction tree

▪ Counterpropagation networks
• Supervised training – two phases 

‐ Kohonen (clustering) layer
‐ Grossberg layer (weight adjustment only for the winning  neurons from the 

Kohonen layer)
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▪ Training: supervised

▪ Recall

▪ Application:

• Heteroassociative 
memory

Counterpropagation Networks

output 
neurons

input 
neurons

SOM 
layer

Grossberg 
layer
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Step 1: Initialize synaptic weights to small random values.
Step 2: Present a new training pattern to the network as:  

(input, desired output)= Ԧ𝑥 𝑡 , Ԧ𝑑(𝑡) .
Step 3: In the Kohonen layer, find the winning neuron 𝑐, the synaptic 

weights of which best correspond to the presented pattern Ԧ𝑥 𝑡 . 
For this neuron, it thus follows that the distance 𝑒𝑐 between the 
selected weight vector Ԧ𝑣𝑐 𝑡  and the presented pattern Ԧ𝑥 𝑡  is 
minimal. E.g., the Euclidean metrics can be used; then:

The Training Algorithm 
for Counterpropagation Networks (1)

𝑒𝑐 = min
𝑘

𝑒𝑘 = min
𝑘


𝑖

𝑥𝑖 𝑡 − 𝑣𝑖𝑘 𝑡 2
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Step 4: Update the weights 𝑣𝑖𝑘 between the input neuron 𝑖 and the 
neurons from Kohonen layer that belong to the neighborhood 𝑁𝑐 
of neuron 𝑐 to better correspond to the presented pattern Ԧ𝑥(𝑡):

𝑣𝑖𝑘 𝑡 + 1 = 𝑣𝑖𝑘 𝑡 + 𝛼 𝑡 𝑥𝑖 𝑡 − 𝑣𝑖𝑘 𝑡

 𝛼(𝑡), where 0 < 𝛼(𝑡) < 1, is the training parameter for the 
weights between the input and Kohonen layer that decreases 
with time. 𝑡 represents the current training step, 𝑡 + 1 the 
following one. 

The Training Algorithm 
for Counterpropagation Networks (2)
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Step 5: Update the weights 𝑤𝑐𝑖 between the „winning“ neuron 𝑐 from the Kohonen layer and 
the neurons of the Grossberg layer such that the output vector Ԧ𝑦 better corresponds to 
the desired output Ԧ𝑑(𝑡):

𝑤𝑐𝑗 𝑡 + 1 = 1 − 𝛽 𝑤𝑐𝑗 𝑡 + 𝛾𝑧𝑐𝑑𝑗(𝑡)
 𝑤𝑐𝑗(𝑡) is the weight of the synaptic connection between the 𝑐-th neuron of the 

Kohonen layer and the 𝑗-th neuron of the Grossberg layer in time 𝑡, 𝑤𝑐𝑗(𝑡 + 1) denotes 
the value of this synaptic connection in time 𝑡 + 1. 
𝛽 is a positive constant influencing the dependence of the new value of the synaptic 
weight on its value in the preceding training step. A positive constant 𝛾 represents the 
learning rate for the weights between the Kohonen and Grossberg layer, 𝑧𝑐 denotes the 
activity of the „winning“ neuron from the Kohonen layer.

Step 6: Go to Step 2.

The Training Algorithm 
for Counterpropagation Networks (3)
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▪ Hybrid architecture (Moody & Darken)
▪ Supervised training

RBF-networks  (Radial Basis Functions)

• • • •𝑥1 𝑥2 𝑥3 𝑥𝑛

𝑤11 𝑤1𝑚

𝑧1

𝑧2 𝑧3

𝑧𝑚
linear associator

Kohonen layer
𝑛 neurons with the Gaussian      
transfer function

input neurons

𝑤𝑛𝑚



▪ Every neuron 𝑗 computes its output 𝑔𝑗(𝑡) according to:

𝑔𝑗 Ԧ𝑥 =
exp −

Ԧ𝑥 − 𝑤𝑗
2

2𝜎𝑗
2

σ𝑘 exp − Ԧ𝑥 − 𝑤𝑘
2

2𝜎𝑘
2

 Ԧ𝑥 ... input vector
 𝑤1, … , 𝑤𝑛 ... weight vectors of hidden neurons
 𝜎1, … , 𝜎𝑛 ... constants (set, e.g., according to the distance between
                         the respective weight vector and its closest neighbor)
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RBF-networks  (Radial Basis Functions)
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RBF-networks (Radial Basis Functions)
▪ the output of each hidden neuron is normalized

