Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Problem Solving: Informed (Heuristic) Search

Uninformed (blind) search algorithms can find an (optimal) solution to the problem, but they are usually not very efficient.

- BFS, DFS, ID, BiS

Informed (heuristic) search algorithms can find solutions more efficiently thanks to exploiting problem-specific knowledge.

– How to use heuristics in search?

• BestFS, A*, IDA*, RBFS, SMA*

– How to construct heuristics?

• relaxation, pattern databases

Recall that we are looking for (the shortest) path from the initial state to some goal state.

Which information can help the search algorithm?

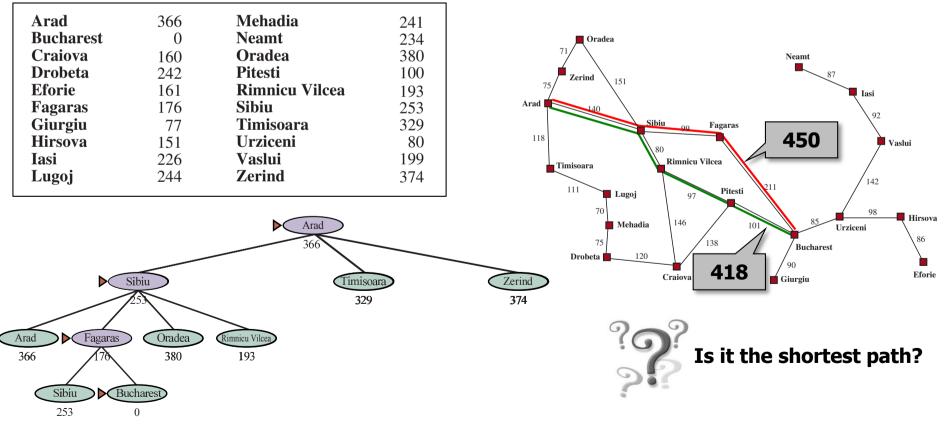
- For example, the length of path to some goal state.
- However such information is usually not available (if it is available then we do not need to do search). Usually some **evaluation function f(n)** is used to evaluate "quality" of node **n** based on the length of path to the goal.
- best-first search
 - The node with the smallest value of f(n) is used for expansion.
- There are search algorithms with different views of f(n). Usually the part of f(n) is a heuristic function h(n) estimating the length of the shortest (cheapest) path to the goal state.
 - Heuristic functions are the most common form of additional information given to search algorithms
 - We will assume that $h(n) = 0 \Leftrightarrow n$ is goal.

Let us try to expand first the node that is closest to some goal state, i.e. f(n) = h(n).

greedy best-first search algorithm

Example (path Arad \rightarrow Bucharest):

- We have a table of direct distances from any city to Bucharest.
- Note: this information was not part of the original problem formulation!

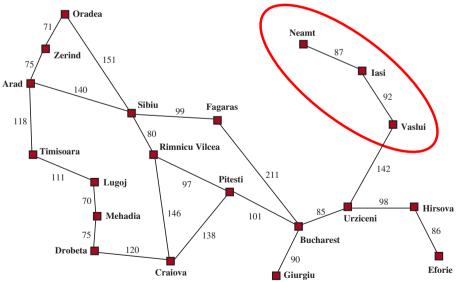


We already know that the greedy algorithm **may not find the optimal path**.

Can we at least guarantee finding some path?

- If we expand first the node with the smallest cost then the (tree search) algorithm may not find any solution.
 Example: path Iasi → Fagaras
 - Go to Neamt, then back to Iasi, Neamt, ...
 - We need to detect repeated visits in cities!

- Time complexity O(b^m), where m is the maximal depth
- Memory complexity O(b^m)
- A good heuristic function can significantly decrease the practical complexity.



