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Introduction

So far we assumed a single-agent environment, but 
what if there are more agents and some of them are 
„playing“ against us?

Today we will discuss adversarial search a.k.a. 
game playing, as an example of a competitive 
multi-agent environment.
– deterministic, turn-taking, two-player zero-sum games 

of perfect information (tic-tac-toe, chess)
• optimal (perfect) decisions (minimax, alpha-beta)
• imperfect decisions (cutting off search)

– stochastic games (backgammon)



Games

Mathematical game theory (a branch of 
economics) views any multi-agent environment as a 
game, provided that the impact of each agent on 
others is significant.
– environments with many agents are called economies 

(rather than games)
AI deals mainly with turn-taking, two-player 
zero-sum games (one player wins, the other one 
loses).
– deterministic games vs. stochastic games
– perfect information vs. imperfect information
Why games in AI? Because games are:

• hard to play
• easy to model

(not that many actions)
• funny



Problem setting

We consider two players MAX and MIN
– MAX moves first, and then the players take turns moving until 

the game is over
– we are looking for the strategy of MAX

Again, we shall see game playing as a search problem:
– initial state: specifies how the game is set up at the start
– successor function: results of the moves (move, state)

• the initial state and the successor function define the game tree
– terminal test: true, when the game is over (a goal state)
– utility function: final numeric value for a game that ends in 

terminal state (win, draw, loss with values +1, 0, -1)
• higher values are better for MAX, while lower values are better for 

MIN



Game tree – tic-tac-toe

Two players place X and O in an empty square 
until a line of three identical symbols is reached or 
all squares are full.

All possible moves for player 
placing X.

Only the goal states are evaluated 
(utility function).
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Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial state,
and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.



Optimal strategy

Classical search is looking a (shortest) path to a 
goal state.
Search for games is looking for a path to the 
terminal state with the highest utility, but MIN 
has something to say about it.
MAX is looking for a contingent strategy, which 
specifies
– MAX’s move in the initial state
– MAX’s moves in the states resulting from every possible 

response by MIN
– an optimal strategy leads to outcomes at least as 

good as any other strategy when one is playing an 
infallible opponent



Minimax value

The optimal strategy can be determined from the 
minimax value of each node computed as follows:

MINIMAX-VALUE(n)=
UTILITY(n) if n is a terminal state
maxs Î successors(n) MINIMAX-VALUE(s) if MAX plays in n
mins Î successors(n) MINIMAX-VALUE(s) if MIN plays in n

We start with the utility of the terminal states.

We consider that 
MIN always selects 
the best move.

MAX is maximizing the worst-
case outcome.
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Figure 5.2 A two-ply game tree. The ! nodes are “MAX nodes,” in which it is MAX’s turn
to move, and the " nodes are “MIN nodes.” The terminal nodes show the utility values for
MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is
a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

function MINIMAX-SEARCH(game , state) returns an action
player← game .TO-MOVE(state)
value , move←MAX-VALUE(game , state)
return move

function MAX-VALUE(game , state) returns a (utility , move) pair
if game.IS-TERMINAL(state) then return game .UTILITY(state, player ), null
v←−∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MIN-VALUE(game, game .RESULT(state, a))
if v2 > v then
v , move← v2 , a

return v , move

function MIN-VALUE(game, state) returns a (utility , move) pair
if game.IS-TERMINAL(state) then return game .UTILITY(state, player ), null
v←+∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MAX-VALUE(game, game .RESULT(state, a))
if v2 < v then

v , move← v2 , a
return v , move

Figure 5.3 An algorithm for calculating the optimal move using minimax—the move that
leads to a terminal state with maximum utility, under the assumption that the opponent plays
to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole
game tree, all the way to the leaves, to determine the backed-up value of a state and the move
to get there.



Algorithm minimax

• Time complexity O(bm)
• Space complexity O(bm)
(b - #actions in states, m - #moves)

The algorithm assumes that the 
player plays optimally. Otherwise, 
the utility is even higher



Minimax for more players

For multiplayer games we can use a vector of utility values –
this vector gives the utility of the state from each player’s 
viewpoint.

Multiplayer games usually involve alliances, whether formal or 
informal, among the players.