• mutual inter-connection of all the neurons

▪ the weights 𝑧1, … , 𝑧𝑚 can be found, e.g., by means of the back-propagation 
training algorithm:

     

    𝑑 ... the desired output
                                                               𝑝 ... the number of training patterns
                                                              𝛾 ... training parameter 

𝐸 =
1
2


𝑝


𝑗=1

𝑚

𝑔𝑗 Ԧ𝑥𝑝  𝑧𝑗 − 𝑑𝑝

2

Δ𝑧𝑖 ≅ −
𝜕𝐸
𝜕𝑧𝑖

= 𝛾𝑔𝑖 Ԧ𝑥 𝑑 − 
𝑗=1

𝑚

𝑔𝑗 Ԧ𝑥 𝑧𝑗

The error function on the 
whole training set

Adaptation for a single 
training pattern (𝑥, 𝑑)
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ART – Adaptive Resonance Theory
(Carpenter & Grossberg)

attention 
parameter
(vigilance)
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ART – Adaptive Resonance Theory (2)
(Carpenter & Grossberg)

ART 1:    

▪ Binary inputs, unsupervised training

▪ Lateral inhibition is used to find the output neuron with 
maximum response

▪ Feedback weights (from the output neurons to the input 
neurons) are used to compare the actual similarity of the 
processed input pattern with the recalled pattern (stored 
in the weights)
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ART – Adaptive Resonance Theory (3)
(Carpenter & Grossberg)

ART 1  (continued):    

▪ Vigilance test – attention parameter 𝜌 
▪ A mechanism to „switch off“ the output neuron with maximum 

response   
 →   stability  ×  plasticity  of  the  network
×  the network has big problems even for „moderately noise

-corrupted patterns“
 →   a growing number of stored patterns
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ART 1 – The Training Algorithm
Step 1:  Initialization
   𝑡𝑖𝑗(0)  =  1  0 ≤ 𝑖 ≤ 𝑁 − 1
  𝑏𝑖𝑗(0)  =  1/(1 + 𝑁) 0 ≤ 𝑗 ≤ 𝑀 − 1
   𝜌                                       0 ≤ 𝜌 ≤ 1
              𝑏𝑖𝑗(𝑡)   ~  the weight between the input neuron 𝑖  and the

output neuron 𝑗 in time 𝑡
  𝑡𝑖𝑗(𝑡)    ~  the weight between the output neuron 𝑗 and the
 input neuron 𝑖 in time 𝑡 (determine the pattern
 specified by the output neuron 𝑗)
       𝜌          ~ vigilance parameter  (determines, how close should

be the presented input to the stored pattern to belong 
to the same category) 
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ART 1 – The Training Algorithm (2)
Step 2: Present a new input pattern

Step 3: Compute the activation of output neurons

𝜇𝑗 = 
𝑖=0

𝑁−1

𝑏𝑖𝑗 𝑡 𝑥𝑖; 0 ≤ 𝑗 ≤ 𝑀 − 1

                    𝜇𝑗  ~  output of the output neuron 𝑗

                  𝑥𝑖   ~  𝑖-th component of the input vector  (∈ {0,1})

Step 4: Find the stored pattern, that best represents the presented
pattern (e.g., by means of lateral inhibition):

𝜇𝑗∗ = max
𝑗

𝜇𝑗
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ART 1 – The Training Algorithm (3)
Step 5:   Vigilance test (using feedback weights)

  Ԧ𝑥 = σ𝑖=0
𝑁−1 𝑥𝑖 and 𝑇 ⋅ Ԧ𝑥 = σ𝑖=0

𝑁−1 𝑡𝑖𝑗∗ 𝑥𝑖     (𝑥𝑖 ∈ {0,1})

       if  𝑇⋅ Ԧ𝑥
Ԧ𝑥

> 𝜌, go to Step 7

                else go to Step 6

Step 6:  Inhibit the best matching neuron
          the output of neuron 𝑗∗ selected in Step 4 is temporarily set to zero

(and not considered in the following maximization in Step 4).
Afterwards go to Step 4.
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ART 1 – The Training Algorithm (4)
Step 7:   Adjustment of the best matching neuron