Let us now try to use f(n) = g(n) + h(n)

- recall that g(n) is the cost of path from root to n
- probably the most popular heuristic search algorithm
- f(n) represents the cost of path through n
- the algorithm does not extend already long paths

Arad Bucharest Craiova Drobeta Eforie Fagaras Giurgiu Hirsova Iasi Lugoj	366 0 160 242 161 176 77 151 226 244	Mehadia Neamt Oradea Pitesti Rimnicu Vilcea Sibiu Timisoara Urziceni Vaslui Zerind	241 234 380 100 193 253 329 80 199 374		Arad Fa	Sibiu garas Orac	Rimnicu Vilce	44	Timisoara 7=118+329	Zerind 449=75+374
	151 0 Sibi 8 70 Lugoj 70 Mehadia 75 120	99 Pitesti 97 Pitesti 146 101	Neamt 87 Iasi 90 Bucharest 90 Giurgiu	92 Vaslui	646=280+366 Sibiu	671=29 Bucharest 450=450+0	1+380 526=366+160 Buchares	Pitesti	Sibiu 553=300+253 Rimnicu Vilcea 607=414+193	

:(n.a.n'

What about completeness and optimality of A*?

First a few definitions:

- admissible heuristic h(n)
 - h(n) ≤ "the cost of the cheapest path from n to goal"
 - an optimistic view (the algorithm assumes a better cost than the real cost)
 - function f(n) in A* is a lower estimate of the cost of path through n
- monotonous (consistent) heuristic h(n) nemies sites of nemoin
 - let **n**' be a successor of **n** via action **a** and **c(n,a,n')** be the transition cost
 - $h(n) \leq c(n,a,n') + h(n')$ $h(n) h(n') \leq c(n,a,n')$
 - this is a form of triangle inequality

Monotonous heuristic is admissible.

let n_1 , n_2 ,..., n_k be the optimal path from $\mathbf{n_1}$ to goal $\mathbf{n_k}$, then $h(n_i) - h(n_{i+1}) \le c(n_i, a_i, n_{i+1})$, via monotony $h(n_1) \le \Sigma_{i=1,..,k-1} c(n_i, a_i, n_{i+1})$, after "sum" - Leshopich' Sum

For a monotonous heuristic the values of f(n) are non-decreasing over any path.

Let **n'** be a successor of **n**, i.e. g(n') = g(n) + c(n,a,n'), then $f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \ge g(n) + h(n) = f(n)$

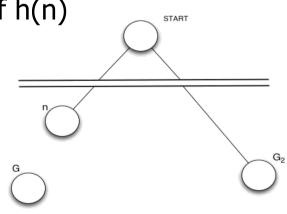
Algorithm A*: optimality

If h(n) is an admissible heuristic then the algorithm A* in TREE-SEARCH is optimal.

- in other words the first expanded goal is optimal
- Let G_2 be sub-optimal goal from the fringe and C* be the optimal cost
 - $f(G_2) = g(G_2) + h(G_2) = g(G_2) > C^*$, because $h(G_2) = 0$
- Let **n** be a node from the fringe and being on the optimal path
 - $f(n) = g(n) + h(n) \le C^*$, via admissibility of h(n)
- together

• $f(n) \le C^* < f(G_2)$,

i.e., the algorithm must expand \mathbf{n} before G_2 and this way it finds the optimal path.



If h(n) is a monotonous heuristic then the algorithm A* in GRAPH-SEARCH is optimal.

- Possible **problem**: reaching the same state for the second time using a better path classical GRAPH-SEARCH ignores this second path!
- Possible **solution**: selection of the better of the two paths leading to the closed node (extra bookkeeping) or using monotonous heuristic.
 - for monotonous heuristics, the values of f(n) are non-decreasing over any path
 - A* selects for expansion the node with the smallest value of f(n), i.e., the values f(m) of other open nodes m are not smaller, i.e., among all "open" paths to n there cannot be a shorter path than the path just selected (no path can shorten)
 - hence, the first closed goal node is optimal

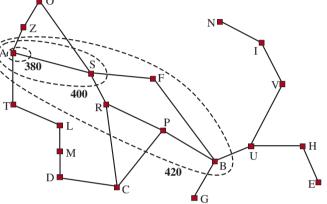
m

<? a

Algorithm A*: properties

For non-decreasing function f(n) we can draw **contours** in the state graph (the nodes inside a given contour have f-costs less than or equal to the contour value.