– Alliances seem to be a natural consequence of optimal strategies for 
each player.

– For example, suppose A and B are in weak positions and C is in a 
stronger position. Then it is often optimal for both A and B to attack 
C rather than each other.
Of course, as soon as C weakens under the joint onslaught, the 
alliance loses its value.

The player selects the best move 
based on own attribute in vector.

Note: each player is 
maximizing a value of 
own attribute in the 
vector.
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Figure 5.4 The first three ply of a game tree with three players (A, B, C). Each node is
labeled with values from the viewpoint of each player. The best move is marked at the root.



Improving minimax

The minimax algorithm always finds an optimal strategy, 
but it has to explore a complete game tree.
Can we speed-up the algorithm?

YES!
We do not need to explore all states, if they are “very bad”.
– a-b pruning eliminates branches that cannot possibly influence 

the final decisions.
= max(min(3,12,8),min(2,x,y),min(14,5,2))
= max(3,min(2,x,y),2)
= max(3,z,2), where z £ 2
= 3

MINIMAX value of the 
root does not depend on 
values x and y and hence 
it is not necessary to 
explore these sub-trees.
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a-b pruning - example
The first estimate of the 
MINIMAX value of root.

We can stop evaluation of 
the MIN node when its 
MINIMAX value is worse 
(smaller) than in the parent.

For the third MIN node 
we can still find a better 
solution.

Hmm, it was a false 
hope, the optimum is 3.

If we explored the nodes in the order 2,5,14, it would be enough to evaluate node 2.
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Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.
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The first leaf found, which 
gives the first MINIMAX value.

Next leaf found, but no 
improvement.



Algorithm a-b

By „perfect ordering“ we can decrease time 
complexity to O(bm/2), which gives a branching 
factor Öb (b for minimax), so we can solve a tree 
roughly twice as deep as minimax in the same 
amount of time.

By cutting off the sub-trees we do 
not miss optimum.
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Figure 5.6 The general case for alpha–beta pruning. If m or m′ is better than n for Player,
we will never get to n in play.

function ALPHA-BETA-SEARCH(game , state) returns an action
player← game .TO-MOVE(state)
value , move←MAX-VALUE(game , state,−∞,+∞)
return move

function MAX-VALUE(game , state,α,β) returns a (utility , move) pair
if game .IS-TERMINAL(state) then return game .UTILITY(state, player ), null
v←−∞
for each a in game.ACTIONS(state) do

v2 , a2←MIN-VALUE(game, game .RESULT(state, a),α,β)
if v2 > v then

v , move← v2 , a
α←MAX(α, v )

if v ≥ β then return v , move
return v , move

function MIN-VALUE(game, state,α,β) returns a (utility , move) pair
if game .IS-TERMINAL(state) then return game .UTILITY(state, player ), null
v←+∞
for each a in game.ACTIONS(state) do

v2 , a2←MAX-VALUE(game, game .RESULT(state, a),α,β)
if v2 < v then

v , move← v2 , a
β←MIN(β, v )

if v ≤ α then return v , move
return v , move

Figure 5.7 The alpha–beta search algorithm. Notice that these functions are the same as the
MINIMAX-SEARCH functions in Figure ??, except that we maintain bounds in the variables
α and β, and use them to cut off search when a value is outside the bounds.



“Imperfect” strategies

Both minimax and a-b have to search all the 
way to terminal states.
– This is not practical for bigger depths (depth = 

#moves to reach a terminal state).
We can cut off search earlier and apply a 
heuristic evaluation function to states in the 
search.
– does not guarantee finding an optimal solution, but
– can finish search in a given time

Implementation:
– terminal test ® cutoff test
– utility function ® heuristic evaluation function EVAL



Evaluation function

Returns an estimate of the expected utility of the 
game from a given position (similar to the heuristic 
function h).
Obviously, quality of the algorithm depends on the 
quality of evaluation function.
Properties:
– terminal states must be ordered in the same way as if 

ordered by the true utility function
– the computation must not take too long
– for nonterminal states, the evaluation function should 

be strongly correlated with the actual chances of 
winning

• given the limited amount of computation, the best the 
algorithm can do is make a guess about the final outcome

How to construct such a function?



