
Artificial Intelligence
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Adversarial Search: Games

Introduction

So far we assumed a single-agent environment, but
what if there are more agents and some of them are
„playing“ against us?

Today we will discuss adversarial search a.k.a.
game playing, as an example of a competitive
multi-agent environment.
– deterministic, turn-taking, two-player zero-sum games

of perfect information (tic-tac-toe, chess)
• optimal (perfect) decisions (minimax, alpha-beta)
• imperfect decisions (cutting off search)

– stochastic games (backgammon)

Games

Mathematical game theory (a branch of
economics) views any multi-agent environment as a
game, provided that the impact of each agent on
others is significant.
– environments with many agents are called economies

(rather than games)
AI deals mainly with turn-taking, two-player
zero-sum games (one player wins, the other one
loses).
– deterministic games vs. stochastic games
– perfect information vs. imperfect information
Why games in AI? Because games are:

• hard to play
• easy to model

(not that many actions)
• funny

Problem setting

We consider two players MAX and MIN
– MAX moves first, and then the players take turns moving until

the game is over
– we are looking for the strategy of MAX

Again, we shall see game playing as a search problem:
– initial state: specifies how the game is set up at the start
– successor function: results of the moves (move, state)

• the initial state and the successor function define the game tree
– terminal test: true, when the game is over (a goal state)
– utility function: final numeric value for a game that ends in

terminal state (win, draw, loss with values +1, 0, -1)
• higher values are better for MAX, while lower values are better for

MIN

Game tree – tic-tac-toe

Two players place X and O in an empty square
until a line of three identical symbols is reached or
all squares are full.

All possible moves for player
placing X.

Only the goal states are evaluated
(utility function).

CHAPTER 5
ADVERSARIAL SEARCH AND GAMES

XX
XX

X
X

X

XX

X XX

XX

X

.

. . .

. . .

. . .

XX
 0

XX
X X

X XX X
X

X X
X X

MAX (X)

MIN ()

MAX (X)

MIN ()

TERMINAL

Utility

Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial state,
and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.

Optimal strategy

Classical search is looking a (shortest) path to a
goal state.
Search for games is looking for a path to the
terminal state with the highest utility, but MIN
has something to say about it.
MAX is looking for a contingent strategy, which
specifies
– MAX’s move in the initial state
– MAX’s moves in the states resulting from every possible

response by MIN
– an optimal strategy leads to outcomes at least as

good as any other strategy when one is playing an
infallible opponent

Minimax value

The optimal strategy can be determined from the
minimax value of each node computed as follows:

MINIMAX-VALUE(n)=
UTILITY(n) if n is a terminal state
maxs Î successors(n) MINIMAX-VALUE(s) if MAX plays in n
mins Î successors(n) MINIMAX-VALUE(s) if MIN plays in n

We start with the utility of the terminal states.

We consider that
MIN always selects
the best move.

MAX is maximizing the worst-
case outcome.

41

MAX A

B C D

3

3

3

a1
a

a3

b1
b

b3 c1
c

c3 d1
d

d3

MIN

Figure 5.2 A two-ply game tree. The ! nodes are “MAX nodes,” in which it is MAX’s turn
to move, and the " nodes are “MIN nodes.” The terminal nodes show the utility values for
MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is
a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

function MINIMAX-SEARCH(game , state) returns an action
player← game .TO-MOVE(state)
value , move←MAX-VALUE(game , state)
return move

function MAX-VALUE(game , state) returns a (utility , move) pair
if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null
v←−∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MIN-VALUE(game, game .RESULT(state, a))
if v2 > v then
v , move← v2 , a

return v , move

function MIN-VALUE(game, state) returns a (utility , move) pair
if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null
v←+∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MAX-VALUE(game, game .RESULT(state, a))
if v2 < v then

v , move← v2 , a
return v , move

Figure 5.3 An algorithm for calculating the optimal move using minimax—the move that
leads to a terminal state with maximum utility, under the assumption that the opponent plays
to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole
game tree, all the way to the leaves, to determine the backed-up value of a state and the move
to get there.

Algorithm minimax

• Time complexity O(bm)
• Space complexity O(bm)
(b - #actions in states, m - #moves)

The algorithm assumes that the
player plays optimally. Otherwise,
the utility is even higher

Minimax for more players

For multiplayer games we can use a vector of utility values –
this vector gives the utility of the state from each player’s
viewpoint.

Multiplayer games usually involve alliances, whether formal or
informal, among the players.

– Alliances seem to be a natural consequence of optimal strategies for
each player.