- for h(n) = 0 we obtain circles around the start
- for more accurate h(n) we use, the bands will stretch toward the goal state and become more narrowly focused around the optimal path.



- A* expands all nodes such that f(n) < C* on the contour</p>
- A^* can expand some nodes such that $f(n) = C^*$
- the nodes **n** such that $f(n) > C^*$ are never expanded
- the algorithm A* is **optimally efficient** for any given consistent heuristic

- **Time complexity:** A* can expand an exponential number of nodes
 - this can be avoided if $|h(n)-h^*(n)| \le O(\log h^*(n))$, where $h^*(n)$ is the cost of optimal path from n to goal ____

Space complexity: A* keeps in memory all expanded nodes

A* usually runs out of space long before it runs out of time

Iterative-deepening A*

A simple way to decrease memory consumption is iterative deepening.

Algorithm IDA*

function IDA*(problem) returns a solution sequence
inputs: problem, a problem
static: f-limit, the current f- COST limit
root, a node

root ← MAKE-NODE(INITIAL-STATE[problem]) f-limit ← f- COST(root) loop do solution, f-limit ← DFS-CONTOUR(root, f-limit) if solution is non-null then return solution if f-limit = ∞ then return failure; end

function DFS-CONTOUR(*node*, *f*-*limit*) **returns** a solution sequence and a new *f*- COST limit **inputs**: *node*, a node *f*-*limit*, the current *f*- COST limit **static**: *next-f*, the *f*- COST limit for the next contour, initially ∞

if f- COST[node] > f-limit then return null, f- COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do
 solution, new-f ← DFS-CONTOUR(s, f-limit)
 if solution is non-null then return solution, f-limit
 next-f ← MIN(next-f, new-f); end
return null, next-f

- the search limit is defined using the cost
 f(n) instead of depth
- for the next iteration we use the smallest value
 f(n) of node n that exceeded the limit in the last iteration
- frequently used algorithm

Recursive best-first search

Let us try to mimic standard best-first search, but using only linear space

- the algorithm stops exploration if there is an alternative path with better cost f(n)
- when the algorithm goes back to node n, it replaces the value f(n) using the cost of successors (remembers the best leaf in the forgotten subtree)

If h(n) is an admissible heuristic then the algorithm is optimal.