Evaluation function: examples

Expected value
– based on selected features of states, we can define 

various categories (equivalence classes) of states
– each category is evaluated based on the proportion of 

winning and losing states
• EVAL = (0.72 ´ +1) + (0.20 ´ -1) + (0.08 ´ 0) = 0.52

“Material” value
– estimate the numerical contribution of each feature

• chess: pawn = 1, knight = bishop = 3, rook = 5, queen = 9
– combine the contributions (e.g. weighted sum)

• EVAL(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)
• The sum assumes independence of features!
• It is possible to use non-linear combination.
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(b) White to move(a) White to move

Figure 5.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong
enough to win.
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Figure 5.9 The horizon effect. With Black to move, the black bishop is surely doomed. But
Black can forestall that event by checking the white king with its pawns, encouraging the
king to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and
thus the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.



Problems with cut off
The situation may change dramatically by assuming 
one more move after the cut-off limit.

– Quiescent search: if the estimate is not stable then it is 
better to explore a few more moves (or only selected moves)

The unavoidable bad situation can be delayed after 
the cut-off limit (horizon) and hence it is not 
recognized as a bad state (horizon effect).

– Singular extension: explore the sequence
of moves that are “clearly better” than all other moves

Black bishop is surely doomed but Black can 
forestall that event by checking the white king 
with its pawns (this pushes the inevitable event 
over the horizon).
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Identical material value (better for Black) for 
both states,
but White wins the right position by 
capturing the queen.
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Simulation approaches

Heuristic alpha-beta tree search explores a wide but shallow 
portion of the game tree.
• What if the the branching factor is big?
• What if we have no good evaluation function?
Then we can use an approach that explores a deep but 
narrow portion of the game tree (follows promising moves).
Monte Carlo techniques:

Instead of evaluation function use the average utility over a 
number of simulations of complete games.

Simulation (playout or rollout) chooses moves using the playout policy 
until a terminal position is reached (defines utility).

Where do we start the simulation and how many playouts?
– Pure Monte Carlo search: do N simulations from the current 

state and select the move with highest win percentage.
– Monte Carlo tree search: builds a game tree, using the 

selection policy finds a node for expansion, evaluates new 
node using simulation



Monte Carlo Tree Search

Selection
– starting at root, choose a move using 

the selection policy until reaching a 
leaf node

Expansion
– generate a new child node

Simulation
– perform a playout, choosing moves for 

both players according to the playout 
policy (moves are not recorded in the 
search tree)

Back-propagation
– propagate the result of simulation in 

all nodes up to the root node
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(a) Selection (b) Expansion
and simulation

(c) Backpropagation

black wins

Figure 5.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree←NODE(state)
while IS-TIME-REMAINING() do
leaf ← SELECT(tree)
child← EXPAND(leaf )
result← SIMULATE(child )
BACK-PROPAGATE(result , child )

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

White has won 37 out 
of the 100 playouts.
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tree←NODE(state)
while IS-TIME-REMAINING() do
leaf ← SELECT(tree)
child← EXPAND(leaf )
result← SIMULATE(child )
BACK-PROPAGATE(result , child )
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Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

Black has won 60 out 
of the 79 playouts.



MCTS algorithm

UCT (upper confidence bounds applied to trees) selection 
policy ranks moves using an upper confidence bound (UCB1) 
formula:

!"#1 % = !(%)
)(%) + "×

log)(/012%3 % )
)(%)

The number of playouts 
through node n

The total utility of all 
playouts through node n

Exploitation term: the 
average utility of n

Exploration term: prefers 
less explored node

Constant balancing exploration 
and exploitation (should be 2)



Stochastic games

In real life, many unpredictable external events can 
put us into unforeseen situations.
Games mirror unpredictability by including a 
random element, such as throwing of dice.

Backgammon
– the goal is to move all one’s pieces 

off the board (clockwise)
– who finishes first, wins
– dice are rolled to determine the 

legal moves
• the total travelled distance

There are four legal moves for White:
(5-10,5-11), (5-11,19-24), (5-10,10-16), (5-11,11-16)



Playing stochastic games

Game tree is extended with chance nodes (in addition to MAX and MIN 
nodes) describing all rolls of dice.

