Artificial Intelligencei

Uninformed (blind) search algorithms can
find an (optimal) solution to the problem, but

they are usually not very efficient.
— BFS, DFS, ID, BiS

Informed (heuristic) search algorithms can
find solutions more efficiently thanks to
exploiting problem-specific knowledge.

— How to use heuristics in search?
« BestFS, A*, IDA*, RBFS, SMA*

— How to construct heuristics?
» relaxation, pattern databases

Recall that we are looking for (the shortest) path from the
initial state to some goal state.

Which information can help the search algorithm?
— For example, the length of path to some goal state.

— However such information is usually not available (if it is available
then we do not need to do search). Usually some evaluation
function f(n) is used to evaluate ,quality™ of node n based on the
length of path to the goal.

— best-first search
« The node with the smallest value of f(n) is used for expansion.

— There are search algorithms with different views of f(n). Usually
the part of f(n?I is a heuristic function h(n) estimating the
length of the shortest (cheapest) path to the goal state.

 Heuristic functions are the most common form of additional 4
information given to search algorithms |
« We will assume that h(n) = 0 < nis goal. J

Let us try to expand first the node that is closest to some goal
state, i.e. f(n) = h(n).

— greedy best-first search algorithm
Example (path Arad — Bucharest):

— We have a table of direct distances from any city to Bucharest.
— Note: this information was not part of the original problem

formulation!
Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

/ 7
' ? ~ Is it the shortest path?

9

We already know that the greedy algorithm may not find
the optimal path.

Can we at least guarantee finding some path?
— If we expand first the node with the smallest cost then the
(tree search) algorithm may not find any solution.

Example: path Iasi —» Fagaras
— Go to Neamt, then back to Iasi, Neamt, ...
— We need to detect repeated visits in cities!

- Time complexity O(b'“g,
where m is the maximal depth ..

« Memory complexity O(b™)
« A good heuristic function

can significantly decrease
the practical complexity.

Let us now try to use f(n) = g(n) + h(n)
— recall that g(n) is the cost of path from root to n
— probably the most popular heuristic search algorithm
— f(n) represents the cost of path through n
— the algorithm does not extend already long paths

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199 449=75+374
Lugoj 244 Zerind 374

418=418+0 615=455+160 607=414+193

What about completeness and optimality of A*?

First a few definitions:
— admissible heuristic h(n)
* h(n) < "the cost of the cheapest path from n to goal”

 an optimistic view (the algorithm assumes a better cost than the real cost)
 function f(n) in A* is a lower estimate of the cost of path through n

— monotonous (consistent) heuristic h(n)
« let n* be a successor of n via action a and ¢(n,a,n") be the transition cost

- h(n) <c(n,a,n") + h(n") h(n) - W) £ e(n o) @

« this is a form of triangle inequality

let ny, n,,..., N, be the optimal path from ny to goal n, then
h(n;) - h(ni;1) < c(n;,a;,n;y1), via monotony
h(ny) < Xz k1 €(ng,@;,Nizq), after ,sum® @

For a monotonous heuristic the values of f(n) are non-decreasing
over any path.

Let n' be a successor of n, i.e. g(n*) = g(n) + c(n,a,n’), then
f(n') = g(n) + h(n") = g(n) + c(n,a,n’) + h(n’) = g(n) + h(n) = f(n)

Monotonous heuristic is admissible. d ey

If h(n) is an admissible heuristic then the
algorithm A* in TREE-SEARCH is optimal.

— in other words — the first expanded goal is optimal

— Let G, be sub-optimal goal from the fringe and C* be
the optimal cost
« f(Gy) = g(Gy) + h(G,) = g(G,) > C*, because h(G,) =0
— Let n be a node from the fringe and being on the
optimal path
« f(n) = g(n) + h(n) < C*, via admissibility of h(n) ...

— together /O\
» f(n) < C* < f(Gy), Q/
i.e., the algorithm must expand n \Q
®

before G, and this way it finds
the optimal path.

If h(n) is a monotonous heuristic then the
algorithm A* in GRAPH-SEARCH is optimal.

— Possible problem: reaching the same state for the
second time using a better path — classical GRAPH-
SEARCH ignores this second path!

— Possible solution: selection of the better of the two
paths leading to the closed node (extra bookkeeping) or
m using monotonous heuristic.

 for monotonous heuristics, the values of f(n) are non-decreasing
g' <?g over any path
« A* selects for expansion the node with the smallest value of f(n),
i.e., the values f(m) of other open nodes m are not smaller,
i.e., among all “open” paths to n there cannot be a shorter path
Iﬁ than the path just selected (no path can shorten)

 hence, the first closed goal node is optimal

For non-decreasing function f(n) we can draw contours in the state graph
(thei_ nodesI inside a given contour have f-costs less than or equal to the
contour value. 0

— for h(n) = 0 we obtain circles around the start

— for more accurate h(n) we use, the bands will ¢
stretch toward the goal state and become NN
more narrowly focused around the optimal path.