- Space complexity O(bd)
- Time complexity is still exponential (suffers from excessive node re-generation) furt define to co best-first-search, ponce to silvane fringe.

```
function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure

RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), \infty)

function RBFS(problem, node, f_limit) returns a solution, or failure and a new f-cost limit

if GOAL-TEST[problem](STATE[node]) then return node

successors \leftarrow EXPAND(node, problem)

if successors is empty then return failure, \infty

for each s in successors do

f[s] \leftarrow \max(g(s) + h(s), f[node])

repeat

best \leftarrow the lowest f-value node in successors

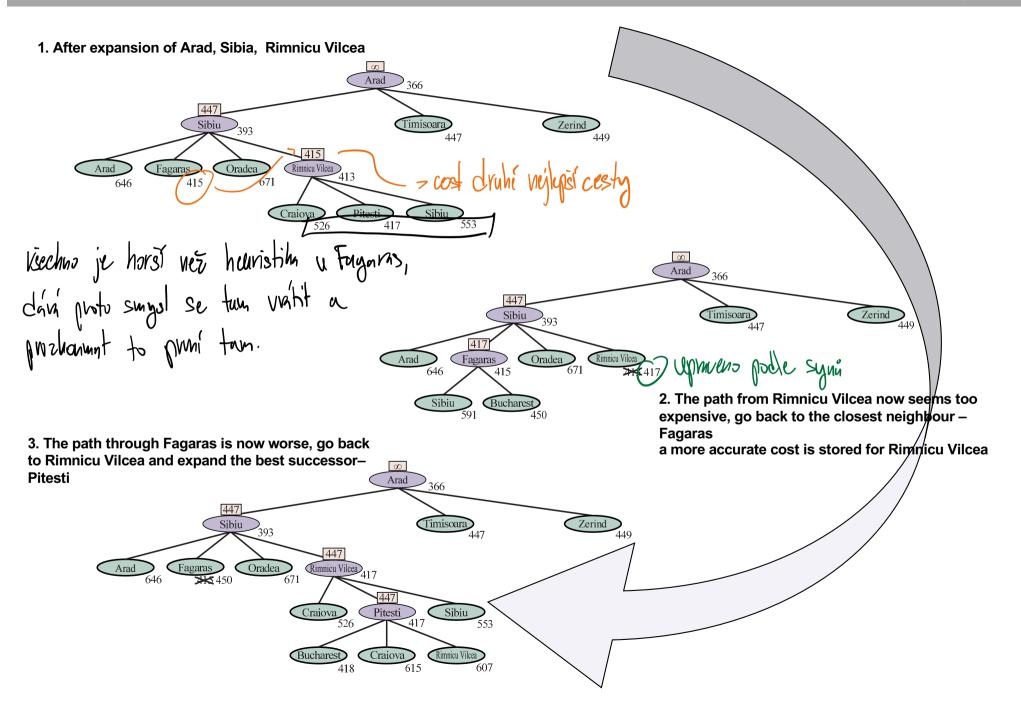
if f[best] > f_{limit} then return failure, f[best]

alternative \leftarrow the second-lowest f-value among successors

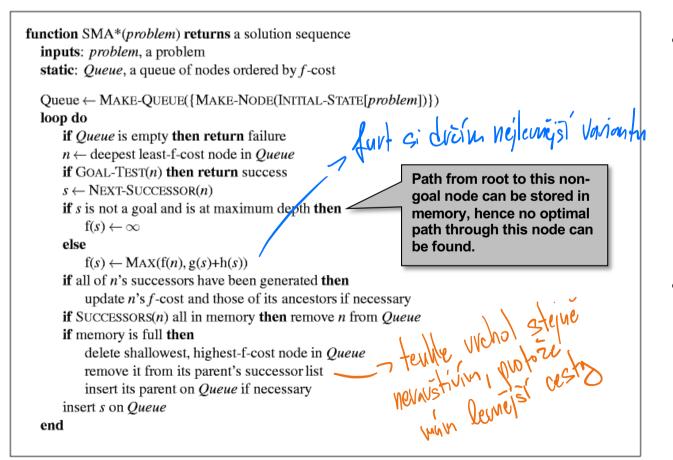
result, f[best] \leftarrow RBFS(problem, best, \min(f_{limit}, alternative))

if result \neq failure then return result
```