– 36 results for two dice,
21 without symmetries (5-6 and 6-5)

– chance for double is 1/36,
other results 1/18

Instead of the MINIMAX value, we use
expected MINIMAX value (based on probability of chance actions):

EXPECTIMINIMAX-VALUE(n)=
UTILITY(n) if n is a terminal node
maxs Î successors(n) EXPECTMINIMAX-VALUE(s) if MAX plays in n
mins Î successors(n) EXPECTMINIMAX-VALUE(s) if MIN plays in n
ås Î successors(n) P(s) . EXPECTMINIMAX(s) if n is a chance node

Chance nodes are added to each layer, where 
the move is influenced by randomness.
MAX rolls the dice here.
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Figure 5.13 Schematic game tree for a backgammon position.
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Figure 5.14 An order-preserving transformation on leaf values changes the best move.



Stochastic games  - discussion

Beware of the evaluation function (for cut-off)
– the absolute value of nodes may play a role
– the values should be a linear transformation of expected utility in 

the node

Time complexity O(bmnm), where n is the number of 
random moves

– it is not realistic to reach a bigger depth especially for larger 
random branching

Using cut-off à la a-b
– we can cut-off the chance nodes

if the evaluation function is bounded
– the expected value can be bounded

when the value is not yet computed

The left tree is better for A1 while the 
right tree is better for A2, though the 
order of nodes is identical.
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Card Games

Card games may look like the stochastic games, but the dice 
are rolled just once at the beginning!
Card games are an example of games with partial 
observability (we do not see opponent’s cards).
Example: card game “higher takes” with open cards

Situation 1: MAX: ©6 ¨6 §9 8 MIN: ©4 ª2 §10 5
1. MAX gives §9, MIN confirms colour §10 MIN wins
2. MIN gives ª2, MAX gives ¨6 MIN wins
3. MAX gives ©6, MIN confirms colour ©4 MAX wins
4. MIN gives §5, MAX confirms colour §8 MAX wins
– §9 is the optimal first move for MAX
Situation 2: MAX: ©6 ¨6 §9 8 MIN: ¨4 ª2 §10 5
– a symmetric case, §9 is again the optimal first move for MAX
Situation 3: MIN hides the first card (©4 or ¨4), what is the optimal 

first move for MAX now?
– Independently of ©4 and ¨4 the optimal first move

was §9, so it is the first optimal move now too.
– Really?



Incomplete information

Example: how to become rich (a different view of cards)
• Situation 1: Trail A leads to a gold pile while trail B leads to a road-

fork. Go left and there is a mound of diamonds, but go right and a 
bus will kill you (diamonds are more valuable than gold). Where to 
go?
– the best choice is B and left

• Situation 2: Trail A leads to a gold pile while trail B leads to a road-
fork. Go right and there is a mound of diamonds, but go left and a 
bus will kill you. Where to go?
– B a right

• Situation 3: Trail A leads to a gold pile while trail B leads to a road-
fork. Select the correct side and you will reach a mound of diamonds, 
but select a wrong side and a bus will kill you. Where to go?
– a reasonable agent (not risking the death;-) goes A

• This is the same case as in the previous slide. We do not know what 
happens at the road-fork B. In the card game, we do not know which 
card (©4 or ¨4) the opponent has, 50% chance of failure.

• Lesson learnt: We need to assume information that we will have at 
a given state (the problem of using §9 is that MAX
plays differently when all cards are visible).



Umělá inteligence I, Roman 
Barták

Computer games– the state of the art

Chees
– 1997 Deep Blue won over Kasparov 3.5 – 2.5
– 2006 „regular“ PC (DEEP FRITZ) beats Kramnik 4 – 2

Checkers
– 1994 Chinook became the official world champion
– 29. 4. 2007 solved – optimal policy leads to draw 

Go
– branching factor 250 makes it challenging
– AlphaGo won over human champions (Lee Sedol, 2016), 

AlphaGo Zero won over AlphaGo (2017)
– using Monte Carlo methods for search and deep learning 

for action selection)

Poker
– Deep Stack and Libratus won over best humans (2017)
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