𝑡𝑖𝑗∗ 𝑡 + 1 = 𝑡𝑖𝑗∗ 𝑡 ⋅ 𝑥𝑖

𝑏𝑖𝑗∗ 𝑡 + 1 =
𝑡𝑖𝑗∗ 𝑡 ⋅ 𝑥𝑖

0.5 + σ𝑖=0
𝑁−1 𝑡𝑖𝑗∗ 𝑡 ⋅ 𝑥𝑖

Step 8:   Go to Step 2 and repeat
             (Before that, „switch on“ all the neurons „switched off“ 

in Step 6)
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Cascade Correlation (2) (Fahlman & Lebiere, 1990)

I
N
P
U
T
S

I
N
P
U
T
S

I
N
P
U
T
S

Frozen weights

Trained weights

output

H1

output

H1 H2
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Cascade Correlation (3) (Fahlman & Lebiere, 1990)

Training of the network  (proceeds in 2 phases):
a) During the first phase, the already existing network is 

trained by means of Quickprop
• If the current error value is small enough, the algorithm 

stops

• If the average quadratic error remains bigger than its 
desired level, a new neuron is added to the network
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Cascade Correlation (4) (Fahlman & Lebiere, 1990)

Training of the network  (continued):
b) The new added neuron is trained to maximize correlation 

between its output and the error at network output
→   the output of the trained added neuron strongly correlates

with the „residual“ error
• The input weights of the added neuron will be frozen

• Only the weights from the added neuron to the output will be 
„retrained“ 
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Cascade Correlation (5) (Fahlman & Lebiere, 1990)

Training of the network (continued):
While training hidden neurons, our objective is to maximize 𝑆:

𝑆 =  
𝑖=1

𝑝

𝑉𝑖 − ത𝑉 𝐸𝑖 − ത𝐸

  𝑝  ….. the number of training patterns
  𝑉𝑖  ….. output of the added neuron for the 𝑖-th pattern
  ത𝑉  ….. average output of the added neuron

  𝐸𝑖  ….. error for the 𝑖-th pattern
  ത𝐸 ….. average error
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Cascade  Correlation (Fahlman & Lebiere, 1990)

~ a robust growing architecture

▪ The system starts training with a direct interconnec-
tion between the inputs and outputs

▪ Subsequently, hidden neurons are added

▪ The inputs of each new neuron are interconnected 
with all original inputs and previously created neurons
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Cascade Correlation (6) (Fahlman & Lebiere, 1990)

Training of the network  (continued):

𝜕𝑆
𝜕𝑤𝑘

= 
𝑖=1

𝑝

𝜎 𝐸𝑖 − ത𝐸 𝑓𝑖
′ 𝐼𝑖,𝑘

  𝜎 ….. the sign of correlation between the added neuron and 
the output

  𝑓𝑖
′ ….. the derivative of the transfer function for pattern 𝑖

   𝐼𝑖,𝑘 .... 𝑘-th input of the added neuron for pattern 𝑖

𝑆 =  
𝑖=1

𝑝

𝑉𝑖 − ത𝑉 𝐸𝑖 − ത𝐸
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Genetic Algorithms (GA)
▪ Lawrence Fogel 

• studied recombination and mutating of populations
• L. Fogel et al.: Artificial Intelligence Through Simulated Evolution, John Wiley and Sons, New 

York, 1966

▪ John Holland 
• proposed the concept of schemata and studied their diffusion dynamics
• J. Holland: Adaptation in Natural and Artificial Systems: An Introductory Analysis with 

Applications to Biology, Control and Artificial Systems, The University of Michigan Press, Ann 
Arbor, MI, 1975

▪ David Goldberg 
• summarized evolutionary methods for the solution of optimization problems
• D. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, Reading, MA, 1989
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Genetic Algorithms  (GA)
▪ Artificial chromosome (genotype)
       ~   a string of symbols that code the properties of the individual (phenotype),

  e.g., a binary value of a variable or their sequence 
• many coding types – binary, Grey, real values, …
• various alphabets – binary, ternary, …
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with the Grey code, only
one bit changes state
from one position to 
another, i.e., if more than
one bit changes, the data 
must be incorect

Binary code Grey code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110



Genetic Algorithms  (GA)
▪ Population

~ a set of artificial chromosomes that cyclically undergo selective
reproduction with random changes
• more efficient individuals are favored 