– For example, suppose A and B are in weak positions and C is in a
stronger position. Then it is often optimal for both A and B to attack
C rather than each other.
Of course, as soon as C weakens under the joint onslaught, the
alliance loses its value.

The player selects the best move
based on own attribute in vector.

Note: each player is
maximizing a value of
own attribute in the
vector.

42 Chapter 5 Adversarial Search and Games

A

A

X

(1, 2, 6)

(1, 2, 6)

(1, 2, 6) (6, 1, 2) (0, 5, 2)

(0, 5, 2)

(5, 4, 5)

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4, 1) (5, 1, 1) (0, 5, 2) (7, 7, 1) (5, 4, 5)

Figure 5.4 The first three ply of a game tree with three players (A, B, C). Each node is
labeled with values from the viewpoint of each player. The best move is marked at the root.

Improving minimax

The minimax algorithm always finds an optimal strategy,
but it has to explore a complete game tree.
Can we speed-up the algorithm?

YES!
We do not need to explore all states, if they are “very bad”.
– a-b pruning eliminates branches that cannot possibly influence

the final decisions.
= max(min(3,12,8),min(2,x,y),min(14,5,2))
= max(3,min(2,x,y),2)
= max(3,z,2), where z £ 2
= 3

MINIMAX value of the
root does not depend on
values x and y and hence
it is not necessary to
explore these sub-trees.

41

MAX A

B C D

3

3

3

a1
a

a3

b1
b

b3 c1
c

c3 d1
d

d3

MIN

Figure 5.2 A two-ply game tree. The ! nodes are “MAX nodes,” in which it is MAX’s turn
to move, and the " nodes are “MIN nodes.” The terminal nodes show the utility values for
MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is
a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

function MINIMAX-SEARCH(game , state) returns an action
player← game .TO-MOVE(state)
value , move←MAX-VALUE(game , state)
return move

function MAX-VALUE(game , state) returns a (utility , move) pair
if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null
v←−∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MIN-VALUE(game, game .RESULT(state, a))
if v2 > v then
v , move← v2 , a

return v , move

function MIN-VALUE(game, state) returns a (utility , move) pair
if game.IS-TERMINAL(state) then return game .UTILITY(state, player), null
v←+∞
for each a in game .ACTIONS(state) do

v2 , a2 ←MAX-VALUE(game, game .RESULT(state, a))
if v2 < v then

v , move← v2 , a
return v , move

Figure 5.3 An algorithm for calculating the optimal move using minimax—the move that
leads to a terminal state with maximum utility, under the assumption that the opponent plays
to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole
game tree, all the way to the leaves, to determine the backed-up value of a state and the move
to get there.

x y

£ 2

a-b pruning - example
The first estimate of the
MINIMAX value of root.

We can stop evaluation of
the MIN node when its
MINIMAX value is worse
(smaller) than in the parent.

For the third MIN node
we can still find a better
solution.

Hmm, it was a false
hope, the optimum is 3.

If we explored the nodes in the order 2,5,14, it would be enough to evaluate node 2.

43

(a)

3 3

3 3

3 3

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

∞ ∞]

∞

∞]

∞

∞ ∞

∞]

∞

∞ ∞]

∞

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

43

(a)

3 3

3 3

3 3

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

∞ ∞]

∞

∞]

∞

∞ ∞

∞]

∞

∞ ∞]

∞

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

43

(a)

3 3

3 3

3 3

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

∞ ∞]

∞

∞]

∞

∞ ∞

∞]

∞

∞ ∞]

∞

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

43

(a)

3 3

3 3

3 3

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

∞ ∞]

∞

∞]

∞

∞ ∞

∞]

∞

∞ ∞]

∞

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

43

(a)

3 3

3 3

3 3

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

∞ ∞]

∞

∞]

∞

∞ ∞

∞]

∞

∞ ∞]

∞

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

43

(a)

3 3

3 3

3 3

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

∞ ∞]

∞

∞]

∞

∞ ∞

∞]

∞

∞ ∞]

∞

Figure 5.5 Stages in the calculation of the optimal decision for the game tree in Figure ??.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the
value of B is exactly 3. Now we can infer that the value of the root is at least 3, because
MAX has a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence,
C, which is a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX

would never choose C. Therefore, there is no point in looking at the other successor states
of C. This is an example of alpha–beta pruning. (e) The first leaf below D has the value 14,
so D is worth at most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need
to keep exploring D’s successor states. Notice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14. (f) The second successor of D
is worth 5, so again we need to keep exploring. The third successor is worth 2, so now D is
worth exactly 2. MAX’s decision at the root is to move to B, giving a value of 3.

The first leaf found, which
gives the first MINIMAX value.

Next leaf found, but no
improvement.

Algorithm a-b

By „perfect ordering“ we can decrease time
complexity to O(bm/2), which gives a branching
factor Öb (b for minimax), so we can solve a tree
roughly twice as deep as minimax in the same
amount of time.

By cutting off the sub-trees we do
not miss optimum.

a
is t

he
 va

lue
 of

 be
st

ch
oic

e w
e h

av
e f

ou
nd

so
far

 al
on

g t
he

 pa
th

for

MAX

b
is t

he
 va

lue
 of

 be
st

ch
oic

e w
e h

av
e f

ou
nd

so
far

 al
on

g t
he

 pa
th

for

MIN

44 Chapter 5 Adversarial Search and Games

Figure 5.6 The general case for alpha–beta pruning. If m or m′ is better than n for Player,
we will never get to n in play.

function ALPHA-BETA-SEARCH(game , state) returns an action
player← game .TO-MOVE(state)
value , move←MAX-VALUE(game , state,−∞,+∞)
return move

function MAX-VALUE(game , state,α,β) returns a (utility , move) pair
if game .IS-TERMINAL(state) then return game .UTILITY(state, player), null
v←−∞
for each a in game.ACTIONS(state) do

v2 , a2←MIN-VALUE(game, game .RESULT(state, a),α,β)
if v2 > v then

v , move← v2 , a
α←MAX(α, v)

if v ≥ β then return v , move
return v , move

function MIN-VALUE(game, state,α,β) returns a (utility , move) pair
if game .IS-TERMINAL(state) then return game .UTILITY(state, player), null
v←+∞
for each a in game.ACTIONS(state) do

v2 , a2←MAX-VALUE(game, game .RESULT(state, a),α,β)
if v2 < v then

v , move← v2 , a
β←MIN(β, v)

if v ≤ α then return v , move
return v , move

Figure 5.7 The alpha–beta search algorithm. Notice that these functions are the same as the
MINIMAX-SEARCH functions in Figure ??, except that we maintain bounds in the variables
α and β, and use them to cut off search when a value is outside the bounds.

“Imperfect” strategies

Both minimax and a-b have to search all the
way to terminal states.
– This is not practical for bigger depths (depth =

#moves to reach a terminal state).
We can cut off search earlier and apply a
heuristic evaluation function to states in the
search.
– does not guarantee finding an optimal solution, but
– can finish search in a given time

Implementation:
– terminal test ® cutoff test
– utility function ® heuristic evaluation function EVAL

Evaluation function

Returns an estimate of the expected utility of the
game from a given position (similar to the heuristic
function h).
Obviously, quality of the algorithm depends on the
quality of evaluation function.
Properties:
– terminal states must be ordered in the same way as if

ordered by the true utility function
– the computation must not take too long
– for nonterminal states, the evaluation function should

be strongly correlated with the actual chances of
winning

• given the limited amount of computation, the best the
algorithm can do is make a guess about the final outcome

How to construct such a function?

Evaluation function: examples

Expected value
– based on selected features of states, we can define

various categories (equivalence classes) of states
– each category is evaluated based on the proportion of

winning and losing states
• EVAL = (0.72 ´ +1) + (0.20 ´ -1) + (0.08 ´ 0) = 0.52

“Material” value
– estimate the numerical contribution of each feature

• chess: pawn = 1, knight = bishop = 3, rook = 5, queen = 9
– combine the contributions (e.g. weighted sum)

• EVAL(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s)
• The sum assumes independence of features!
• It is possible to use non-linear combination.

45

(b) White to move(a) White to move

Figure 5.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong
enough to win.

a b c d e f g h

8

7

6

5

4

3

2

1

Figure 5.9 The horizon effect. With Black to move, the black bishop is surely doomed. But
Black can forestall that event by checking the white king with its pawns, encouraging the
king to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and
thus the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

Problems with cut off
The situation may change dramatically by assuming
one more move after the cut-off limit.

– Quiescent search: if the estimate is not stable then it is
better to explore a few more moves (or only selected moves)

The unavoidable bad situation can be delayed after
the cut-off limit (horizon) and hence it is not
recognized as a bad state (horizon effect).

– Singular extension: explore the sequence
of moves that are “clearly better” than all other moves

Black bishop is surely doomed but Black can
forestall that event by checking the white king
with its pawns (this pushes the inevitable event
over the horizon).

45

(b) White to move(a) White to move

Figure 5.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong
enough to win.

a b c d e f g h

8

7

6

5

4

3

2

1

Figure 5.9 The horizon effect. With Black to move, the black bishop is surely doomed. But
Black can forestall that event by checking the white king with its pawns, encouraging the
king to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and
thus the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

Identical material value (better for Black) for
both states,
but White wins the right position by
capturing the queen.

45

(b) White to move(a) White to move

Figure 5.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong
enough to win.

a b c d e f g h

8

7

6

5

4

3

2

1

Figure 5.9 The horizon effect. With Black to move, the black bishop is surely doomed. But
Black can forestall that event by checking the white king with its pawns, encouraging the
king to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and
thus the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

Simulation approaches

Heuristic alpha-beta tree search explores a wide but shallow
portion of the game tree.
• What if the the branching factor is big?
• What if we have no good evaluation function?
Then we can use an approach that explores a deep but
narrow portion of the game tree (follows promising moves).
Monte Carlo techniques:

Instead of evaluation function use the average utility over a
number of simulations of complete games.

Simulation (playout or rollout) chooses moves using the playout policy
until a terminal position is reached (defines utility).

Where do we start the simulation and how many playouts?
– Pure Monte Carlo search: do N simulations from the current

state and select the move with highest win percentage.
– Monte Carlo tree search: builds a game tree, using the

selection policy finds a node for expansion, evaluates new
node using simulation

Monte Carlo Tree Search

Selection
– starting at root, choose a move using

the selection policy until reaching a
leaf node

Expansion
– generate a new child node

Simulation
– perform a playout, choosing moves for

both players according to the playout
policy (moves are not recorded in the
search tree)

Back-propagation
– propagate the result of simulation in

all nodes up to the root node

46 Chapter 5 Adversarial Search and Games

(a) Selection (b) Expansion
and simulation

(c) Backpropagation

black wins

Figure 5.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree←NODE(state)
while IS-TIME-REMAINING() do
leaf ← SELECT(tree)
child← EXPAND(leaf)
result← SIMULATE(child)
BACK-PROPAGATE(result , child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

White has won 37 out
of the 100 playouts.

46 Chapter 5 Adversarial Search and Games

(a) Selection (b) Expansion
and simulation

(c) Backpropagation

black wins

Figure 5.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree←NODE(state)
while IS-TIME-REMAINING() do
leaf ← SELECT(tree)
child← EXPAND(leaf)
result← SIMULATE(child)
BACK-PROPAGATE(result , child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

46 Chapter 5 Adversarial Search and Games

(a) Selection (b) Expansion
and simulation

(c) Backpropagation

black wins

Figure 5.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.

function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree←NODE(state)
while IS-TIME-REMAINING() do
leaf ← SELECT(tree)
child← EXPAND(leaf)
result← SIMULATE(child)
BACK-PROPAGATE(result , child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 5.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

Black has won 60 out
of the 79 playouts.

MCTS algorithm

UCT (upper confidence bounds applied to trees) selection
policy ranks moves using an upper confidence bound (UCB1)
formula:

!"#1 % = !(%)
)(%) + "×

log)(/012%3 %)
)(%)

The number of playouts
through node n

The total utility of all
playouts through node n

Exploitation term: the
average utility of n

Exploration term: prefers
less explored node

Constant balancing exploration
and exploitation (should be 2)

Stochastic games

In real life, many unpredictable external events can
put us into unforeseen situations.
Games mirror unpredictability by including a
random element, such as throwing of dice.

Backgammon
– the goal is to move all one’s pieces

off the board (clockwise)
– who finishes first, wins
– dice are rolled to determine the

legal moves
• the total travelled distance

There are four legal moves for White:
(5-10,5-11), (5-11,19-24), (5-10,10-16), (5-11,11-16)

Playing stochastic games

Game tree is extended with chance nodes (in addition to MAX and MIN
nodes) describing all rolls of dice.

– 36 results for two dice,
21 without symmetries (5-6 and 6-5)

– chance for double is 1/36,
other results 1/18

Instead of the MINIMAX value, we use
expected MINIMAX value (based on probability of chance actions):

EXPECTIMINIMAX-VALUE(n)=
UTILITY(n) if n is a terminal node
maxs Î successors(n) EXPECTMINIMAX-VALUE(s) if MAX plays in n
mins Î successors(n) EXPECTMINIMAX-VALUE(s) if MIN plays in n
ås Î successors(n) P(s) . EXPECTMINIMAX(s) if n is a chance node

Chance nodes are added to each layer, where
the move is influenced by randomness.
MAX rolls the dice here.