— A* expands all nodes such that f(n) < C* on the contour
— A* can expand some nodes such that f(n) = C*
— the nodes n such that f(n) > C* are never expanded
— the algorithm A* is optimally efficient for any given consistent heuristic
Time complexity: _
A* can expand an exponential number of nodes
— this can be avoided if |h(n)-h*(n)| < O(log h*(n)), where h*(n) is the cost of
optimal path from n to goal
Space complexity:
A* keeps in memory all expanded nodes

A* usually runs out of space long before it runs out of time

A simple way to decrease memory
consumption is iterative deepening.

Algorithm IDA*

function IDA*(problem) returns a solution sequence
inputs: problem, a problem
static: f-limit, the current f- COST limit
root, anode

root «+— MAKE-NODE(INITIAL-STATE[problem])
J-limit « f- CosT(root)
loop do
solution, f-limit + DES-CONTOUR(root, f-limit)
if solution is non-null then return solution
if f~limit = oo then return failure; end

function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
inputs: node, a node
[f-limit, the current f- COST limit
static: next-f, the f- COST limit for the next contour, initially oo

if f- CosT(node] > f-limit then return null, - COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do
solution, new-f < DFS-CONTOURC(s, f~limir)
if solution is non-null then return solution, f-limit
next-f & MIN(next-f, new-f); end
return null, next-f

the search limit is
defined using the cost
f(n) instead of depth

for the next iteration we
use the smallest value
f(n) of node n that
exceeded the limit in the
last iteration

frequently used
algorithm

Let us try to mimic standard best-first search, but using only linear space

— the algorithm stops exploration if there is an alternative path with better
cost f?n)

— when the algorithm goes back to node n, it replaces the value f(n) using
the cost of successors (remembers the best leaf in the forgotten subtree)

If h(n) is an admissible heuristic then the algorithm is optimal.

« Space complexity O(bd)

- Time complexity is still exponential (suffers from excessive node
re-generation) _ ,@ A 88am b0 co bed- fint-cuh, pree B ot e,

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), co)

function RBFS(problem, node, f-limit) returns a solution, or failure and a new f-cost limit
if GOAL-TEST[problem](STATE[node]) then return node
successors — EXPAND(node, problem)
if successors is empty then return failure, oo
for each s in successors do
fls1 «max(g(s) + h(s), f[node])
repeat
best < the lowest f-value node in successors
if f[best] > f-limit then return failure, f[best]
alternative + the second-lowest f-value among successors
result, f[best] < RBFS(problem, best, min(f_limit, alternative))
" if result # failure then return result

Recursive BFS: example

1. After expansion of Arad, Sibia, Rimnicu Vilcea

et v hodl weg huwishn Tagors,
daw b swaol oyl vaht

W‘lw\\u# ‘o QV\M\(.

417

Fagaras

3. The path through Fagaras is nhow worse, go back a more accurate cost is stored for Ri

to Rimnicu Vilcea and expand the best successor—
Pitesti

Craiova

418 615

IDA* anc
This is a

RBFS do not exploit available memory!
pity as the already expanded nodes are re-

expanded again (waste of time)
Let us try to modify classical A*

function SMA*(problem) returns a solution sequence ° When memory |S fu I I,

inputs: problem, a proble
static: Queue, a queue of

Queue + MAKE-QUEUE({
loop do

n + deepest least-f-co

' -, / .
if Queue is empty then return failure @V\' c,‘- AJ/Z(MA V)L/lwl/t,g] W’/,”WLA

m

nodes ordered by /-cost drop the worst leaf
MAKE-NODE(INITIAL-STATE[problem])}) nOde —_ the nOde Wlth
the highest f-value (if
there are more such

=

st node in Queue Y

if GOAL-TEST(n) then return success Pathinomioottothisnon:
isf ‘_,NEXIT‘SUC(;ESS;"R("I) A goal node can be stored in nodes then dI‘Op the
s is not a goal and is at maximum degth ther memory, hence no optimal
f(s) < o0 path through this node can Sha I IoweSt nOd e)
else be found.
f(s) +— MAX(f(n), g(s)+h(s))
if all of n’s s’uccessorrs have been generated the.n' ® SI m | Ia rly to RB FS
update n’s f-cost and those of its ancestors if necessary
if SUCCESSORS(n) all in memory then remove n from Queue baCk u p the Vvda I ue Of

if memory is full then

delete shallowest, highest-f-cost node in Queue the fO rg Otten nOde tO

remove it from its
insert its parent on
insert s on Queue
end

parent’s successor list |tS pa rent

Queue if necessary

M p) \Q&V;‘”}”/tht/ﬁ“” wil i, Oliodngzen;

« Assume memory for

i J ode three nodes only.