▪ Fitness function (performance criterion)
~ a mapping  : genotype  → ℝ

• better individuals get higher values 
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population fitness

Φ 𝑥



Genetic Algorithms  (GA)
A general genetic algorithm (Goldberg, 1989)
▪ create a population of 𝑁 randomly generated chromosomes 𝑥1, 𝑥2, … , 𝑥𝑁

▪ repeat
• decode all the chromosomes and evaluate their fitness, 𝑓𝑖 = Φ(𝑥𝑖)
• form a new population by means of selective reproduction

• recombine the chromosomes – crossover

• mutate the chromosomes

▪ until the wanted individual has been found or the fitness of the so-far best 
individual does not improve
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GA:  Simple Selection
▪ a new population is created by copying the 

chromosomes from the previous population
• the better is the copied individual, the more copies 

should be contained in the new population

▪ Roulette wheel selection:
• the chance of an individual’s being selected is 

proportional to its fitness: 

𝑝𝑖 =
𝑓𝑖

σ𝑗=1
𝑁 𝑓𝑗

• for a population of 𝑁 individuals, the roulette wheel 
will be spun 𝑁-times
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GA:  Crossover
▪ individuals are randomly paired 
▪ each pair of individuals will be „crossed over“ with a given probability

One-point crossover

More-point crossover

Uniform crossover  a random choice of the bits from the parents
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Mutation and distributed GA
▪ Mutation: ~  alter each element of the chromosome with a given probability

• (binary-valued) bits will be negated 
• in the case of other ranges, a randomly chosen value can be used directly or in 

addition to the original value 
• probability of mutation is, in general, very low, e.g., 0.001
• Exception: local minima (analogy to niche populations, e.g., hemophilia in 

European royalty, ectrodactyly in isolated tribes)
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Mutation and distributed GA (2)
▪ Distributed genetic algorithms:

• the individuals of a population are arranged, e.g., into a 2D- space
• selection and crossover proceed only locally, yet individual sub-populations overlap 

~  analogy to settler populations
==>  propagation of „advantageous“ properties over entire populations

I. MRÁZOVÁ: NEURONOVÉ SÍTĚ (NAIL002) 109



GA: Non-determinism
▪ The whole GA is non-deterministic and uses random variables

▪ Typically, we are interested in the average and maximum fitness

▪ GA stops after the desired fitness value has been achieved, a 
preset number of generations has been completed or if the 
fitness did not change during several past generations

▪ Afterwards, GA can be run again with other parameters

▪ The result represents the best individual selected from final 
generations over all the GA-runs
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GA: Schemata
▪ a schema is a mask describing a certain group of strings / chromosomes

• 1∗∗1 = 1001, 1011, 1101, 1111 ;  ∗ stands for any allowed value

▪ binary strings of length 𝑙 allow for at most 3𝑙 different schemata

▪ a population of 𝑁 individuals represented by strings of length 𝑙 yields 
between 2𝑙 and 𝑁2𝑙 schemata

▪ a schema may define a property that guarantees high fitness

▪ it potentially allows to investigate more strings than actually contained 
within the population

▪ GA processes at most 𝑁3 schemata in each step, even if it contains only 𝑁 
strings (an implicit parallelism in GA – Holland, 1975)
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GA: Schemata (continued)
▪ some schemata yield a higher average fitness

▪ long schemata can be easily destroyed: 1∗∗∗∗∗1 vs. ∗∗∗01∗∗
▪ short schemata yielding a high average fitness grow exponentially during GA

▪ schemata are considered to be the basic building blocks of evolution; 
crossover represents its main operator as it allows to investigate the 
combinations of schemata. In this respect, however, appropriate coding is 
required with short building blocks 

▪ Note: sometimes, crossover worsens the results – in such a case, its 
probability shall be set to very small values or zero
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GA: Schemata Theorem
▪ The order of the schema 𝐻, 𝑜(𝐻), is the number of fixed positions 

in the schema 𝐻 (i.e., with values 0 or 1 for a binary alphabet), e.g.:
• 𝑜(011∗1∗∗)  =  4
• 𝑜(1∗∗∗∗∗∗)  =  1