48 Chapter 5 Adversarial Search and Games

C H A N C E

M IN

M A X

C H A N C E

M A X

. . .

. . .

B

. . .

......

.........

.........

......

...
C

. . .

Figure 5.13 Schematic game tree for a backgammon position.

C H A N C E

M IN

M A X

3 3 1 1

3 1

.1 .1

1.3

1 1

1

.1 .1

a1 a a1 a

Figure 5.14 An order-preserving transformation on leaf values changes the best move.

Stochastic games - discussion

Beware of the evaluation function (for cut-off)
– the absolute value of nodes may play a role
– the values should be a linear transformation of expected utility in

the node

Time complexity O(bmnm), where n is the number of
random moves

– it is not realistic to reach a bigger depth especially for larger
random branching

Using cut-off à la a-b
– we can cut-off the chance nodes

if the evaluation function is bounded
– the expected value can be bounded

when the value is not yet computed

The left tree is better for A1 while the
right tree is better for A2, though the
order of nodes is identical.

48 Chapter 5 Adversarial Search and Games

C H A N C E

M IN

M A X

C H A N C E

M A X

. . .

. . .

B

. . .

......

.........

.........

......

...
C

. . .

Figure 5.13 Schematic game tree for a backgammon position.

C H A N C E

M IN

M A X

3 3 1 1

3 1

.1 .1

1.3

1 1

1

.1 .1

a1 a a1 a

Figure 5.14 An order-preserving transformation on leaf values changes the best move.

48 Chapter 5 Adversarial Search and Games

C H A N C E

M IN

M A X

C H A N C E

M A X

. . .

. . .

B

. . .

......

.........

.........

......

...
C

. . .

Figure 5.13 Schematic game tree for a backgammon position.

C H A N C E

M IN

M A X

3 3 1 1

3 1

.1 .1

1.3

1 1

1

.1 .1

a1 a a1 a

Figure 5.14 An order-preserving transformation on leaf values changes the best move.

Card Games

Card games may look like the stochastic games, but the dice
are rolled just once at the beginning!
Card games are an example of games with partial
observability (we do not see opponent’s cards).
Example: card game “higher takes” with open cards

Situation 1: MAX: ©6 ¨6 §9 8 MIN: ©4 ª2 §10 5
1. MAX gives §9, MIN confirms colour §10 MIN wins
2. MIN gives ª2, MAX gives ¨6 MIN wins
3. MAX gives ©6, MIN confirms colour ©4 MAX wins
4. MIN gives §5, MAX confirms colour §8 MAX wins
– §9 is the optimal first move for MAX
Situation 2: MAX: ©6 ¨6 §9 8 MIN: ¨4 ª2 §10 5
– a symmetric case, §9 is again the optimal first move for MAX
Situation 3: MIN hides the first card (©4 or ¨4), what is the optimal

first move for MAX now?
– Independently of ©4 and ¨4 the optimal first move

was §9, so it is the first optimal move now too.
– Really?

Incomplete information

Example: how to become rich (a different view of cards)
• Situation 1: Trail A leads to a gold pile while trail B leads to a road-

fork. Go left and there is a mound of diamonds, but go right and a
bus will kill you (diamonds are more valuable than gold). Where to
go?
– the best choice is B and left

• Situation 2: Trail A leads to a gold pile while trail B leads to a road-
fork. Go right and there is a mound of diamonds, but go left and a
bus will kill you. Where to go?
– B a right

• Situation 3: Trail A leads to a gold pile while trail B leads to a road-
fork. Select the correct side and you will reach a mound of diamonds,
but select a wrong side and a bus will kill you. Where to go?
– a reasonable agent (not risking the death;-) goes A

• This is the same case as in the previous slide. We do not know what
happens at the road-fork B. In the card game, we do not know which
card (©4 or ¨4) the opponent has, 50% chance of failure.

• Lesson learnt: We need to assume information that we will have at
a given state (the problem of using §9 is that MAX
plays differently when all cards are visible).

Umělá inteligence I, Roman
Barták

Computer games– the state of the art

Chees
– 1997 Deep Blue won over Kasparov 3.5 – 2.5
– 2006 „regular“ PC (DEEP FRITZ) beats Kramnik 4 – 2

Checkers
– 1994 Chinook became the official world champion
– 29. 4. 2007 solved – optimal policy leads to draw

Go
– branching factor 250 makes it challenging
– AlphaGo won over human champions (Lee Sedol, 2016),

AlphaGo Zero won over AlphaGo (2017)
– using Monte Carlo methods for search and deep learning

for action selection)

Poker
– Deep Stack and Libratus won over best humans (2017)

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