Recursive BFS: example

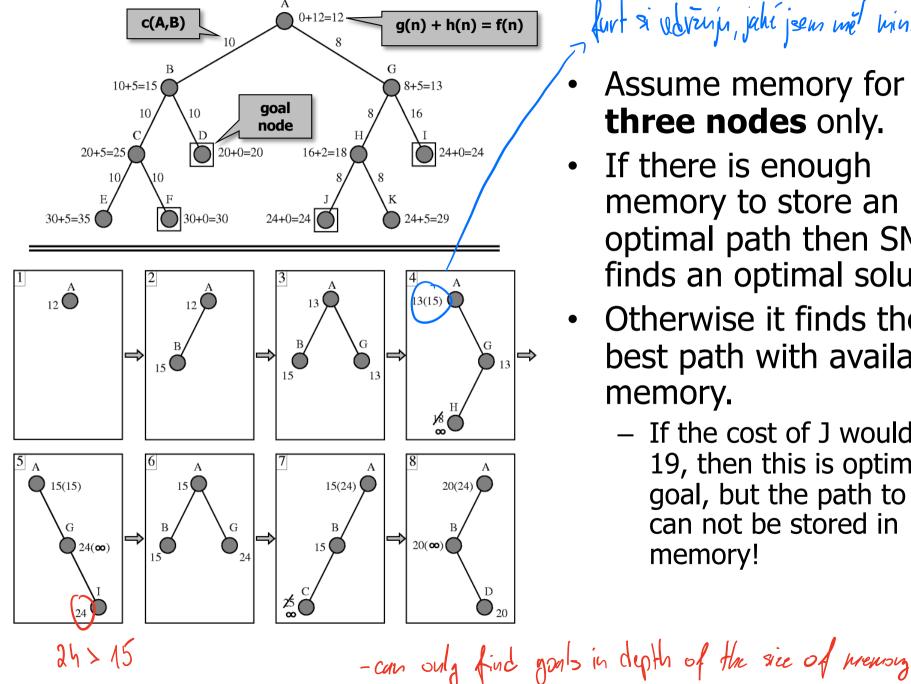


IDA* and RBFS do not exploit available memory! This is a pity as the already expanded nodes are reexpanded again (waste of time) Let us try to modify classical A*



- when memory is full, drop the worst leaf node – the node with the highest f-value (if there are more such nodes then drop the shallowest node)
- similarly to RBFS back up the value of the forgotten node to its parent

Simplified memory-bounded A*: example



furt à vorigin, jané jseus mé min. Modrocení

- Assume memory for three nodes only.
- If there is enough memory to store an optimal path then SMA* finds an optimal solution.
- Otherwise it finds the best path with available memory.
 - If the cost of J would be 19, then this is optimal goal, but the path to it can not be stored in memory!

> pali mužn něleterí cesto obodnotit dráč juh realina cesta

A* still expands a lot of nodes (to guarantee optimality). If we are willing to accept suboptimal solutions (good enough or **satisficing solutions**), we can explore fewer nodes.

How? We allow inadmissible heuristics.

Weighted A*

f(n) = g(n) + W × **h(n)**, for some W > 1

Finds solutions with the cost between C* and W x C* (in practice, the cost is closer to C* than to W x C*). A^*

| Algorithm | f(n) | W |
|--------------------------|-----------------|--------------|
| A* search | g(n) + h(n) | W = 1 |
| Uniform-cost search | g(n) | W = 0 |
| Greedy best-first search | h(n) | $W = \infty$ |
| Weighted A* search | g(n) + W x h(n) | 1 < W < ∞ |

Weighted A*

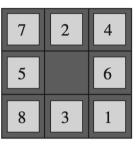
7 times fewer states 5% mostly costly path

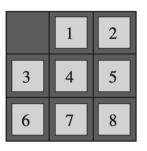
Looking for heuristics

How to find admissible heuristics?

Example: 8-puzzle

- 22 steps to goal in average
- branching factor around 3





Goal State

- (complete) search tree: $3^{22} \approx 3,1 \times 10^{10}$ nodes
- the number of reachable states is only 9!/2 = 181440
- for 15-puzzle there are 10¹³ states
- we need some heuristic, preferable admissible
 - $-h_1 = "the number of misplaced tiles"$ = 8
 - $-h_2 =$ *"*the sum of the distances of the tiles from the goal positions"

= 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

a so called Manhattan heuristic

the optimal solution needs 26 steps

How to characterize the quality of a heuristic? Effective branching factor b*

- Let the algorithm need N nodes to find a solution in depth d _____ Hable je neco, co empiricity /experimentallue zjishim
- b* is a branching factor of a uniform tree of depth d containing N+1 nodes