▪ The length of the schema 𝐻, (𝐻), corresponds to the distance 
between the first and the last fixed position of 𝐻:
• (011∗1∗∗)  =  4
•  (1∗∗∗∗∗∗)  =  0

▪ The Schemata Theorem analyzes the influence of reproduction, 
crossover and mutation on the number of strings corresponding  
to a given schema
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GA – Convergence Analysis:
the Influence of Reproduction
The influence of reproduction on the expected number of 
individuals with a given schema in the population:
▪ At time 𝑡, the population contains 𝑚 strings of the schema 𝐻 (𝑚 = 𝑚(𝐻, 𝑡))
▪ During reproduction, a string 𝐴𝑖 is selected to the following population (according 

to its fitness 𝑓𝑖 = (𝐴𝑖)) with the probability: 𝑝𝑖 = 𝑓𝑖
σ𝑗=1

𝑁 𝑓𝑗

▪ In the following population of the size 𝑛, the expected number of strings 
complying with the schema 𝐻 (𝑚 = 𝑚(𝐻, 𝑡 + 1)) can be estimated as:

𝑚 𝐻, 𝑡 + 1 = 𝑚 𝐻, 𝑡 ⋅ 𝑁 ⋅
𝑓 𝐻

σ𝑗=1
𝑁 𝑓𝑗

where 𝑓(𝐻) is the average fitness of strings complying with the schema 𝐻
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GA – Convergence Analysis:
the Influence of Reproduction (2)
The influence of reproduction on the expected number of 
individuals with a given schema in the population (cont.):

▪ For the average fitness 𝑓(𝐻) of strings complying with the schema 𝐻 at 
time 𝑡 and for the average fitness of the entire population of 𝑛 strings:

ሜ𝑓 =
σ𝑗=1

𝑁 𝑓𝑗

𝑁

we obtain: 𝑚 𝐻, 𝑡 + 1 = 𝑚 𝐻, 𝑡 ⋅ 𝑓 𝐻
ሜ𝑓

→ During fitness-based reproduction, the number of strings complying with 
a given schema grows / drops according to the average fitness
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GA – Convergence Analysis:
the Influence of Crossover
The influence of crossover on the expected number of 
individuals with a given schema in the population:
▪ for each schema, we can assess the probability 𝑝𝑠 of surviving crossover as:

𝑝𝑠 = 1 − 𝛿 𝐻
𝑙−1

▪ if crossover is performed randomly with probability 𝑝𝑐 , the probability of 

surviving crossover corresponds to: 𝑝𝑠 = 1 − 𝑝𝑐
𝛿 𝐻
𝑙−1

→ During reproduction combined with crossover, the number of strings complying 
with a given schema grows / drops in the population ac-cording to the length of 
the schema and its average fitness:

𝑚 𝐻, 𝑡 + 1 ≥ 𝑚 𝐻, 𝑡 ⋅
𝑓 𝐻

ሜ𝑓
⋅ 1 − 𝑝𝑐

𝛿 𝐻
𝑙 − 1
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GA – Convergence Analysis:
the Influence of Mutation
The influence of mutation on the expected number of individuals 
with a given schema in the population:

▪ a random change occurs at each position with probability 𝑝𝑚 
⇒ each position survives mutation with probability 1 − 𝑝𝑚

▪ all the respective mutations are mutually independent

▪ for a schema, each of the 𝑜(𝐻) fixed positions has to survive
⇒  the probability of surviving mutation is for schema 𝐻: 1 − 𝑝𝑚

𝑜 𝐻

▪ approximation for very small values of 𝑝𝑚 (≪ 1):  
1 − 𝑝𝑚

𝑜 ℎ  ~ 1 − 𝑜 𝐻 𝑝𝑚
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The influence of mutation on the expected number of 
individuals with a given schema in the population (cont.):

▪ The expected number of strings complying with schema 𝐻 in the 
population after reproduction, crossover, and mutation:

𝑚 𝐻, 𝑡 + 1 ≥ 𝑚 𝐻, 𝑡 ⋅
𝑓 𝐻

ሜ𝑓
⋅ 1 − 𝑝𝑐

𝛿 𝐻
𝑙 − 1 − 𝑜 𝐻 ⋅ 𝑝𝑚

→ During reproduction combined with crossover and mutation, the highest 
chance to survive possess short schemata with few fixed positions and 
above-average fitness

GA – Convergence Analysis:
the Influence of Mutation (2)
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