20+5=25 20+0=20 16+2=18 . 24+0=24 . I f there |S enough
memory to store an
optimal path then SMA*
finds an optimal solution.

e Otherwise it finds the

best path with available
memory.

— If the cost of J would be
19, then this is optimal
goal, but the path to it
can not be stored in
memory!

30+0=30

24+0=24

A* still expands a lot of nodes (to guarantee optimality).

If we are willing to accept suboptimal solutions (good
enough or satisficing solutions), we can explore fewer nodes.

How? We allow inadmissible heuristics.

Weighted A*
f(n) = g(n) + W x h(n), for some W > 1
Finds solutions with the cost between C* and W x C* (in practice,

the cost is closer to C* than to W x C*). A*
wgorithm |)| w__

A* search g(n) + h(n) Ww=1

Uniform-cost search g(n) W=0 Weighted A*
Greedy best-first search h(n) W = o0 w
Weighted A* search g(n) + W x h(n) 1<W<oo

w=2
7 times fewer states
5% mostly costly path

How to find admissible heuristics?
Example: 8-puzzle

22 steps to goal in average
branching factor around 3 Start St Got e
(complete) search tree: 322 ~ 3,1 x 1019 nodes

the number of reachable states is only 9!/2 = 181 440
for 15-puzzle there are 1013 states

we need some heuristic, preferable admissible
— hy; = ,the number of misplaced tiles"
=8
— h, = ,the sum of the distances of the tiles from the goal positions"
=3+1+2+2+2+3+3+2=18
a so called Manhattan heuristic
— the optimal solution needs 26 steps

How to characterize the quality of a heuristic?
Effective branching factor b*
— Let the algorithm need N nodes to find a
solution in depth d \ L, je Hiz, o evyinihy fospervurhle” 2johin
— b* is a branching factor of a uniform tree of

depth d containing N+1 nodes
N+1 =1+ b* + (b*)? + ... + (b*)d

Example:
| |
—_— 8 - p u ZZ | e Search Cost (nodes generated) Effective Branching Factor

d BFS A*(hy) A*(hg) BFS A*(hy) A*(hg)
— the average over 100 |: = % owm wm
- t f h f 10 1033 116 48 1.85 1.43 1.27
INStances 1or €ach O o o aoom o

= = . o .

various solution lengths |: & & & im0 om0 i
20 91493 9905 1318 1.69 1.50 1.34
22 175921 22955 2548 1.66 1.50 1.34
24 290082 53039 5733 1.62 1.50 1.36
26 395355 110372 10080 1.58 1.50 1.35
28 463234 202565 22055 1.53 1.49 1.36

Is h, (from 8-puzzle) @always better than h, and
how to recognize it?

— notice that ¥n h,(n) > hy(n)

— we say that h, dominates h;

— A* with h, never expands more nodes than A* with h;
« A* expands all nodes such that f(n) < C*, so h(n) < C* - g(n)

 In particular if it expands a node using h,, then the same node
must be expanded using h,

It is always better to use a heuristic function
giving higher values provided that

— the limit C* - g(n) i1s not exceeded (then the
heuristic would not be admissible)

— the computation time is not too long
0kM, 0145 } h(u) - (C*- @CV')) \ ll\aLl 7, M@)M(;«El/

Can an agent construct admissible heuristics for any
problem?

Yes, via problem relaxation!

— relaxation is a simplification of the problem such that the solution of
the original problem is also a solution of the relaxed problem (even
if not necessarily optimal)

— we need to be able to solve the relaxed problem fast

— the cost of optimal solution to a relaxed problem is a lower bound

for the solution to the original problem and hence it is an admissible
(and monotonous) heuristic for the original problem

Example (8-puzzle) C(dned) & C (o), fiz fo o puii? o hershi,

— a tile can move from square A to square B if:
* Ais horizontally or vertically adjacent to B
« Bis blank
— possible relaxations (omitting some constraints to move a tile):

« a tile can move from square A to square B if A is adjacent to B
(Manhattan distance)

« a tile can move from square A to square B if B is blank
« a tile can move from square A to square B (heuristic h,)

Another approach to admissible heuristics is using a
pattern database

— based on solution of specific sub-problems (patterns)

— by searching back from the goal B
and recording the cost of each B
new pattern encountered '+ | oono

— heuristic is defined by taking e
the worst cost of a pattern that matches the current state

— Beware! The "sum” of costs of matching patterns needs not
be admissible (the steps for solving one pattern may be used
when solving another pattern).

If there are more heuristics, we can always use the
maximum value from them (such a heuristic
dominates each of the used heuristics).

- \MV:?‘/ CJD[MW; J'\'q/ \Wnﬁ%w .

© 2020 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

