
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Problem Solving: Informed (Heuristic) Search

 



Introduction

Uninformed (blind) search algorithms can 
find an (optimal) solution to the problem, but 
they are usually not very efficient.
– BFS, DFS, ID, BiS

Informed (heuristic) search algorithms can 
find solutions more efficiently thanks to 
exploiting problem-specific knowledge.
– How to use heuristics in search?

• BestFS, A*, IDA*, RBFS, SMA*

– How to construct heuristics?
• relaxation, pattern databases



Information in search

Recall that we are looking for (the shortest) path from the 
initial state to some goal state.
Which information can help the search algorithm?

– For example, the length of path to some goal state.
– However such information is usually not available (if it is available 

then we do not need to do search). Usually some evaluation 
function f(n) is used to evaluate „quality“ of node n based on the 
length of path to the goal.

– best-first search
• The node with the smallest value of f(n) is used for expansion.

– There are search algorithms with different views of f(n). Usually 
the part of f(n) is a heuristic function h(n) estimating the 
length of the shortest (cheapest) path to the goal state.
• Heuristic functions are the most common form of additional 

information given to search algorithms
• We will assume that h(n) = 0 Û n is goal.



Greedy best-first search

Let us try to expand first the node that is closest to some goal 
state, i.e. f(n) = h(n).

– greedy best-first search algorithm
Example (path Arad ® Bucharest):

– We have a table of direct distances from any city to Bucharest.
– Note: this information was not part of the original problem 

formulation!

Is it the shortest path?
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Figure 3.1 A simplified road map of part of Romania, with road distances in miles.
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Criterion
Breadth- Uniform- Depth- Depth- Iterative Bidirectional

First Cost First Limited Deepening (if applicable)

Complete? Yes1 Yes1,2 No No Yes1 Yes1,4

Optimal cost? Yes3 Yes No No Yes3 Yes3,4

Time O(bd) O(b1+⌊C∗/ϵ⌋) O(bm) O(bℓ) O(bd) O(bd/2)
Space O(bd) O(b1+⌊C∗/ϵ⌋) O(bm) O(bℓ) O(bd) O(bd/2)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum
depth of the search tree; d is the depth of the shallowest solution, or is m when there is
no solution; ℓ is the depth limit. Superscript caveats are as follows: 1 complete if b is
finite, and the state space either has a solution or is finite. 2 complete if all action costs are
≥ ϵ > 0; 3 cost-optimal if action costs are all identical; 4 if both directions are breadth-first
or uniform-cost.
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Figure 3.16 Values of hSLD—straight-line distances to Bucharest.
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Figure 3.17 Stages in a greedy best-first tree-like search for Bucharest with the straight-line
distance heuristic hSLD . Nodes are labeled with their h-values.
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Greedy best-first search: analysis

We already know that the greedy algorithm may not find 
the optimal path.
Can we at least guarantee finding some path?

– If we expand first the node with the smallest cost then the 
(tree search) algorithm may not find any solution.

Example: path Iasi ® Fagaras
– Go to Neamt, then back to Iasi, Neamt, …
– We need to detect repeated visits in cities!

• Time complexity O(bm),
where m is the maximal depth

• Memory complexity O(bm)
• A good heuristic function

can significantly decrease
the practical complexity.
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Algorithm A*

Let us now try to use f(n) = g(n) + h(n)
– recall that g(n) is the cost of path from root to n
– probably the most popular heuristic search algorithm
– f(n) represents the cost of path through n
– the algorithm does not extend already long paths
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Figure 3.18 Stages in an A∗ search for Bucharest. Nodes are labeled with f = g + h. The h
values are the straight-line distances to Bucharest taken from Figure ??.
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Properties of A*

What about completeness and optimality of A*?
First a few definitions:

– admissible heuristic h(n)
• h(n) £ ”the cost of the cheapest path from n to goal”
• an optimistic view (the algorithm assumes a better cost than the real cost)
• function f(n) in A* is a lower estimate of the cost of path through n

– monotonous (consistent) heuristic h(n)
• let n‘ be a successor of n via action a and c(n,a,n‘) be the transition cost
• h(n) £ c(n,a,n‘) + h(n‘)
• this is a form of triangle inequality

Monotonous heuristic is admissible.
let n1, n2,…, nk be the optimal path from n1 to goal nk, then
h(ni) - h(ni+1) £ c(ni,ai,ni+1), via monotony
h(n1) £ Si=1,..,k-1 c(ni,ai,ni+1), after „sum“

For a monotonous heuristic the values of f(n) are non-decreasing 
over any path.
Let n‘ be a successor of n, i.e. g(n‘) = g(n) + c(n,a,n‘), then
f(n‘) = g(n‘) + h(n‘) = g(n) + c(n,a,n‘) + h(n‘) ³ g(n) + h(n) = f(n)

hemizeslibountbemoine

h n hint c nain't

teleshopiahs suma



Algorithm A*: optimality

If h(n) is an admissible heuristic then the 
algorithm A* in TREE-SEARCH is optimal.

– in other words – the first expanded goal is optimal
– Let G2 be sub-optimal goal from the fringe and C* be 

the optimal cost
• f(G2) = g(G2) + h(G2) = g(G2) > C*, because h(G2) = 0

– Let n be a node from the fringe and being on the 
optimal path
• f(n) = g(n) + h(n) £ C*, via admissibility of h(n)

– together
• f(n) £ C* < f(G2),

i.e., the algorithm must expand n
before G2 and this way it finds
the optimal path.



Algorithm A*: optimality

If h(n) is a monotonous heuristic then the 
algorithm A* in GRAPH-SEARCH is optimal.

– Possible problem: reaching the same state for the 
second time using a better path – classical GRAPH-
SEARCH ignores this second path!

– Possible solution: selection of the better of the two 
paths leading to the closed node (extra bookkeeping) or 
using monotonous heuristic.
• for monotonous heuristics, the values of f(n) are non-decreasing 

over any path
• A* selects for expansion the node with the smallest value of f(n),

i.e., the values f(m) of other open nodes m are not smaller,
i.e., among all “open” paths to n there cannot be a shorter path 
than the path just selected (no path can shorten)

• hence, the first closed goal node is optimal

g‘ <? g

h n

m



Algorithm A*: properties

For non-decreasing function f(n) we can draw contours in the state graph 
(the nodes inside a given contour have f-costs less than or equal to the 
contour value.

– for h(n) = 0 we obtain circles around the start
– for more accurate h(n) we use, the bands will

stretch toward the goal state and become
more narrowly focused around the optimal path.

– A* expands all nodes such that f(n) < C* on the contour
– A* can expand some nodes such that f(n) = C*
– the nodes n such that f(n) > C* are never expanded
– the algorithm A* is optimally efficient for any given consistent heuristic

Time complexity:
A* can expand an exponential number of nodes
– this can be avoided if |h(n)-h*(n)| £ O(log h*(n)), where h*(n) is the cost of 

optimal path from n to goal
Space complexity:

A* keeps in memory all expanded nodes
A* usually runs out of space long before it runs out of time
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Figure 3.19 Triangle inequality: If the heuristic h is consistent, then the single number h(n)
will be less than the sum of the cost c(n, a, a′) of the action from n to n′ plus the heuristic
estimate h(n′).

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S
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Iterative-deepening A*

A simple way to decrease memory 
consumption is iterative deepening.
Algorithm IDA*

• the search limit is 
defined using the cost 
f(n) instead of depth

• for the next iteration we 
use the smallest value 
f(n) of node n that 
exceeded the limit in the 
last iteration

• frequently used 
algorithm



Recursive best-first search

Let us try to mimic standard best-first search, but using only linear space
– the algorithm stops exploration if there is an alternative path with better 

cost f(n)
– when the algorithm goes back to node n, it replaces the value f(n) using 

the cost of successors (remembers the best leaf in the forgotten subtree)
If h(n) is an admissible heuristic then the algorithm is optimal.
• Space complexity O(bd)
• Time complexity is still exponential (suffers from excessive node 

re-generation)
furt delim to co best first search pouze tosikornefainju



Recursive BFS: example
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Figure 3.23 Stages in an RBFS search for the shortest route to Bucharest. The f -limit value
for each recursive call is shown on top of each current node, and every node is labeled with
its f -cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is
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2. The path from Rimnicu Vilcea now seems too 
expensive, go back to the closest neighbour –
Fagaras
a more accurate cost is stored for Rimnicu Vilcea3. The path through Fagaras is now worse, go back 

to Rimnicu Vilcea and expand the best successor–
Pitesti

1. After expansion of Arad, Sibia,  Rimnicu Vilcea
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Simplified memory-bounded A*

IDA* and RBFS do not exploit available memory!
This is a pity as the already expanded nodes are re-
expanded again (waste of time)
Let us try to modify classical A*

• when memory is full, 
drop the worst leaf 
node – the node with 
the highest f-value (if 
there are more such 
nodes then drop the 
shallowest node)

• similarly to RBFS 
back up the value of 
the forgotten node to 
its parent

Path from root to this non-
goal node can be stored in 
memory, hence no optimal 
path through this node can 
be found.y
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Simplified memory-bounded A*: example

• Assume memory for 
three nodes only.

• If there is enough 
memory to store an 
optimal path then SMA* 
finds an optimal solution.

• Otherwise it finds the 
best path with available 
memory.
– If the cost of J would be 

19, then this is optimal 
goal, but the path to it 
can not be stored in 
memory!

g(n) + h(n) = f(n)

goal
node

c(A,B)

0
24 15 can only find goals in depthofthe sizeofmemory



Weighted A* (satisficing search)

A* still expands a lot of nodes (to guarantee optimality).
If we are willing to accept suboptimal solutions (good 
enough or satisficing solutions), we can explore fewer nodes.

How? We allow inadmissible heuristics.

Weighted A*
f(n) = g(n) + W x h(n), for some W > 1
Finds solutions with the cost between C* and W x C* (in practice, 
the cost is closer to C* than to W x C*).

Algorithm f(n) W
A* search g(n) + h(n) W = 1
Uniform-cost search g(n) W = 0
Greedy best-first search h(n) W = ∞
Weighted A* search g(n) + W x h(n) 1 < W < ∞
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(a) (b)

Figure 3.21 Two searches on the same grid: (a) an A∗ search and (b) a weighted A∗ search
with weight W = 2. The gray bars are obstacles, the purple line is the path from the green
start to red goal, and the small dots are states that were reached by each search. On this
particular problem, weighted A∗ explores 7 times fewer states and finds a path that is 5%
more costly.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure
solution , fvalue←RBFS(problem , NODE(problem .INITIAL),∞)

return solution

function RBFS(problem ,node , f limit ) returns a solution or failure , and a new f -cost limit
if problem .IS-GOAL(node.STATE) then return node
successors← LIST(EXPAND(node))
if successors is empty then return failure ,∞
for each s in successors do // update f with value from previous search

s .f ←max(s .PATH-COST + h(s), node.f ))
while true do

best← the node in successors with lowest f -value
if best .f > f limit then return failure , best .f
alternative← the second-lowest f -value among successors
result , best .f←RBFS(problem , best ,min( f limit , alternative))
if result ̸= failure then return result , best .f

Figure 3.22 The algorithm for recursive best-first search.

A*
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Weighted A*

W=2
7 times fewer states
5% mostly costly path
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Looking for heuristics

How to find admissible heuristics?
Example: 8-puzzle
• 22 steps to goal in average
• branching factor around 3
• (complete) search tree: 322 » 3,1 ´ 1010 nodes
• the number of reachable states is only 9!/2 = 181 440
• for 15-puzzle there are 1013 states
• we need some heuristic, preferable admissible

– h1 = „the number of misplaced tiles“
= 8

– h2 = „the sum of the distances of the tiles from the goal positions“
= 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18

a so called Manhattan heuristic
– the optimal solution needs 26 steps



Performance of heuristics

How to characterize the quality of a heuristic?
Effective branching factor b*
– Let the algorithm need N nodes to find a 

solution in depth d
– b* is a branching factor of a uniform tree of 

depth d containing N+1 nodes
N+1 = 1 + b* + (b*)2 + … + (b*)d

Example:
– 8-puzzle
– the average over 100

instances for each of
various solution lengths
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Search Cost (nodes generated) Effective Branching Factor

d BFS A∗(h1) A∗(h2) BFS A∗(h1) A∗(h2)

6 128 24 19 2.01 1.42 1.34
8 368 48 31 1.91 1.40 1.30

10 1033 116 48 1.85 1.43 1.27
12 2672 279 84 1.80 1.45 1.28
14 6783 678 174 1.77 1.47 1.31
16 17270 1683 364 1.74 1.48 1.32
18 41558 4102 751 1.72 1.49 1.34
20 91493 9905 1318 1.69 1.50 1.34
22 175921 22955 2548 1.66 1.50 1.34
24 290082 53039 5733 1.62 1.50 1.36
26 395355 110372 10080 1.58 1.50 1.35
28 463234 202565 22055 1.53 1.49 1.36

Figure 3.26 Comparison of the search costs and effective branching factors for 8-puzzle
problems using breadth-first search, A∗ with h1 (misplaced tiles), and A∗ with h2 (Manhattan
distance). Data are averaged over 100 puzzles for each solution length d from 6 to 28.

Start State Goal State

1

2

3

4

6

8

5

21

3 6

7 8

54

Figure 3.27 A subproblem of the 8-puzzle instance given in Figure ??. The task is to get tiles
1, 2, 3, 4, and the blank into their correct positions, without worrying about what happens to
the other tiles.
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Dominance

Is h2 (from 8-puzzle) always better than h1 and 
how to recognize it?

– notice that "n h2(n) ³ h1(n)
– we say that h2 dominates h1

– A* with h2 never expands more nodes than A* with h1
• A* expands all nodes such that f(n) < C*, so h(n) < C* - g(n)
• In particular if it expands a node using h2, then the same node 

must be expanded using h1

It is always better to use a heuristic function 
giving higher values provided that

– the limit C* - g(n) is not exceeded (then the 
heuristic would not be admissible)

– the computation time is not too long
Chai ahy bin c goal hylconejmen.si tedychoi cybrat rejuice

dominujia strategii



Relaxation

Can an agent construct admissible heuristics for any 
problem?

Yes, via problem relaxation!
– relaxation is a simplification of the problem such that the solution of 

the original problem is also a solution of the relaxed problem (even 
if not necessarily optimal)

– we need to be able to solve the relaxed problem fast
– the cost of optimal solution to a relaxed problem is a lower bound 

for the solution to the original problem and hence it is an admissible 
(and monotonous) heuristic for the original problem

Example (8-puzzle)
– a tile can move from square A to square B if:

• A is horizontally or vertically adjacent to B
• B is blank

– possible relaxations (omitting some constraints to move a tile):
• a tile can move from square A to square B if A is adjacent to B 

(Manhattan distance)
• a tile can move from square A to square B if B is blank
• a tile can move from square A to square B (heuristic h1)

I

C relaxed C original taketobepositjuhoheuristika
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Pattern databases

Another approach to admissible heuristics is using a 
pattern database
– based on solution of specific sub-problems (patterns)
– by searching back from the goal

and recording the cost of each
new pattern encountered

– heuristic is defined by taking
the worst cost of a pattern that matches the current state

– Beware! The “sum” of costs of matching patterns needs not 
be admissible (the steps for solving one pattern may be used 
when solving another pattern).

If there are more heuristics, we can always use the 
maximum value from them (such a heuristic 
dominates each of the used heuristics).
uejvicdomiunjiaheuristi.hu
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