 $N+1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$

Example:

- 8-puzzle
- the average over 100 instances for each of various solution lengths

| | Searc | ch Cost (nodes g | enerated) | Effective Branching Factor | | | |
|----|--------|-------------------------|------------|----------------------------|------------|------------|--|
| d | BFS | $\mathbf{A}^{*}(h_{1})$ | $A^*(h_2)$ | BFS | $A^*(h_1)$ | $A^*(h_2)$ | |
| 6 | 128 | 24 | 19 | 2.01 | 1.42 | 1.34 | |
| 8 | 368 | 48 | 31 | 1.91 | 1.40 | 1.30 | |
| 10 | 1033 | 116 | 48 | 1.85 | 1.43 | 1.27 | |
| 12 | 2672 | 279 | 84 | 1.80 | 1.45 | 1.28 | |
| 14 | 6783 | 678 | 174 | 1.77 | 1.47 | 1.31 | |
| 16 | 17270 | 1683 | 364 | 1.74 | 1.48 | 1.32 | |
| 18 | 41558 | 4102 | 751 | 1.72 | 1.49 | 1.34 | |
| 20 | 91493 | 9905 | 1318 | 1.69 | 1.50 | 1.34 | |
| 22 | 175921 | 22955 | 2548 | 1.66 | 1.50 | 1.34 | |
| 24 | 290082 | 53039 | 5733 | 1.62 | 1.50 | 1.36 | |
| 26 | 395355 | 110372 | 10080 | 1.58 | 1.50 | 1.35 | |
| 28 | 463234 | 202565 | 22055 | 1.53 | 1.49 | 1.36 | |

Is h₂ (from 8-puzzle) always better than h₁ and how to recognize it?

- notice that $\forall n h_2(n) \ge h_1(n)$
- we say that **h**₂ **dominates h**₁
- A* with h_2 never expands more nodes than A* with h_1
 - A* expands all nodes such that f(n) < C*, so h(n) < C* g(n)
 - In particular if it expands a node using h₂, then the same node must be expanded using h₁

It is always better to use a heuristic function giving higher values provided that

- the limit C* g(n) is not exceeded (then the heuristic would not be admissible)
- the computation time is not too long

Chai, any /h(n) - (C*-g(n)) / hyl conejmensi -> tedy droi uprot nejvice dominipión strategii

Can an agent construct admissible heuristics for any problem?

Yes, via **problem relaxation**!

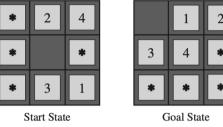
- relaxation is a simplification of the problem such that the solution of the original problem is also a solution of the relaxed problem (even if not necessarily optimal)
- we need to be able to solve the relaxed problem fast
- the cost of optimal solution to a relaxed problem is a lower bound for the solution to the original problem and hence it is an admissible (and monotonous) heuristic for the original problem

Example (8-puzzle) C(relaxed) = C (original), tahir to la parit jubo hemistika

- a tile can move from square A to square B if:
 - A is horizontally or vertically adjacent to B
 - B is blank
- possible relaxations (omitting some constraints to move a tile):
 - a tile can move from square A to square B if A is adjacent to B (Manhattan distance) - mize hyber Osmi shey misto h.
 - a tile can move from square A to square B if B is blank
 - a tile can move from square A to square B (heuristic h₁)

Another approach to admissible heuristics is using a **pattern database**

- based on solution of specific sub-problems (patterns)
- by searching back from the goal and recording the cost of each new **pattern** encountered



- heuristic is defined by taking
 the worst cost of a pattern that matches the current state
- Beware! The "sum" of costs of matching patterns needs not be admissible (the steps for solving one pattern may be used when solving another pattern).
- If there are **more heuristics**, we can always use the **maximum** value from them (such a heuristic dominates each of the used heuristics).

-ngric dominning hunistihu...

© 2020 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz