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Intro to Stat. NLP I
• Instructors: Jan Hajič / Jindřich Helcl

– ÚFAL MFF UK, office: 420, office hours: J. Hajic: Mon 10:30-11:00
– preferred contact: {hajic,helcl}@ufal.mff.cuni.cz

• Room & time:
– lecture: room S1, Mon 10:40-12:10
– Seminar/practice [cvičení] not used for in-person class (room S8, 15:40-17:20)
– Sep 30, 2024 – Jan 10, 2025, main final written exam date: Jan 13, 2025

• Inverted course: 
– you watch the lectures at your leisure
– Interactive part at seminars (in/person, online for those with travel difficulties)
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Textbooks you need
• Manning, C. D., Schütze, H.: 

• Foundations of Statistical Natural Language Processing. The 
MIT Press. 1999. ISBN 0-262-13360-1. [required]

• Jurafsky, D., Martin, J.H.:
• Speech and Language Processing. Prentice-Hall. 2000. ISBN 0-

13-095069-6 and later editions. [recommended].
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Other reading
• Charniak, E:

– Statistical Language Learning. The MIT Press. 1996. ISBN 0-262-53141-0.

• Cover, T. M., Thomas, J. A.:
– Elements of Information Theory. Wiley. 1991. ISBN 0-471-06259-6.

• Jelinek, F.:
– Statistical Methods for Speech Recognition. The MIT Press. 1998. ISBN 0-262-10066-5

• Proceedings of major conferences (ACL Anthology)
– ACL (Assoc. of Computational Linguistics)
– EACL/NAACL/IJCNLP (European/American/Asian Chapter of ACL)
– EMNLP (Empirical Methods in NLP), CONLL
– COLING (Intl. Committee of Computational Linguistics)

• arXiv, journals: Computational Linguistics, TACL
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Course requirements
• Grade components: requirements & weights:

– Homeworks (2):       1/3
– Final Exam:              1/3

• Exam: 
– approx. 4-5 questions:

• mostly explanatory answers (1/4 page or so), 
• algorithms
• only a few multiple choice questions
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Homeworks

• Homeworks:
– Entropy, Language Modeling; Word Classes

• Organization
• (little) paper-and-pencil exercises, lot of programming
• turning-in mechanism: see the web
• no plagiarism!

• Deadlines
– See the course web (Nov. 30, 2024; Feb 29, 2025)
– Late penalty: 5% of grade (0-100) per day (max. 50%)
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Course segments
• Intro & Probability & Information Theory

– The very basics: definitions, formulas, examples.

• Language Modeling
– n-gram models, parameter estimation
– smoothing (EM algorithm)

• Words and the Lexicon
– word classes, mutual information, bit of lexicography

• Hidden Markov Models
– background, algorithms, parameter estimation

• Decision Trees in NLP
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NLP: The Main Issues
• Why is NLP difficult?

– many “words”, many “phenomena” --> many “rules”
• OED: 400k words; Finnish lexicon (of forms): ~2 . 107

• sentences, clauses, phrases, constituents, coordination, 
negation, imperatives/questions, inflections, parts of speech, 
pronunciation, topic/focus, and much more!

– irregularity (exceptions, exceptions to the exceptions, ...)
• potato -> potato es  (tomato, hero,...); photo -> photo s, and 

even: both mango -> mango s   or -> mango es
• Adjective / Noun order: new book, electrical engineering, 

general regulations, flower garden, garden flower, ...: but 
Governor     General
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Difficulties in NLP (cont.)
– ambiguity

• books: NOUN or VERB?
– you need many books vs. she books her flights online

• No left turn weekdays 4-6 pm / except transit vehicles 
(Charles Street at Cold Spring)

– when may transit vehicles turn: Always?  Never?
• Thank you for not smoking, drinking, eating or playing 

radios without earphones. (MTA bus)
– Thank you for not eating without earphones??
– or even: Thank you for not drinking without earphones!?

• My neighbor’s hat was taken by wind. He tried to catch it.
– ...catch the wind or ...catch the hat ?
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(Categorical) Rules or Statistics?
• Preferences:

– clear cases: context clues: she books --> books is a verb
– rule: if an ambiguous word (verb/nonverb) is preceded by 

a matching personal pronoun -> word is a verb

– less clear cases: pronoun reference
– she/he/it refers to the most recent noun or pronoun (?) (but 

maybe we can specify exceptions)

– selectional:
– catching hat >> catching wind (but why not?)

– semantic: 
– never thank for drinking in a bus! (but what about the 

earphones?)
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Solutions

• Don’t guess if you know:
• morphology (inflections)
• lexicons (lists of words)
• unambiguous names
• perhaps some (really) fixed phrases
• syntactic rules?

• Use statistics (based on real-world data) for preferences (only?)
• No doubt: but this is the big question!
• Statistics ~ Machine learning (Neural Networks / LLMs / …)
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Statistical NLP

• Imagine:
– Each sentence W = { w1, w2, ..., wn } gets a probability 

P(W|X) in a context X (think of it in the intuitive sense 
for now) 

– For every possible context X, sort all the imaginable 
sentences W according to P(W|X):

– Ideal situation:
best sentence (most probable in context X)        NB: same for

interpretation

P(W) “ungrammatical” sentences
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Real World Situation

• Unable to specify set of grammatical sentences today using 
fixed “categorical” rules (maybe never, cf. arguments in MS)

• Use statistical “model” based on REAL WORLD DATA
and care about the best sentence only (disregarding the 
“grammaticality” issue) 

best sentence

P(W)

Wbest                                                                                                                         Wworst
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Experiments & Sample Spaces

• Experiment, process, test, ...
• Set of possible basic outcomes: sample space 

– coin toss ( = {head,tail}), die ( = {1..6}) 
– yes/no opinion poll, quality test (bad/good) ( = {0,1})
– lottery (|  |  
– # of traffic accidents somewhere per year ( = N) 
– spelling errors ( = *), where Z is an alphabet, and Z* is a set of possible 

strings over such and alphabet
– missing word (|  |  vocabulary size)
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Events

• Event A is a set of basic outcomes
• Usually A  and all A 2 (the event space)

–  is then the certain event, is the impossible event
• Example:

– experiment: three times coin toss
•  = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– count cases with exactly two tails: then
• A = {HTT, THT, TTH}

– all heads:
• A = {HHH}
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Probability

• Repeat experiment many times, record how many times a given 
event A occurred (“count” c1).

• Do this whole series many times; remember all cis.
• Observation: if repeated really many times, the ratios of ci/Ti (where 

Ti is the number of experiments run in the i-th series) are close to 
some (unknown but) constant value.

• Call this constant a probability of A. Notation: p(A)
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Estimating probability
• Remember: ... close to an unknown constant.
• We can only estimate it:

– from a single series (typical case, as mostly the 
outcome of a series is given to us and we cannot repeat 
the experiment), set 

p(A) =  c1/T1.
– otherwise, take the weighted average of all ci/Ti (or, if 

the data allows,  simply look at the set of series as if it 
is a single long series). 

• This is the best estimate.
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Example
• Recall our example:

– experiment: three times coin toss
•  = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– count cases with exactly two tails: A = {HTT, THT, TTH}

• Run an experiment 1000 times (i.e. 3000 tosses)
• Counted: 386 cases with two tails (HTT, THT, or TTH)
• estimate: p(A) = 386 / 1000 = .386
• Run again: 373, 399, 382, 355, 372, 406, 359

– p(A) = .379 (weighted average) or simply 3032 / 8000
• Uniform distribution assumption: p(A) = 3/8 = .375
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Basic Properties

• Basic properties:
– p: 2 [0,1]
– p() = 1

– Disjoint events: p(Ai) = i p(Ai)

• [NB: axiomatic definition of probability: take the 
above three conditions as axioms]

• Immediate consequences:
– p() = 0,     p(A ) = 1 - p(A),    A p(A)  p(B)
– a  p(a) = 1
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Joint and Conditional Probability

• p(A,B) = p(A B)
• p(A|B) = p(A,B) / p(B)

– Estimating form counts:
• p(A|B) = p(A,B) / p(B) = (c(A  B) / T) / (c(B) / T) =  c(A  B) / c(B)


A B

A  B

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Jindřich Helcl
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Bayes Rule
• p(A,B) = p(B,A) since p(A p(B 

– therefore: p(A|B)  p(B) = p(B|A)  p(A), and therefore           

p(A|B) = p(B|A)  p(A) / p(B)   !


A B
A  B
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Independence
• Can we compute p(A,B) from p(A) and p(B)?
• Recall from previous foil: 

p(A|B) = p(B|A)  p(A) / p(B) 
p(A|B) p(B) = p(B|A)  p(A)

p(A,B) = p(B|A)  p(A)
... we’re almost there: how p(B|A) relates to p(B)?

– p(B|A) = P(B) iff A and B are independent
• Example: two coin tosses, weather today and 

weather on March 4th 1789; 
• Any two events for which p(B|A) = P(B)! 
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Chain Rule

p(A1, A2, A3, A4, ..., An) =                             !
p(A1|A2,A3,A4,...,An)  p(A2|A3,A4,...,An) 

 p(A3|A4,...,An)  ...  p(An-1|An)  p(An)

• this is a direct consequence of the Bayes rule.
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The Golden Rule 
(of Classic Statistical NLP) 

• Interested in an event A given B (when it is not easy 
or practical or desirable to estimate p(A|B)):

• take Bayes rule, max over all As:
• argmaxA p(A|B) = argmaxA p(B|A) . p(A) / p(B) =

argmaxA p(B|A) p(A) !
• ... as p(B) is constant when changing As
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Random Variable
• is a function X: Q

– in general: Q = Rn, typically R
– easier to handle real numbers than real-world events

• random variable is discrete if Q is countable (i.e. 
also if finite)

• Example: die: natural “numbering” [1,6], coin: {0,1}
• Probability distribution:

– pX(x) = p(X=x) =df p(Ax) where Ax = {a  : X(a) = x} 
– often just p(x) if it is clear from context what X is 
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Expectation
Joint and Conditional Distributions

• is a mean of a random variable (weighted average)
– E(X) = xX( x . pX(x)

• Example: one six-sided die: 3.5, two dice (sum) 7
• Joint and Conditional distribution rules:

– analogous to probability of events
• Bayes: pX|Y(x,y) =notation pXY(x|y) =even simpler notation

p(x|y) = p(y|x) . p(x) / p(y)
• Chain rule: p(w,x,y,z) = p(z).p(y|z).p(x|y,z).p(w|x,y,z)
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Standard distributions

• Binomial (discrete)
– outcome: 0 or 1 (thus: binomial)
– make n trials
– interested in the (probability of) number of successes r

• Must be careful: it’s not uniform!

• pb(r|n) = (  ) / 2n  (for equally likely outcome)

• (  ) counts how many possibilities there are for choosing r 
objects out of n; = n! / ((n-r)! r!)

n
r

n
r
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Continuous Distributions
• The normal distribution (“Gaussian”)

• pnorm(x|) = e-(x-)2/(22)/
• where:

–  is the mean (x-coordinate of the peak) (0)
–  is the standard deviation (1)

x
• other: hyperbolic, t
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The Notion of Entropy

• Entropy ~ “chaos”, fuzziness, opposite of order, ...
– you know it:

• it is much easier to create “mess” than to tidy things up...

• Comes from physics:
– Entropy does not go down unless energy is applied

• Measure of uncertainty:
– if low... low uncertainty; the higher the entropy, the higher uncertainty, but 

the higher “surprise” (information) we can get out of an experiment
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The Formula
• Let pX(x) be a distribution of random variable X
• Basic outcomes (alphabet) 

H(X) = - x  p(x) log2 p(x)    !
• Unit: bits (log10: nats)
• Notation: H(X) = Hp(X) = H(p) = HX(p) = H(pX)
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Using the Formula: Example
• Toss a fair coin:  = {head,tail}

– p(head) = .5, p(tail) = .5
– H(p) = - 0.5 log2(0.5) + (- 0.5 log2(0.5)) =                             

2  ( (-0.5)  (-1) ) = 2  0.5 = 1
• Take fair, 32-sided die: p(x) = 1 / 32 for every side x

– H(p) = -i = 1..32 p(xi) log2p(xi) = - 32 (p(x1) log2p(x1) 
(since for all i p(xi) = p(x1) = 1/32)                                       
=  -32  ((1/32)  (-5)) = 5 (now you see why it’s called bits?)

• Unfair coin: 
– p(head) = .2 ... H(p) = .722;  p(head) = .01 ... H(p) = .081
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Example: Book Availability

Entropy     H(p)

1

bad bookstore good bookstore

0

0                                 0.5                                  1    p(Book Available)
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The Limits

• When H(p) = 0?
– if a result of an experiment is known ahead of time:
– necessarily: 

x ; p(x) = 1 & y ; y  x  p(y) = 0
• Upper bound? 

– none in general
– for |  | = n:  H(p) log2n 

• nothing can be more uncertain than the uniform distribution
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Entropy and Expectation

• Recall:
– E(X) = xX pX(x)   x

• Then:
E(log2(1/pX(x))) = xX pX(x) log2(1/pX(x)) = 

= - xX pX(x) log2pX(x) =                                                 

= H(pX) =notation H(p)
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Perplexity: motivation
• Recall:

– 2 equiprobable outcomes: H(p) = 1 bit
– 32 equiprobable outcomes: H(p) = 5 bits
– 4.3 billion equiprobable outcomes: H(p) ~= 32 bits

• What if the outcomes are not equiprobable?
– 32 outcomes, 2 equiprobable at .5, rest impossible:

• H(p) = 1 bit
– Any measure for comparing the entropy (i.e. 

uncertainty/difficulty of prediction) (also) for random 
variables with different number of outcomes?
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Perplexity
• Perplexity:

– G(p) = 2H(p)

• ... so we are back at 32 (for 32 eqp. outcomes), 2 
for fair coins, etc.

• it is easier to imagine:
– NLP example: vocabulary size of a vocabulary with 

uniform distribution, which is equally hard to predict
• the “wilder” (biased) distribution, the better:

– lower entropy, lower perplexity
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Joint Entropy and Conditional Entropy

• Two random variables: X (space ),Y ()
• Joint entropy:

– no big deal: ((X,Y) considered a single event):

H(X,Y) = - x y  p(x,y) log2 p(x,y)
• Conditional entropy: 

H(Y|X) = - x y  p(x,y) log2 p(y|x)
recall that H(X) = E(log2(1/pX(x))) 
(weighted “average”, and weights are not conditional) 
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Conditional Entropy (Using the Calculus)

• other definition:
H(Y|X) = x p(x) H(Y|X=x) =

for H(Y|X=x), we can use the                                    single-
variable definition (x ~ constant)

= x p(x) ( - y  p(y|x) log2p(y|x) ) =
= - x y  p(y|x) p(x) log2p(y|x) =
= - x y  p(x,y) log2p(y|x)
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Properties of Entropy I

• Entropy is non-negative:
– H(X) 
– proof: (recall: H(X) = - x  p(x) log2 p(x))

• log(p(x)) is negative or zero for x  1,
• p(x) is non-negative; their product p(x)log(p(x) is thus negative; 
• sum of negative numbers is negative;
• and -f is positive for negative f

• Chain rule: 
– H(X,Y) = H(Y|X) + H(X), as well as 
– H(X,Y) = H(X|Y) + H(Y) (since H(Y,X) = H(X,Y))
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Properties of Entropy II
• Conditional Entropy is better (than unconditional): 

– H(Y|X)  H(Y) 
• H(X,Y)  H(X) + H(Y) (follows from the previous (in)equalities)

• equality  iff X,Y  independent
• [recall: X,Y independent iff p(X,Y) = p(X)p(Y)]

• H(p) is concave (remember the book availability graph?)
– concave function f over an interval (a,b):

x,y (a,b),   [0,1]:
f(x + (1-)y) f(x) + (1-)f(y)

• function f is convex   if    -f is concave
• [for proofs and generalizations, see Cover/Thomas]

f

x y
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“Coding” Interpretation of Entropy

• The least (average) number of bits needed to encode a message 
(string, sequence, series,...) (each element having being a result of a 
random process with some distribution p): = H(p)

• Remember various compressing algorithms?
– they do well on data with repeating (= easily predictable = low entropy) 

patterns
– their results though have high entropy  compressing compressed data does 

nothing  
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Coding: Example
• How many bits do we need for ISO Latin 1?

–  the trivial answer: 8
• Experience: some chars are more common, some (very) rare:

• ...so what if we use more bits for the rare, and less bits for the 
frequent? [be careful: want to decode (easily)!]

• suppose: p(‘a’) = 0.3, p(‘b’) = 0.3, p(‘c’) = 0.3, the rest: p(x)
.0004

• code: ‘a’ ~ 00, ‘b’ ~ 01, ‘c’ ~ 10, rest: 11b1b2b3b4b5b6b7b8

• code acbbécbaac: 0010010111000011111001000010
a c b b     é     c b a a c 

• number of bits used: 28 (vs. 80 using “naive” coding)

• code length ~ 1 / probability; conditional prob OK!
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Entropy of a Language

• Imagine that we produce the next letter using
p(ln+1|l1,...,ln),

where l1,...,ln is the sequence of all the letters which had been uttered so 
far (i.e. n is really big!); let’s call l1,...,ln the history h (hn+1), and all 
histories H:

• Then compute its entropy:
- h l  p(l,h) log2 p(l|h)

• Not very practical, isn’t it? 
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Kullback-Leibler Distance
(Relative Entropy)

• Remember: 
– long series of experiments... ci/Ti oscillates around some 

number... we can only estimate it... to get a distribution q.
• So we get a distribution q; (sample space , r.v. X)

the true distribution is, however, p. (same , X)

how big error are we making?
• D(p||q) (the Kullback-Leibler distance):

D(p||q) = x  p(x) log2 (p(x)/q(x)) = Ep log2 (p(x)/q(x)) 
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Comments on Relative Entropy

• Conventions:
– 0 log 0  =  0
– p log (p/0) = (for p > 0)

• Distance? (less “misleading”: Divergence)
– not quite:

• not symmetric: D(p||q)  D(q||p)
• does not satisfy the triangle inequality

– but useful to look at it that way
• H(p) + D(p||q): bits needed for encoding p if q is used
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Mutual Information (MI)
in terms of relative entropy

• Random variables X, Y; pXY(x,y),  pX(x),  pY(y)
• Mutual information (between two random variables X,Y):

I(X,Y) = D(p(x,y) || p(x)p(y))

• I(X,Y) measures how much (our knowledge of) Y 
contributes (on average) to easing the prediction of X

• or, how  p(x,y) deviates from (independent)  p(x)p(y)
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Mutual Information: the Formula
• Rewrite the definition: [recall: D(r||s) = v  r(v) log2 (r(v)/s(v));

substitute r(v) = p(x,y), s(v) = p(x)p(y); <v> ~ <x,y>]

I(X,Y) = D(p(x,y) || p(x)p(y)) =  
= x y  p(x,y) log2 (p(x,y)/p(x)p(y))

• Measured in bits (what else? :-)

!
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From Mutual Information to Entropy
• by how many bits the knowledge of Y lowers the entropy H(X):

I(X,Y) = x y  p(x,y) log2 (p(x,y)/p(y)p(x)) =
...use p(x,y)/p(y) = p(x|y)

= x y  p(x,y) log2 (p(x|y)/p(x)) =
...use log(a/b) = log a - log b (a ~ p(x|y), b ~ p(x)), distribute sums

= x y  p(x,y)log2p(x|y) - x y  p(x,y)log2p(x) =
...use def. of H(X|Y) (left term), and y  p(x,y) = p(x) (right term)

= - H(X|Y) + (- x p(x)log2p(x)) =
...use def. of H(X) (right term), swap terms

= H(X) - H(X|Y)           ...by symmetry, = H(Y) - H(Y|X)
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Properties of MI vs. Entropy
• I(X,Y) = H(X) - H(X|Y) = number of bits the knowledge 

of Y lowers the entropy of X

= H(Y) - H(Y|X) (prev. foil, symmetry)

Recall: H(X,Y) = H(X|Y) + H(Y)  -H(X|Y) = H(Y) - H(X,Y) 

• I(X,Y) = H(X) + H(Y) - H(X,Y)
• I(X,X) = H(X) (since H(X|X) = 0)

• I(X,Y) = I(Y,X) (just for completeness)

• I(X,Y)  0  ... let’s prove that now (as promised).
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Jensen’s Inequality
• Recall: f is convex on interval (a,b) iff 

x,y (a,b),   [0,1]:
f(x + (1-)y) f(x) + (1-)f(y)

• J.I.: for distribution p(x), r.v. X on , and convex f, 
f(xp(x) x) xp(x) f(x)

• Proof (idea): by induction on the number of basic outcomes;
• start with || = 2 by: 

• p(x1)f(x1) + p(x2)f(x2) f(p(x1)x1 + p(x2)x2) ( def. of convexity)
• for the induction step (|| = k  k+1), just use the induction 

hypothesis and def. of convexity (again).

f

x y
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Information Inequality

D(p||q)  0  !
• Proof: 
0 = - log 1 = - log xq(x) = - log x(q(x)/p(x))p(x) 

...apply Jensen’s inequality here ( - log is convex)...

 xp(x) (-log(q(x)/p(x))) = xp(x) log(p(x)/q(x)) =
= D(p||q) 
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Other (In)Equalities and Facts

• Log sum inequality: for ri, si 

i=1..n (ri log(ri/si)) (i=1..n ri) log(i=1..nri/i=1..nsi))

• D(p||q) is convex [in p,q] ( log sum inequality)
• H(pX) log2||, where  is the sample space of pX

Proof: uniform u(x), same sample space : p(x) log u(x) = -log2||;

log2|| - H(X) = -p(x) log u(x) + p(x) log p(x) = D(p||u)  0

• H(p) is concave [in p]:
Proof: from H(X) = log2|| - D(p||u), D(p||u) convex H(x) concave 
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Cross-Entropy

• Typical case: we’ve got series of observations
T = {t1, t2, t3, t4, ..., tn}(numbers, words, ...; ti  ); 

estimate (simple): 
y  (y) = c(y) / |T|, def. c(y) = |{t ; t = y}|

• ...but the true p is unknown; every sample is too small!
• Natural question: how well do we do using     [instead of p]?
• Idea: simulate actual p by using a different T’ 

(or rather: by using different observation we simulate the 
insufficiency of T vs. some other data (“random” difference))

p

p
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Cross Entropy: The Formula

• Hp’(  )  =  H(p’) + D(p’||   )

Hp’(  )  = - x  p’(x) log2 (x) !
• p’ is certainly not the true p, but we can consider it the 

“real world” distribution against which we test 
• note on notation (confusing...): p/p’ , also HT’(p)
• (Cross)Perplexity: Gp’(p) = GT’(p)= 2Hp’(  ) 

p p

pp

p

p
p
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Conditional Cross Entropy

• So far: “unconditional” distribution(s) p(x), p’(x)...
• In practice: virtually always conditioning on context
• Interested in: sample space , r.v. Y, y ; 

context: sample space , r.v. X, x :
“our” distribution p(y|x), test against p’(y,x),

which is taken from some independent data:
Hp’(p) = - y x  p’(y,x) log2p(y|x)
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Sample Space vs. Data

• In practice, it is often inconvenient to sum over the 
sample space(s) ,  (especially for cross entropy!)

• Use the following formula:

Hp’(p) =      - y x  p’(y,x) log2p(y|x) =

- 1/|T’| i = 1..|T’| log2p(yi|xi) 

• This is in fact the normalized log probability of the “test” data:

Hp’(p) = - 1/|T’| log2 i = 1..|T’| p(yi|xi)

!
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Computation Example

•  = {a,b,..,z}, prob. distribution (assumed/estimated from data):
p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

• Data (test):   barb p’(a) = p’(r) = .25,  p’(b) = .5

• Sum over : 
 a  b c d e f g ... p q  r  s t ... z
-p’()log2p()   .5+.5+0+0+0+0+0+0+0+0+0+1.5+0+0+0+0+0 = 2.5

• Sum over data:
i / si                            1/b   2/a   3/r   4/b               1/|T’|
-log2p(si)     1  +  2  +  6  +  1 = 10  (1/4)  10 = 2.5
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Cross Entropy: Some Observations
• H(p)   ??  > ?? Hp’(p):  ALL! 
• Previous example: 

[p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z]

H(p) = 2.5 bits = H(p’) (barb)
• Other data: probable:    (1/8)(6+6+6+1+2+1+6+6)= 4.25

H(p) < 4.25 bits = H(p’) (probable)
• And finally: abba:          (1/4)(2+1+1+2)= 1.5

H(p) > 1.5 bits = H(p’) (abba)
• But what about:   baby -p’(‘y’)log2p(‘y’) = -.25log20 = (??)
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Cross Entropy: Usage
• Comparing data??  

– NO! (we believe that we test on real data!)

• Rather: comparing distributions (vs. real data)
• Have (got) 2 distributions: p and q (on some , X)

– which is better?
– better: has lower cross-entropy (perplexity) on real data S

• “Real” data: S
• HS(p) = - 1/|S| i = 1..|S| log2p(yi|xi) ?? HS(q) = - 1/|S| i = 1..|S| log2q(yi|xi)
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Comparing Distributions

• p(.) from prev. example:                             HS(p) = 4.25
p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

• q(.|.) (conditional; defined by a table):

ex.: q(o|r) = 1

q(r|p) = .125

(1/8) (log(p|oth.)+log(r|p)+log(o|r)+log(b|o)+log(a|b)+log(b|a)+log(l|b)+log(e|l))
(1/8) (      0        +      3     +    0      +     0     +      1     +     0     +      1    +     0    )

HS(q) = .625

q(.|.)
  

a b e l o p r other

a 0 .5 0 0 0 .125 0 0
b 1 0 0 0 1 .125 0 0
e 0 0 0 1 0 .125 0 0
l 0 .5 0 0 0 .125 0 0
o 0 0 0 0 0 .125 1 0
p 0 0 0 0 0 .125 0 1
r 0 0 0 0 0 .125 0 0
other 0 0 1 0 0 .125 0 0

Test data S: probable
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The Noisy Channel

• Prototypical case:
Input                                                     Output (noisy)

The channel
0,1,1,1,0,1,0,1,...       (adds noise)             0,1,1,0,0,1,1,0,...

• Model:    probability of error (noise):
• Example: p(0|1) = .3   p(1|1) = .7  p(1|0) = .4  p(0|0) = .6
• The Task:
known: the noisy output; want to know: the input (decoding)

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Jindřich Helcl 64

SpeechRecognition s modeling goesfrom texttospeech

pops inpxly
y seprepisenax



2024/5

Noisy Channel Applications
• OCR

– straightforward: text  print (adds noise), scan image 

• Handwriting recognition
– text  neurons, muscles (“noise”), scan/digitize  image

• Speech recognition (dictation, commands, etc.)
– text  conversion to acoustic signal (“noise”)  acoustic waves

• Machine Translation
– text in target language  translation (“noise”)  source language

• Also: Part of Speech Tagging
– sequence of tags  selection of word forms  text
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Noisy Channel: The Golden Rule of ...

OCR, ASR, HR, MT, ...
• Recall:

p(A|B) = p(B|A)  p(A) / p(B)   (Bayes formula)

Abest = argmaxA p(B|A) p(A)  (The Golden Rule)

• p(B|A):  the acoustic/image/translation/lexical model
– application-specific name
– will explore later

• p(A): the language model
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The Perfect Language Model

• Sequence of word forms [forget about tagging for the moment]

• Notation: A ~ W = (w1,w2,w3,...,wd)
• The big (modeling) question:

p(W) = ?
• Well, we know (Bayes/chain rule ):

p(W) = p(w1,w2,w3,...,wd) = 
= p(w1)  p(w2|w1)  p(w3|w1,w2)  p(wd|w1,w2,...,wd-1)

• Not practical (even short W too many parameters) 
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Markov Chain

• Unlimited memory (cf. previous foil):
– for wi, we know all its predecessors w1,w2,w3,...,wi-1

• Limited memory:
– we disregard “too old” predecessors
– remember only k previous words: wi-k,wi-k+1,...,wi-1

– called “kth order Markov approximation”
• + stationary character (no change over time):

p(W)  i=1..dp(wi|wi-k,wi-k+1,...,wi-1), d = |W|
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n-gram Language Models
• (n-1)th order Markov approximation  n-gram LM:

p(W) df i=1..dp(wi|wi-n+1,wi-n+2,...,wi-1)  !
• In particular (assume vocabulary |V| = 60k):

• 0-gram LM: uniform model,   p(w) = 1/|V|, 1 parameter
• 1-gram LM: unigram model,   p(w), 6104 parameters
• 2-gram LM: bigram model,   p(wi|wi-1)         3.6109 parameters
• 3-gram LM: trigram model, p(wi|wi-2,wi-1)  2.161014 parameters

prediction                        history
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LM: Observations
• How large n?

– nothing is enough (theoretically)
– but anyway: as much as possible (close to “perfect” model)
– empirically: 3

• parameter estimation? (reliability, data availability, storage space, 
...)

• 4 is too much: |V|=60k 1.2961019 parameters
• but: 6-7 would be (almost) ideal (having enough data): in fact, one 

can recover the original text ssequence from 7-grams!

• Reliability ~ (1 / Detail) ( need compromise)
• For now, keep word forms (no “linguistic” processing)
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The Length Issue

• n; wn p(w) = 1 n=1..∞wn p(w) >> 1 (∞)
• We want to model all sequences of words

– for “fixed” length tasks: no problem - n fixed, sum is 1
• tagging, OCR/handwriting (if words identified ahead of time)

– for “variable” length tasks: have to account for
• discount shorter sentences

• General model: for each sequence of words of length n,

define p’(w) = np(w) such that  n=1..∞n = 1 

n=1..∞wn p’(w)=1 
e.g., estimate n from data; or use normal or other distribution
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Parameter Estimation
• Parameter: numerical value needed to compute p(w|h)
• From data (how else?)
• Data preparation:

• get rid of formatting etc. (“text cleaning”)
• define words (separate but include punctuation, call it “word”)
• define sentence boundaries (insert “words” <s> and </s>)
• letter case: keep, discard, or be smart:

– name recognition
– number type identification
[these are huge problems per se!]

• numbers: keep,  replace by <num>, or be smart (form ~ pronunciation) 
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Maximum Likelihood Estimate
• MLE: Relative Frequency...

– ...best predicts the data at hand (the “training data”)
• Trigrams from Training Data T:

– count sequences of three words in T: c3(wi-2,wi-1,wi)
[NB: notation: just saying that the three words follow each other]

– count sequences of two words in T: c2(wi-1,wi): 
• either use c2(y,z) = w c3(y,z,w)
• or count differently at the beginning (& end) of data!     

p(wi|wi-2,wi-1) =est. c3(wi-2,wi-1,wi) / c2(wi-2,wi-1) !
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Character Language Model

• Use individual characters instead of words:

• Same formulas etc.
• Might consider 4-grams, 5-grams or even more
• Good only for language comparison
• Transform cross-entropy between letter- and 

word-based models:    
HS(pc) = HS(pw) / avg. # of characters/word in S

p(W) df i=1..dp(ci|ci-n+1,ci-n+2,...,ci-1)
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LM: an Example

• Training data:
<s> <s> He can buy the can of soda.

– Unigram: p1(He) = p1(buy) = p1(the) = p1(of) = p1(soda) = p1(.) = .125

p1(can) = .25

– Bigram: p2(He|<s>) = 1, p2(can|He) = 1, p2(buy|can) = .5, 
p2(of|can) = .5, p2(the|buy) = 1,...

– Trigram: p3(He|<s>,<s>) = 1, p3(can|<s>,He) = 1, 
p3(buy|He,can) = 1, p3(of|the,can) = 1, ..., p3(.|of,soda) = 1.

– Entropy:  H(p1) = 2.75,  H(p2) = .25,  H(p3) = 0     Great?!
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LM: an Example (The Problem)
• Cross-entropy:
• S = <s> <s> It was the greatest buy of all.
• Even HS(p1) fails (= HS(p2) = HS(p3) = ), because:

– all unigrams but p1(the), p1(buy), p1(of) and p1(.) are 0.
– all bigram probabilities are 0.
– all trigram probabilities are 0.

• We want: to make all (theoretically possible*) 
probabilities non-zero. 

*in fact, all: remember our graph from day 1?
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The Zero Problem
• “Raw” n-gram language model estimate: 

– necessarily, some zeros
• !many: trigram model  2.161014 parameters, data ~ 109 words

– which are true 0? 
• optimal situation: even the least frequent trigram would be seen 

several times, in order to distinguish it’s probability vs. other 
trigrams

• optimal situation cannot happen, unfortunately  (open question: 
how many data would we need?)

–  we don’t know
– we must eliminate the zeros

• Two kinds of zeros: p(w|h) = 0, or even p(h) = 0!
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Why do we need Nonzero Probs?

• To avoid infinite Cross Entropy:
– happens when an event is found in test data which has not been seen in 

training data
H(p) =  prevents comparing data with  0 “errors”

• To make the system more robust
– low count estimates: 

• they typically happen for “detailed” but relatively rare appearances

– high count estimates: reliable but less “detailed” 
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Eliminating the Zero Probabilities:
Smoothing

• Get new p’(w) (same ): almost p(w) but no zeros
• Discount w for (some) p(w) > 0: new p’(w) < p(w)

wdiscounted (p(w) - p’(w)) = D

• Distribute D to all w; p(w) = 0: new p’(w) > p(w) 
– possibly also to other w with low p(w)

• For some w (possibly): p’(w) = p(w)
• Make sure wp’(w) = 1
• There are many ways of smoothing
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Smoothing by Adding 1
• Simplest but not really usable:

– Predicting words w from a vocabulary V, training data T:
p’(w|h) = (c(h,w) + 1)  /  (c(h) + |V|)
• for non-conditional distributions: p’(w) = (c(w) + 1) / (|T| + |V|) 

– Problem if |V| > c(h) (as is often the case; even >> c(h)!)
• Example:    Training data:      <s> what is it what is small ?        |T| = 8

• V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
• p(it)=.125, p(what)=.25, p(.)=0    p(what is it?) = .252.1252  .001

p(it is flying.) = .125.2502 = 0
• p’(it) =.1, p’(what) =.15, p’(.)=.05  p’(what is it?) = .152.12  .0002

p’(it is flying.) = .1.15.052  .00004
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Adding less than 1

• Equally simple:
– Predicting words w from a vocabulary V, training data T:

p’(w|h) = (c(h,w) + )  /  (c(h) + |V|), 
• for non-conditional distributions: p’(w) = (c(w) + ) / (|T| + |V|) 

• Example:    Training data:      <s> what is it what is small ?        |T| = 8
• V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
• p(it)=.125, p(what)=.25, p(.)=0    p(what is it?) = .252.1252  .001

p(it is flying.) = .125.2502 = 0
• Use  = .1:
• p’(it).12, p’(what).23, p’(.).01  p’(what is it?) = .232.122  .0007

p’(it is flying.) = .12.23.012  .000003
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Good - Turing

• Suitable for estimation from large data
– similar idea: discount/boost the relative frequency estimate:

pr(w) = (c(w) + 1)  N(c(w) + 1) / (|T|  N(c(w))) , 
where N(c) is the count of words with count c (count-of-counts)

specifically, for c(w) = 0 (unseen words), pr(w) = N(1) / (|T|  N(0))

– good for small counts (< 5-10, where N(c) is high)
– variants (see MS)
– normalization! (so that we have w p’(w) = 1) 
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Good-Turing: An Example
• Example:  remember:  pr(w) = (c(w) + 1)  N(c(w) + 1) / (|T|  N(c(w))) 

Training data:      <s> what is it what is small ?        |T| = 8
• V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12

p(it)=.125, p(what)=.25, p(.)=0    p(what is it?) = .252.1252  .001
p(it is flying.) = .125.2502 =  0

• Raw reestimation (N(0) = 6, N(1) = 4, N(2) = 2, N(i) = 0 for i > 2):
pr(it) = (1+1)N(1+1)/(8N(1)) = 22/(84) = .125
pr(what) = (2+1)N(2+1)/(8N(2)) = 30/(82) = 0: keep orig. p(what)
pr(.) = (0+1)N(0+1)/(8N(0)) = 14/(86)  .083

• Normalize (divide by 1.5 = w|V|pr(w)) and compute:
p’(it).08, p’(what).17, p’(.).06 p’(what is it?) = .172.082  .0002

p’(it is flying.) = .08.17.062  .00004
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Smoothing by Combination:
Linear Interpolation

• Combine what?
• distributions of various level of detail vs. reliability

• n-gram models:
• use (n-1)gram, (n-2)gram, ..., uniform

reliability

detail

• Simplest possible combination: 
– sum of probabilities, normalize:

• p(0|0)  = .8,   p(1|0) = .2, p(0|1) =  1,  p(1|1)  = 0,    p(0) = .4, p(1) = .6:
• p’(0|0) = .6, p’(1|0) = .4, p’(0|1) = .7, p’(1|1) = .3
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Typical n-gram LM Smoothing
• Weight in less detailed distributions using =(0,,,):

p’(wi| wi-2 ,wi-1) = p3(wi| wi-2 ,wi-1) +
p2(wi| wi-1) + p1(wi) + 0 /|V|

• Normalize: 
i > 0, i=0..n i = 1 is sufficient (0 = 1 - i=1..n i) (n=3)

• Estimation using MLE:
– fix the p3, p2, p1 and |V| parameters as estimated from the 

training data
– then find such {i} which minimizes the cross entropy 

(maximizes probability of data): -(1/|D|)i=1..|D|log2(p’(wi|hi))
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Held-out Data
• What data to use?

– try the training data T: but we will always get = 1
• why? (let piT be an i-gram distribution estimated using r.f. from T)
• minimizing HT(p’) over a vector , p’ = p3T+p2T+p1T+/|V|

– remember: HT(p’) = H(p3T)+D(p3T||p’);  p3T fixed  H(p3T) fixed, and it is the best
– which p’ minimizes HT(p’)? ... a p’ for which D(p3T|| p’)=0
– ...and that’s p3T (because D(p||p) = 0, as we know).
– ...and certainly p’ = p3T if = 1 (maybe in some other cases, too).
– (p’ = 1  p3T + 0  p2T + 0  p1T + 0/|V|)

– thus: do not use the training data for estimation of 
• hold out part of the training data (heldout H); remaining data: the true/raw training data, T
• the test data S (e.g., for comparison purposes): still must be some different data!
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The Formulas
• Repeat: minimizing -(1/|H|)i=1..|H|log2(p’(wi|hi)) over 

p’(wi| hi) = p’(wi| wi-2 ,wi-1) = p3(wi| wi-2 ,wi-1) +
p2(wi| wi-1) + p1(wi) + 0 /|V|

• “Expected Counts (of lambdas)”: j = 0..3

c(j) = i=1..|H| (jpj(wi|hi) / p’(wi|hi)) 

• “Next ”: j = 0..3

j,next = c(j) / k=0..3 (c(k)) 

!

!

!
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The (Smoothing) EM Algorithm

1. Start with some , such that j > 0 for all j  0..3.
2. Compute “Expected Counts” for each j.
3. Compute new set of j, using the “Next ” formula.
4. Start over at step 2, unless a termination condition is 

met.
• Termination condition: convergence of . 

– Simply set an , and finish if  |j - j,next| <  for each j (step 3).
• Guaranteed to converge: 

follows from Jensen’s  inequality, plus a technical proof.
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Remark on Linear Interpolation Smoothing

• “Bucketed” smoothing:
– use several vectors of  instead of one, based on (the frequency of) history: 
(h)

• e.g. for h = (micrograms,per) we will have

(h) = (.999,.0009,.00009,.00001) 
(because “cubic” is the only word to follow...)

– actually: not a separate set for each history, but rather a set for “similar” 
histories (“bucket”): 
(b(h)), where b: V2  N (in the case of trigrams) 

b classifies histories according to their reliability (~ frequency)
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Bucketed Smoothing: The Algorithm

• First, determine the bucketing function b (use heldout!):
– decide in advance you want e.g. 1000 buckets
– compute the total frequency of histories in 1 bucket (fmax(b))
– gradually fill your buckets from the most frequent bigrams so 

that the sum of frequencies does not exceed fmax(b) (you might 
end up with slightly more than 1000 buckets)

• Divide your heldout data according to buckets
• Apply the previous algorithm to each bucket and its data
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Simple Example
• Raw distribution (unigram only; smooth with uniform):

p(a) = .25, p(b) = .5, p() = 1/64 for {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

• Heldout data: baby; use one set of  (1: unigram, 0: uniform)

• Start with 1 = .5; p’(b) = .5 x .5 + .5 / 26 = .27
p’(a) = .5 x .25 + .5 / 26 = .14
p’(y) = .5 x 0 + .5 / 26 = .02

c(1) = .5x.5/.27 + .5x.25/.14 + .5x.5/.27 + .5x0/.02 = 2.72
c(0) = .5x.04/.27 + .5x.04/.14 + .5x.04/.27 + .5x.04/.02 = 1.28
Normalize: 1,next = .68, 0,next = .32. 
Repeat from step 2 (recompute p’ first for efficient computation, then c(i), ...)

Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).
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Some More Technical Hints
• Set V = {all words from training data}.

• You may also consider V = T  H, but it does not make the coding 
in any way simpler (in fact, harder).

• But: you must never use the test data for you vocabulary!

• Prepend two “words” in front of all data:
• avoids beginning-of-data problems
• call these index -1 and 0: then the formulas hold exactly

• When cn(w,h) = 0:
• Assign 0 probability to pn(w|h) where cn-1(h) > 0, but a uniform 

probability (1/|V|) to those pn(w|h) where cn-1(h) = 0 [this must be 
done both when working on the heldout data during EM, as well as 
when computing cross-entropy on the test data!]
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Motivation

• Environment: 
– mostly “not a full analysis (sentence/text parsing)”

• Tasks where “words & company” are important:
– word sense disambiguation (MT, IR, TD, IE)
– lexical entries: subdivision & definitions (lexicography)
– language modeling (generalization, [kind of] smoothing)
– word/phrase/term translation (MT, Multilingual IR)
– NL generation (“natural” phrases) (Generation, MT)
– parsing (lexically-based selectional preferences)
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Collocations

• Collocation
– Firth: “word is characterized by the company it keeps”; collocations of a 

given word are statements of the habitual or customary places of that word.
– non-compositionality of meaning

• cannot be derived directly from its parts (heavy rain)

– non-substitutability in context
• for parts (red light)

– non-modifiability (& non-transformability)
• kick the yellow bucket; take exceptions to
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Association and Co-occurence;
Terms

• Does not fall under “collocation”, but:
• Interesting just because it does often [rarely] appear 

together or in the same (or similar) context:
• (doctors, nurses)
• (hardware,software)
• (gas, fuel)
• (hammer, nail)
• (communism, free speech)

• Terms:
– need not be > 1 word (notebook, washer)
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Collocations of Special Interest
• Idioms: really fixed phrases

• kick the bucket, birds-of-a-feather, run for office

• Proper names: difficult to recognize even with lists
• Tuesday (person’s name), May, Winston Churchill, IBM, Inc.

• Numerical expressions
– containing “ordinary” words

• Monday Oct 04 1999, two thousand seven hundred fifty

• Phrasal verbs
– Separable parts: 

• look up, take off 
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Further Notions

• Synonymy: different form/word, same meaning:
• notebook / laptop

• Antonymy: opposite meaning:
• new/old, black/white, start/stop

• Homonymy: same form/word, different meaning:
• “true” (random, unrelated): can (aux. verb / can of Coke)
• related: polysemy; notebook, shift, grade, ...

• Other:
• Hyperonymy/Hyponymy: general vs. special: vehicle/car
• Meronymy/Holonymy: whole vs. part: body/leg 
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How to Find Collocations?

• Frequency
– plain
– filtered

• Hypothesis testing
– t test
–  test

• Pointwise (“poor man’s”) Mutual Information
• (Average) Mutual Information 
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Frequency

• Simple
– Count n-grams; high frequency n-grams are candidates:

• mostly function words
• frequent names

• Filtered
– Stop list: words/forms which (we think) cannot be a 

part of a collocation
• a, the, and, or, but, not, ...

– Part of Speech (possible collocation patterns)
• A+N, N+N, N+of+N, ...
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Hypothesis Testing

• Hypothesis
– something we test (against)

• Most often:
– compare possibly interesting thing vs. “random” chance
– “Null hypothesis”: 

• something occurs by chance (that’s what we suppose).
• Assuming this, prove that the probabilty of the “real world” is 

then too low (typically < 0.05, also 0.005, 0.001)... therefore reject 
the null hypothesis (thus confirming “interesting” things are 
happening!)

• Otherwise, it’s possibile there is nothing interesting.
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t test (Student’s t test)

• Significance of difference
– compute “magic” number against normal distribution (mean )
– using real-world data: (x’ real data mean, s2 variance, N size):

• t = (x’ -  / s2 / N

– find in tables (see MS, p. 609):
• d.f. = degrees of freedom (parameters which are not determined by 

other parameters)
• percentile level p = 0.05 (or better)

– the bigger t:
• the better chances that there is the interesting feature we hope for (i.e. 

we can reject the null hypothesis)
• t: at least the value from the table(s)
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t test on words
• null hypothesis: independence

• mean : p(w1) p(w2)

• data estimates:
• x’ = MLE of joint probability from data
• s2 is p(1-p), i.e. almost p for small p; N is the data size

• Example: (d.f. ~ sample size)
• ‘general term’ (homework corpus): c(general) = 108, c(term) = 40
• c(general,term) = 2; expected p(general)p(term) = 8.8E-8
• t = (9.0E-6 - 8.8E-8) / (9.0E-6 / 221097)1/2 = 1.40 (not > 2.576) thus 

‘general term’ is not a collocation with confidence 0.005
• ‘true species’: (84/1779/9): t = 2.774 > 2.576 !!
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Pearson’s Chi-square test
• 2 test (general formula): i,j (Oij-Eij)2 / Eij

– where Oij/Eij is the observed/expected count of events i, j
• for two-outcomes-only events:

2 =  221097(219243x9-75x1770)2/(1779x84x221013x219318) = 103.39 > 7.88     
(at .005 thus we can reject the independence assumption)

 wright \ wleft
   = true     true

   = species        9      1,770
     species       75  219,243
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Pointwise Mutual Information

• This is NOT the MI as defined in Information Theory
– (IT: average of the following; not of values)

• ...but might be useful:
I’(a,b) = log2 (p(a,b) / p(a)p(b)) = log2 (p(a|b) / p(a))

• Example (same):
I’(true,species) = log2 (4.1e-5 / 3.8e-4 x 8.0e-3) = 3.74
I’(general,term) = log2 (9.0e-6 / 1.8e-4 x 4.9e-4) = 6.68

• measured in bits but it is difficult to give it an interpretation
• used for ranking (~ the null hypothesis tests)/
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The Problem

• Not enough data
• Language Modeling: we do not see “correct” n-grams

– solution so far: smoothing
• suppose we see:

– short homework, short assignment, simple homework
• but not:

– simple assigment
• What happens to our (bigram) LM?

– p(homework | simple) = high probability
– p(assigment | simple) = low probability (smoothed with p(assigment)) 

– They should be much closer!

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Jindřich Helcl 108



2024/5

Word Classes

• Observation: similar words behave in a similar way
– trigram LM: 
– trigram LM, conditioning: 

– a ... homework (any atribute of homework: short, simple, late, difficult), 
– ... the woods (any verb that has the woods as an object: walk, cut, save)

– trigram LM: both:
– a (short,long,difficult,...) (homework,assignment,task,job,...)
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Solution
• Use the Word Classes as the “reliability” measure
• Example: we see

• short homework, short assignment, simple homework

– but not:
• simple assigment

– Cluster into classes:
• (short, simple) (homework, assignment)

– covers “simple assignment”, too

• Gaining: realistic estimates for unseen n-grams
• Loosing: accuracy (level of detail) within classes
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The New Model
• Rewrite the n-gram LM using classes:

– Was: [k = 1..n]
• pk(wi|hi) = c(hi,wi) / c(hi)   [history: (k-1) words]

– Introduce classes:

pk(wi|hi) = p(wi|ci) pk(ci|hi) !
• history: classes, too: [for trigram: hi = ci-2,ci-1, bigram: hi = ci-1]

– Smoothing as usual
• over pk(wi|hi), where each is defined as above (except uniform 

which stays at 1/|V|)
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Training Data

• Suppose we already have a mapping:
– r: V C assigning each word its class (ci = r(wi))

• Expand the training data:
– T = (w1, w2, ..., w|T|) into
– TC = (<w1,r(w1)>, <w2,r(w2)>, ..., <w|T|,r(w|T|)>)

• Effectively, we have two streams of data:
– word stream: w1, w2, ..., w|T|

– class stream: c1, c2, ..., c|T|    (def. as ci = r(wi))
• Expand Heldout, Test data too
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Training the New Model

• As expected, using ML estimates:
– p(wi|ci)  = p(wi|r(wi))  = c(wi) / c(r(wi)) = c(wi) / c(ci)

• !!! c(wi,ci)  = c(wi) [since ci determined by wi]
– pk(ci|hi):

• p3(ci|hi) = p3(ci|ci-2 ,ci-1) = c(ci-2 ,ci-1,ci) / c(ci-2 ,ci-1)
• p2(ci|hi) = p2(ci|ci-1) = c(ci-1,ci) / c(ci-1)
• p1(ci|hi) = p1(ci) = c(ci) / |T|

• Then smooth as usual 
– not the p(wi|ci) nor pk(ci|hi) individually, but the pk(wi|hi)
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Classes: How To Get Them

• We supposed the classes are given
• Maybe there are in [human] dictionaries, but...

– dictionaries are incomplete
– dictionaries are unreliable
– do not define classes as equivalence relation (overlap)
– do not define classes suitable for LM 

• small, short... maybe; small and difficult?

•  we have to construct them from data (again...)
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Creating the Word-to-Class Map

• We will talk about bigrams from now
• Bigram estimate:

• p2(ci|hi) = p2(ci|ci-1) = c(ci-1,ci) / c(ci-1) = c(r(wi-1),r(wi)) / c(r(wi-1))

• Form of the model:
– just raw bigram for now:

• P(T) = i=1..|T|p(wi|r(wi)) p2(r(wi)|r(wi-1))   (p2(c1|c0) =df p(c1))

• Maximize over r (given r  fixed p, p2):
– define objective L(r) = 1/|T| i=1..|T|log(p(wi|r(wi)) p2(r(wi))|r(wi-1)))
– rbest = argmaxr L(r)   (L(r) = norm. logprob of training data... as usual)
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Simplifying the Objective Function
• Start from L(r) = 1/|T| i=1..|T|log(p(wi|r(wi)) p2(r(wi)|r(wi-1))):

1/|T| i=1..|T|log(p(wi|r(wi)) p(r(wi)) p2(r(wi)|r(wi-1)) / p(r(wi))) = 

1/|T| i=1..|T|log(p(wi,r(wi)) p2(r(wi)|r(wi-1)) / p(r(wi))) = 

1/|T| i=1..|T|log(p(wi)) + 1/|T| i=1..|T|log(p2(r(wi)|r(wi-1)) / p(r(wi))) =

-H(W) + 1/|T| i=1..|T|log(p2(r(wi)|r(wi-1)) p(r(wi-1)) / (p(r(wi-1)) p(r(wi)))) =

-H(W) + 1/|T| i=1..|T|log(p(r(wi),r(wi-1)) / (p(r(wi-1)) p(r(wi)))) =

-H(W) + d,eC p(d,e) log( p (d,e) / (p(d) p(e)) ) =

-H(W) + I(D,E) 
(event E picks class adjacent (to the right) to the one picked by D)

• Since W does not depend on r, we ended up with I(D,E).
the need to maximize
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Maximizing Mutual Information
(dependent on the mapping r)

• Result from previous foil:
– Maximizing the probability of data amounts to maximizing I(D,E), the 

mutual information of the adjacent classes.
• Good:

– We know what a MI is, and we know how to maximize.
• Bad:

– There is no way how to maximize over so many possible partitionings: |V||V|

- no way to test them all.
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Training or Heldout?

• Training:
– best I(D,E): all words in a class of its own

will not give us anything new.

• Heldout: ok, but:
– must smooth to test any possible partitioning (unfeasible):

using raw model: 0 probability of heldout (almost) guaranteed
 will not be able to compare anything

– some smoothing estimates? (to be explored...)
• Solution: 

– use training anyway, but only keep I(D,E) as large as possible
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The Greedy Algorithm
• Define merging operation on the mapping r: V C:

– merge: R  C  C R’  C-1: (r,k,l) r’,C’ such that
– C-1 = {C - {k,l}  {m}} (throw out k and l, add new m C)
– r’(w) =     ..... m for w rINV{k,l}), 

..... r(w) otherwise.
• 1. Start with each word in its own class (C = V), r = id.
• 2. Merge two classes k,l into one, m, such that

(k,l) = argmaxk,l Imerge(r,k,l)(D,E).
• 3. Set new (r,C) = merge(r,k,l).

• 4. Repeat 2 and 3 until |C| reaches predetermined size. 
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Word Classes in Applications

• Word Sense Disambiguation: context not seen 
[enough(-times)]

• Parsing: verb-subject, verb-object relations
• Speech recognition (acoustic model): need more 

instances of [rare(r)] sequences of phonemes
• Machine Translation: translation equivalent 

selection [for rare(r) words]
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The Algorithm (review)

• Define merge(r,k,l) = (r’,C’) such that 
• C’ = C - {k,l}  {m (a new class)}
• r’(w) = r(w) except for k,l member words for which it is m.

• 1. Start with each word in its own class (C = V), r = id.
• 2. Merge two classes k,l into one, m, such that

(k,l) = argmaxk,,l Imerge(r,k,l)(D,E).
• 3. Set new (r,C) = merge(r,k,l).

• 4. Repeat 2 and 3 until |C| reaches a predetermined size.
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Complexity Issues

• Still too complex:
– |V| iterations of the steps 2 and 3.
– |V|2 steps to maximize argmaxk,l (selecting k,l freely from |C|, which is in the 

order of |V|2)
– |V|2 steps to compute I(D,E) (sum within sum, all classes, also: includes log)
–  total: |V|5 

– i.e., for |V| = 100, about 1010 steps; ~ several hours!
– but |V| ~ 50,000 or more 
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Trick #1: Recomputing The MI
the Smart Way: Subtracting...

• Bigram count table:

• Test-merging c2 and c4: recompute only rows/cols 2 & 4:
– subtract column/row (2 & 4) from the MI sum (intersect.!)
– add sums of merged counts (row & column)

  l \ r c1 c2 c3 c4

c1     10       2       0      1
c2       0       0       5      2
c3       0       2       0      3
c4       2       3       0      0
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...and Adding

• Add the merged counts:

• Be careful at intersections:
– (don’t forget to add this:)

  l \ r c1 c2’ c3

c1     10       3       0
c2’       2       5       5
c3       0       5       0

c2 c3 c4

c2       0       5      2
c3       2       0      3
c4       3       0      0
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Trick #2: Precompute the
Counts-to-be-Subtracted

• Summing loop goes through i,j
• ...but the single row/column sums do not depend on the 

(resulting sums after the) merge
•  can be precomputed 

• only 2k logs to compute at each algorithm iteration, instead of k2

• Then for each “merge-to-be” compute only add-on 
sums, plus “intersection adjustment”
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Formulas for Tricks #1 and #2

• Let’s have k classes at a certain iteration. Define:
qk(l,r) = pk(l,r) log(pk(l,r) / (pkl(l) pkr(r)))

now the same, but using counts:
qk(l,r) = ck(l,r)/N log(N ck(l,r)/(ckl(l) ckr(r)))

• Define further (row+column i sum):
sk(a) = l=1..kqk(l,a) + r=1..kqk(a,r) - qk(a,a)

• Then, the subtraction part of Trick #1 amounts to
subk(a,b) = sk(a) + sk(b) - qk(a,b) - qk(b,a)

intersection adjustment

remaining intersect. adj.

precomputed
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Formulas - cont.
• After-merge add-on:

addk(a,b) = l=1..k,la,bqk(l,a+b) + r=1..k,ra,bqk(a+b,r) + qk(a+b,a+b)

• What is it a+b? Answer: the new (merged) class.
• Hint: use the definition of qk as a “macro”, and then

pk(a+b,r) = pk(a,r) + pk(b,r) (same for other sums, equivalent)
• The above sums cannot be precomputed
• After-merge Mutual Information (Ik is the “old” MI, kept 

from previous iteration of the algorithm):
Ik(a,b) (MI after merge of cl. a,b) = Ik - subk(a,b) + addk(a,b)
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Trick #3: Ignore Zero Counts

• Many bigrams are 0 
– (see the paper: Canadian Hansards, < .1 % of bigrams are non-zero)

• Create linked lists of non-zero counts in columns and rows (similar 
effect: use perl’s hashes)

• Update links after merge (after step 3)
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Trick #4: Use Updated Loss of MI
• We are now down to |V|4: |V| merges, each merge 

takes |V|2 “test-merges”, each test-merge involves 
order-of-|V| operations (addk(i,j) term, foil #8)

• Observation: many numbers (sk, qk) needed to 
compute the mutual information loss due to a 
merge of i+j do not change: namely, those which 
are not in the vicinity of neither i nor j.

• Idea: keep the MI loss matrix for all pairs of 
classes, and (after a merge) update only those cells 
which have been influenced by the merge. 
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Formulas for Trick #4 (sk-1,Lk-1)

• Keep a matrix of “losses” Lk(d,e).1

• Init: Lk(d,e) = subk(d,e) - addk(d,e) [then Ik(d,e) = Ik - Lk(d,e)]
• Suppose a,b are now the two classes merged into a:
• Update (k-1: index used for the next iteration; i,j  a,b):

– sk-1(i) = sk(i) - qk(i,a) - qk(a,i) - qk(i,b) - qk(b,i) + qk-1(a,i) + qk-1(i,a)
– 2Lk-1(i,j) = Lk(i,j) - sk(i) + sk-1(i) - sk(j) + sk-1(j) +

+ qk(i+j,a) + qk(a,i+j) + qk(i+j,b) + qk(b,i+j) -
- qk-1(i+j,a) - qk-1(a,i+j)  [NB: may substitute even for sk , sk-1]

NB 1 Lk is symmetrical Lk(d,e) = Lk(e,d) (qk is something different!)
2The update formula Lk-1(l,m) is wrong in the Brown et. al paper 
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Completing Trick #4

• sk-1(a) must be computed using the “Init” sum.
• Lk-1(a,i) = Lk-1(i,a) must be computed in a similar way, 

for all i  a,b.
• sk-1(b), Lk-1(b,i), Lk-1(i,b) are not needed anymore (keep 

track of such data, i.e. mark every class already merged 
into some other class and do not use it anymore).

• Keep track of the minimal loss during the Lk(i,j) update 
process (so that the next merge to be taken is obvious 
immediately after finishing the update step).
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Efficient Implementation
• Data Structures: (N - # of bigrams in data [fixed])

– Hist(k)         history of merges
• Hist(k) = (a,b) merged when the remaining number of classes 

was k

– ck(i,j)            bigram class counts [updated]
– ckl(i), ckr(i)   unigram (marginal) counts [updated]
– Lk(a,b)         table of losses; upper-right trianlge [updated]
– sk(a)              “subtraction” subterms [optionally updated]
– qk(i,j)            subterms involving a log [opt. updated]

• The optionally updated data structures will give linear 
improvement only in the subsequent steps, but at least sk(i) is 
necessary in the initialization phase (1st iteration)
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Implementation: the Initialization Phase

• 1 Read data in, init counts ck(l,r); then l,r,a,b; a < b:
• 2 Init unigram counts:

ckl(l) = r=1..kck(l,r),      ckr(r) = l=1..kck(l,r) 
– complicated? remember, must take care of start & end of data!

• 3 Init qk(l,r): use the 2nd formula (count-based) on foil 7,
qk(l,r) = ck(l,r)/N log(N ck(l,r)/(ckl(l) ckr(r)))

• 4 Init sk(a) = l=1..kqk(l,a) + r=1..kqk(a,r) - qk(a,a)
• 5 Init Lk(a,b) = sk(a)+sk(b)-qk(a,b)-qk(b,a)-qk(a+b,a+b)+

- l=1..k,la,bqk(l,a+b) - r=1..k,ra,bqk(a+b,r)
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Implementation: Select & Update

• 6 Select the best pair (a,b) to merge into a (watch the 
candidates when computing Lk(a,b)); save to Hist(k)

• 7 Optionally, update qk(i,j) for all i,j  b, get qk-1(i,j)
– remember those qk(i,j) values needed for the updates below 

• 8 Optionally, update sk(i) for all i  b, to get sk-1(i)
– again, remember the sk(i) values for the “loss table” update

• 9 Update the loss table, Lk(i,j), to Lk-1(i,j), using the 
tabulated qk, qk-1, sk and sk-1 values, or compute the 
needed qk(i,j) and qk-1(i,j) values dynamically from the 
counts: ck(i+j,b) = ck(i,b) + ck(j,b);  ck-1(a,i) = ck(a+b,i) 
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Towards the Next Iteration

• 10 During the Lk(i,j) update, keep track of the 
minimal loss of MI, and the two classes which 
caused it.

• 11 Remember such best merge in Hist(k).
• 12 Get rid of all sk, qk, Lk values.
• 13 Set k = k -1; stop if k == 1.
• 14 Start the next iteration

– either by the optional updates (steps 7 and 8), or 
– directly updating Lk(i,j) again (step 9).
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Moving Words Around

• Improving Mutual Information
– take a word from one class, move it to another (i.e., two classes change: the 

moved-from and the moved-to), compute Inew(D,E); keep change permanent 
if 

Inew(D,E) > I(D,E)
– keep moving words until no move improves I(D,E)

• Do it at every iteration, or at every m iterations
• Use similar “smart” methods as for merging

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Jindřich Helcl 137



2024/5

Using the Hierarchy

• Natural Form of Classes
– follows from the sequence of merges:

evaluation assessment analysis understanding opinion

1

2

3

4
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Numbering the Classes 
(within the Hierarchy)

• Binary branching
• Assign 0/1 to the left/right branch at every node:

evaluation assessment analysis understanding opinion   [padding: 0]
000            001           010             100             110

010

0

0

1

1

1

- prefix determines class:
00 ~ {evaluation,assessment}
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Review: Markov Process
• Bayes formula (chain rule):
P(W) = P(w1,w2,...,wT) = i=1..T p(wi|w1,w2,..,wi-n+1,..,wi-1)

• n-gram language models:
– Markov process (chain) of the order n-1:

P(W) = P(w1,w2,...,wT) = i=1..T p(wi|wi-n+1,wi-n+2,..,wi-1)
Using just one distribution (Ex.: trigram model: p(wi|wi-2,wi-1)):

Positions: 1    2    3           4    5 6      7         8         9  10 11  12   13      14 15 16

Words:  My car broke down , and within hours  Bob ’s car broke down , too  .

p(,|broke down) =  p(w5|w3,w4)) = p(w14|w12,w13)
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Markov Properties

• Generalize to any process (not just words/LM):
– Sequence of random variables: X = (X1,X2,...,XT)
– Sample space S (states), size N: S = {s0,s1,s2,...,sN}

1. Limited History (Context, Horizon):
i 1..T; P(Xi|X1,...,Xi-1)  =  P(Xi|Xi-1)

1  7  3  7  9  0  6  7  3  4  5...                 1  7  3  7  9  0  6  7  3  4  5...

2. Time invariance (M.C. is stationary, homogeneous)
i 1..T, y,x  S; P(Xi=y|Xi-1=x)  =  p(y|x)

1   7   3   7   9   0   6   7   3   4   5...
? ok...same distribution

1  7  3  7  9  0  6  7 7
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Long History Possible

• What if we want trigrams:
1  7  3  7  9  0  6  7  3  4  5...

• Formally, use transformation:
Define new variables Qi, such that Xi =  {Qi-1,Qi}:

Then
P(Xi|Xi-1) = P(Qi-1,Qi|Qi-2,Qi-1) = P(Qi|Qi-2,Qi-1)

Predicting (Xi):                        1  7  3  7  9  0 6  7  3  4  5...
 1  7  3  ....    0 6  7  3  4

History (Xi-1 =  {Qi-2,Qi-1}):    1  7  ....    9 0  6  7  3 

9  0
0
9
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Graph Representation: State Diagram

• S = {s0,s1,s2,...,sN}: states
• Distribution P(Xi|Xi-1): 

• transitions (as arcs) with probabilities attached to them:

´

a

t

o

e
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 =  .528

sum of outgoing probs = 1

Bigram
case:

p(o|a) = 0.1
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The Trigram Case

• S = {s0,s1,s2,...,sN}: states: pairs si = (x,y)
• Distribution P(Xi|Xi-1): (r.v. X: generates pairs si)  

´´

´o

´t

t,o

t,e
0.6

0.4
0.88

0.12

p(toe) = .6 ´ .88 ´ .07  .037

o,n

e,n

n,e

1

o,e

0.07

0.93

1

1
1

1

1

p(one) = ?
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Finite State Automaton

• States ~ symbols of the [input/output] alphabet
– pairs (or more): last element of the n-tuple  

• Arcs ~ transitions (sequence of states)
• [Classical FSA: alphabet symbols on arcs:

– transformation: arcs  nodes]
• Possible thanks to the “limited history” M’ov Property
• So far: Visible Markov Models (VMM)
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Hidden Markov Models

• The simplest HMM: states generate [observable] output 
(using the “data” alphabet) but remain “invisible”:

´

3

1

4

2
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 =  .528
p(4|3) = 0.1

a

t
e

o
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Added Flexibility

• So far, no change; but different states may 
generate the same output (why not?):

´

3

1

4

2
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 +
.4 ´ .1 ´ 1 =  .568

p(4|3) = 0.1

t

t
e

o
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Output from Arcs...

• Added flexibility: Generate output from arcs, not 
states:

´

3

1

4

2
0.6

0.40.3
0.4

0.2

0.88 1

0.12

1

0.1
t

t
e

o

e

o
e

e

o

t

p(toe) = .6 ´ .88 ´ 1 +
.4 ´ .1 ´ 1 +
.4 ´ .2 ´ .3 +
.4 ´ .2 ´ .4 =  .624
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... and Finally, Add Output Probabilities
• Maximum flexibility: [Unigram] distribution 

(sample space: output alphabet) at each output arc:

´

3

1

4

2
0.6

1
0.4 0.88 1

0.12

p(t)=.5
p(o)=.2
p(e)=.3

p(toe) = .6´´.88´´1´ +
.4´ ´1´ ´.88´ +
.4´ ´1´ ´.12´

 .237

!simplified!
p(t)=.8
p(o)=.1
p(e)=.1

p(t)=0
p(o)=0
p(e)=1

p(t)=.1
p(o)=.7
p(e)=.2

p(t)=0
p(o)=.4
p(e)=.6

p(t)=0
p(o)=1
p(e)=0

0.88
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Slightly Different View
• Allow for multiple arcs from si  sj, mark them 

by output symbols, get rid of output distributions:

´

3

1

4

2
t,.48

t,.2
o,.616 e,.6

e,.12

p(toe) = .48´.616´.6+
.2´1´.176 +
.2´1´.12  .237

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

In the future, we will use the view more convenient for the problem at hand.
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Formalization
• HMM (the most general case):

– five-tuple (S, s0, Y, PS, PY), where:
• S = {s0,s1,s2,...,sT} is the set of states, s0 is the initial state,
• Y = {y1,y2,...,yV} is the output alphabet,
• PS(sj|si) is the set of prob. distributions of transitions,

– size of PS: |S|2.
• PY(yk|si,sj) is the set of output (emission) probability distributions.

– size of PY: |S|2 x |Y|

• Example:
– S = {x, 1, 2, 3, 4}, s0 = x
– Y = { t, o, e }
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Formalization - Example 

• Example (for graph, see foils 11,12):
– S = {x, 1, 2, 3, 4}, s0 = x
– Y = { e, o, t }
– PS:                                     PY:

0

0
0
0
0

0
0

0
0

.6 .40 0

0
0
1 0 0

.12 .88
10

10 0

x 1 2

2

3

3

4

4

1

x

x 1 2

2

3

3

4

4

1

xx 1 2

2

3

3

4

4

1

xx 1 2

2

3

3

4

4

1

x
t

o
e

.8 .5
.10
0

0
0

.7
.2

 = 1

 = 1
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Using the HMM

• The generation algorithm (of limited value :-)):
1. Start in s = s0.
2. Move from s to s’ with probability PS(s’|s).
3. Output (emit) symbol yk with probability PS(yk|s,s’).
4. Repeat from step 2 (until somebody says enough).

• More interesting usage:
– Given an output sequence Y = {y1,y2,...,yk}, compute its 

probability.
– Given an output sequence Y = {y1,y2,...,yk}, compute the 

most likely sequence of states which has generated it.
– ...plus variations: e.g., n best state sequences
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HMM: The Two Tasks

• HMM (the general case):
– five-tuple (S, S0, Y, PS, PY), where:

• S = {s1,s2,...,sT} is the set of states, S0 is the initial state,
• Y = {y1,y2,...,yV} is the output alphabet,
• PS(sj|si) is the set of prob. distributions of transitions,
• PY(yk|si,sj) is the set of output (emission) probability distributions.

• Given an HMM & an output sequence Y = {y1,y2,...,yk}: 
(Task 1) compute the probability of Y;
(Task 2) compute the most likely sequence of states which has 

generated Y.
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Trellis - Deterministic Output
HMM:

´

C

A

D

B

0.40.3

0.2

0.88 1

0.12

1

p(toe) = .6 ´ .88 ´ 1 +
.4 ´ .1 ´ 1 =  .568

p(4|3) = 0.1

t

t
e

o

Y:              t            o            e

time/position t
0           1           2           3         4...

(´,0) = 1 (A,1) = .6

(C,1) = .4

.6

.4B,0

´,0

C,0

D,0

A,0

B,1

´,1

C,1

D,1

A,1

B,2

´,2

C,2

D,2

A,2

B,3

´,3

C,3

D,3

A,3

(D,2) = .568 (B,3) = .568- trellis state: (HMM state, position)

Trellis:

- each state: holds one number (prob): 

“rollout”

- probability or Y:  in the last state

+

.88

.1 1
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Creating the Trellis: The Start

• Start in the start state (),
– set its (,0) to 1.

• Create the first stage:
– get the first “output” symbol y1

– create the first stage (column)
– but only those trellis states

which generate y1

– set their (state,1) to the PS(state|) (,0)
• ...and forget about the 0-th  stage

.6

.4

´,0

C,1

A,1

position/stage  
0           1        

y1:          t

 = .6
 = 1

}

1
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Trellis: The Next Step
• Suppose we are in stage i
• Creating the next stage:

– create all trellis states in the
next stage which generate
yi+1, but only those reachable
from any of the stage-i states

– set their (state,i+1) to:

PS(state|prev.state)  (prev.state, i)
(add up all such numbers on arcs
going to a common trellis state)

– ...and forget about stage i

C,1

A,1

yi+1 = y2:         o 

 = .6

 = .4

.88

.1
D,2

 = .568

position/stage  
i=1           2        

+
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Trellis: The Last Step

• Continue until “output” exhausted
– |Y| = 3: until stage 3

• Add together all the (state,|Y|)
• That’s the P(Y).
• Observation (pleasant):

– memory usage max: 2|S|
– multiplications max: |S|2|Y|

B,
3
B,
3

D,2  = .568

 = .568

P(Y) = .568

last position/stage        

1
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Trellis: The General Case (still, bigrams)

• Start as usual:
– start state (´), set its (´,0) to 1.

´

C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

p(toe) = .48´.616´.6+
.2´1´.176 +
.2´1´.12  .237

´,0

 = 1
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General Trellis: The Next Step
• We are in stage i :

– Generate the next stage i+1 as
before (except now arcs generate
output, thus use only those arcs
marked by the output symbol yi+1)

– For each generated state, compute (state,i+1) =
= incoming arcsPY(yi+1|state, prev.state)  (prev.state, i)

´

C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

.48

.2

´,0

C,1

A,1 = .48
 = 1

 = .2

y1: t

position/stage  
0           1        

...and forget about stage i as usual.
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Trellis: The Complete Example
Stage:

0         1 1         2 2         3

´

C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

e,.176

o,.06
e,.06

e,.12 o,.08
o,1

t,.088 o,.4

C,1

A,1

.48

.2

´,0

C,1

A,1 = .48
 = 1

 = .2

y1: t

A,2

D,2

1

.616

y2: o

A,2

D,2

 = .2

  .29568

B,3

D,3

.12

.176

.6

y3: e

 = .024 + .177408 = .201408

 = .035200

P(Y) = P(toe) = .236608

+
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The Case of Trigrams
• Like before, but:

– states correspond to bigrams,
– output function always emits the second output symbol of 

the pair (state) to which the arc goes:

Multiple paths not possible trellis not really needed

´´

´o

´t

t,o

t,e
0.6

0.4
0.88

0.12

p(toe) = .6 ´ .88 ´ .07  .037

o,n

e,n

n,e

1

o,e

0.07

0.93

1

1
1

1

1

´´

´t

t,o

o,e
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Trigrams with Classes

• More interesting:
– n-gram class LM: p(wi|wi-2,wi-1) = p(wi|ci) p(ci|ci-2,ci-1)

states are pairs of classes (ci-1,ci), and emit “words”:

´´

´V

´C

C,V

0.6

0.4
0.88

p(teo) = .6 ´ ´ .88 ´ ´ .07 ´   .00665

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1 p(t|C) = 1         usual,
p(o|V) = .3       non-
p(e|V) = .6       overlapping
p(y|V) = .1      classes

t t

to,e,yo,e,y

o,e,y

p(toy) = .6 ´ ´ .88 ´ ´ .07 ´   .00111

p(toe) = .6 ´ ´ .88 ´ ´ .07 ´   .00665

p(tty) = .6 ´ ´ .12 ´ ´ 1 ´   .0072

(letters in our example)
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Class Trigrams: the Trellis

• Trellis generation (Y = “toy”):
´´

´C

C,V

V,V

 = 1

 = .6 x 1

 = .6 x .88 x .3

 = .1584 x .07 x .1 
 .00111

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t t

to,e,yo,e,y

o,e,y

p(t|C) = 1         
p(o|V) = .3
p(e|V) = .6
p(y|V) = .1

Y:         t o y

again, trellis useful 
but not really needed
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Overlapping Classes

• Imagine that classes may overlap
– e.g. ‘r’ is sometimes vowel sometimes consonant, belongs to V as well as C: 

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r p(t|C) = .3 
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
p(try) = ?

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Jindřich Helcl 167



2024/5

Overlapping Classes: Trellis Example

´´

´C

C,V

V,V

 = 1

 = .6 x .3
= .18

 = .18 x .88 x .2 
= .03168

 = .03168 x .07 x .4 
 .0008870

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t,r t,r

t,ro,e,y,ro,e,y,r

o,e,y,r

Y:         t r y  p(Y) = .006935

C,C
 = .18 x .12 x .7 

= .01512

p(t|C) = .3 
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

C,V
 = .01512 x 1 x .4 
 .006048
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Trellis: Remarks

• So far, we went left to right (computing )
• Same result: going right to left (computing )

– supposed we know where to start (finite data)
• In fact, we might start in the middle going left and right
• Important for parameter estimation 

(Forward-Backward Algortihm alias Baum-Welch)
• Implementation issues: 

– scaling/normalizing probabilities, to avoid too small numbers 
& addition problems with many transitions
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The Viterbi Algorithm

• Solving the task of finding the most likely sequence 
of states which generated the observed data

• i.e., finding  
Sbest = argmaxSP(S|Y) 

which is equal to (Y is constant and thus P(Y) is fixed):
Sbest = argmaxSP(S,Y) = 

= argmaxSP(s0,s1,s2,...,sk,y1,y2,...,yk) =
= argmaxSi=1..k p(yi|si,si-1)p(si|si-1)
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The Crucial Observation

• Imagine the trellis build as before (but do not 
compute the s yet; assume they are o.k.); stage i:

C,1

A,1

 = .6

 = .4

.5

.8
D,2

 = max(.3,.32) = .32

stage  
1           2        

? ...... max!
this is certainly the “backwards” maximum to (D,2)... but 
it cannot change even whenever we go forward (M. Property: Limited History)

NB: remember previous state 
from which we got the maximum:

C,1

A,1

D,2
 = .32

stage  
1           2        

“reverse” the arc
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Viterbi Example

• ‘r’ classification (C or V?, sequence?):

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

.2

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r p(t|C) = .3 
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
argmaxXYZ p(rry|XYZ) = ?.8

Possible state seq.: (´V)(V,C)(C,V)[VCV],  (´C)(C,C)(C,V)[CCV],  (´C)(C,V)(V,V) [CVV]
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Viterbi Computation

´´

´V

´C

C,V

0.6

0.4
0.88

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

.2

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r

p(t|C) = .3 
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
.8

´´

´C

C,V

V,V

 = 1

 = .6 x .7
= .42

 = .42 x .88 x .2 
= .07392

C,C
 = .42 x .12 x .7 

= .03528

C,V
C,C = .03528 x 1 x .4
 .01411

´V
 = .4 x .2

= .08

V,C
 = .08 x 1 x .7 

= .056

 = .07392 x .07 x .4 
 .002070

V,C = .056 x .8 x .4
 .01792 = max

{

Y:                   r r y
 in trellis
state:
best prob 
from start
to here
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n-best State Sequences

• Keep track
of n best
“back pointers”:

• Ex.: n= 2:
Two “winners”:
VCV (best)
CCV (2nd best)

´´

´C

C,V

V,V

 = 1

 = .6 x .7
= .42

 = .42 x .88 x .2 
= .07392

C,C
 = .42 x .12 x .7 

= .03528

C,V
C,C = .03528 x 1 x .4
 .01411

´V
 = .4 x .2

= .08

V,C
 = .08 x 1 x .7 

= .056

 = .07392 x .07 x .4 
 .002070

V,C = .056 x .8 x .4
 .01792 = max

?{

Y:                   r r y
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Tracking Back the n-best paths

• Backtracking-style algorithm:
• Start at the end, in the best of the n states (sbest)
• Put the other n-1 best nodes/back pointer pairs on stack, except those 

leading from sbest to the same best-back state.

• Follow the back “beam” towards the start of the data, spitting out 
nodes on the way (backwards of course) using always only the best
back pointer.

• At every beam split, push the diverging node/back pointer pairs 
onto the stack (node/beam width is sufficient!).

• When you reach the start of data, close the path, and pop the top-
most node/back pointer(width)  pair from the stack.

• Repeat until the stack is empty; expand the result tree if necessary.
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Pruning

• Sometimes, too many trellis states in a stage:
 = .002

 = .043

 = .001

 = .231

 = .0002

 = .000003

 = .000435

 = .0066

A

F

G

K

N

Q

S

X

criteria:  (a)  < threshold
(b)  < threshold
(c) # of states > threshold

(get rid of smallest )

UFAL MFF UK NPFL067/Intro to Statistical NLP I/Jan Hajic - Jindřich Helcl 176

Those having already very low prob are very likelynotveryhaving
high prob ofoccurring

Thismustbe tunedwell

IT all that Igonnaremove



HMM Parameter Estimation: 
the Baum-Welch Algorithm 

again no computation only
how it works or what itsgoodfor
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HMM: The Tasks
• HMM (the general case):

– five-tuple (S, S0, Y, PS, PY), where:
• S = {s1,s2,...,sT} is the set of states, S0 is the initial state,
• Y = {y1,y2,...,yV} is the output alphabet,
• PS(sj|si) is the set of prob. distributions of transitions,
• PY(yk|si,sj) is the set of output (emission) probability distributions.

• Given an HMM & an output sequence Y = {y1,y2,...,yk}: 
(Task 1) compute the probability of Y;
(Task 2) compute the most likely sequence of states which has 

generated Y.
(Task 3) Estimating the parameters (transition/output distributions)
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A Variant of EM

• Idea (~ EM, for another variant see LM smoothing):
– Start with (possibly random) estimates of PS and PY.
– Compute (fractional) “counts” of state transitions/emissions 

taken, from PS and PY, given data Y.
– Adjust the estimates of PS and PY from these “counts” (using 

the MLE, i.e. relative frequency as the estimate).
• Remarks:

– many more parameters than the simple four-way smoothing
– no proofs here; see Jelinek, Chapter 9
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Setting

• HMM (without PS, PY) (S, S0, Y), and data T = {yi Y}i=1..|T|
• will use T ~ |T| 

– HMM structure is given: (S, S0)
– PS:Typically, one wants to allow “fully connected” graph

• (i.e. no transitions forbidden ~ no transitions set to hard 0)
• why?  we better leave it on the learning phase, based on the data!
• sometimes possible to remove some transitions ahead of time 

– PY: should be restricted (if not, we will not get anywhere!)
• restricted ~ hard 0 probabilities of p(y|s,s’)
• “Dictionary”: states  words, “m:n” mapping on S  Y (in general)
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Initialization

• For computing the initial expected “counts”
• Important part

– EM guaranteed to find a local maximum only (albeit a good 
one in most cases)

• PY initialization more important
– fortunately, often easy to determine

• together with dictionary  vocabulary mapping, get counts, then 
MLE

• PS initialization less important
– e.g. uniform distribution for each p(.|s)
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Data Structures
• Will need storage for:

– The predetermined structure of the HMM 
(unless fully connected need not to keep it!)

– The parameters to be estimated (PS, PY)
– The expected counts (same size as PS, PY)
– The training data T = {yi  Y}i=1..T

– The trellis (if f.c.): 
C,1

V,1

S,1

L,1

C,2

V,2

S,2

L,2

C,3

V,3

S,3

L,3

C,4

V,4

S,4

L,4

C,T

V,T

S,T

L,T

....... }
T

S
Each trellis state:
two [float] numbers
(forward/backward)

Size: T ´ S (Precisely, |T|´|S|)

(...and then some)
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The Algorithm Part I
1. Initialize PS, PY

2. Compute “forward” probabilities:
• follow the procedure for trellis (summing), compute (s,i) 
• use the current values of PS, PY (p(s’|s), p(y|s,s’)):

(s’,i) = ss’ (s,i-1)  p(s’|s)  p(yi|s,s’)
• NB: do not throw away the previous stage!

3. Compute “backward” probabilities
• start at all nodes of the last stage, proceed backwards, (s,i)
• i.e., probability of the “tail” of data from stage i to the end of data

(s’,i) = ss’ (s,i+1)  p(s|s’)  p(yi+1|s’,s)
• also, keep the (s,i) at all trellis states
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The Algorithm Part II

4. Collect counts:
– for each output/transition pair compute

c(y,s,s’) = i=0..k-1,y=y (s,i) p(s’|s) p(yi+1|s,s’) (s’,i+1)

c(s,s’) = yY c(y,s,s’) (assuming all observed yi in Y)

c(s) = s’S c(s,s’)

5. Reestimate:  p’(s’|s) = c(s,s’)/c(s)   p’(y|s,s’) = c(y,s,s’)/c(s,s’)

6. Repeat 2-5 until desired convergence limit is reached.

one pass through data,
prefix prob. tail probthis transition prob

´ output prob

i+1

only stop at (output) y
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Baum-Welch: Tips & Tricks
• Normalization badly needed 

– long training data extremely small probabilities
• Normalize , using the same norm. factor:

N(i) = sS (s,i)
as follows:

• compute (s,i) as usual (Step 2 of the algorithm), computing the 
sum N(i) at the given stage i as you go.

• at the end of each stage, recompute all s (for each state s):
� *(s,i) = (s,i) / N(i)
• use the same N(i) for s at the end of each backward (Step 3) stage:
� *(s,i) = (s,i) / N(i)
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Example

• Task: pronunciation of “the”
• Solution: build HMM, fully connected, 4 states: 

• S - short article, L - long article, C,V - starting w/consonant, vowel
• thus, only “the” is ambiguous (a, an, the  - not members of C,V)

• Output from states only (p(w|s,s’) = p(w|s’))
• Data Y: an     egg     and     a     piece   of     the  big        ....       the   end

Trellis:

L,1

V,2

S,4 S,T-1

L,T-1

.......
C,5

V,6

S,7

L,7

V,T

C,8

V,3
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Example: Initialization

• Output probabilities:
pinit(w|c) = c(c,w) / c(c); where c(S,the) = c(L,the) = c(the)/2

(other than that, everything is deterministic)
• Transition probabilities:

– pinit(c’|c) = 1/4 (uniform)
• Don’t forget:

– about the space needed
– initialize (X,0) = 1 (X : the never-occurring front buffer st.)
– initialize (s,T) = 1 for all s (except for s = X) 
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Fill in alpha, beta

• Left to right, alpha:
(s’,i) = ss’  (s,i-1)  p(s’|s)  p(wi|s’)

• Remember normalization (N(i)).
• Similarly, beta (on the way back from the end).

output from states 

L,1

V,2

S,4 S,T-1

L,T-1

C,5

V,6

S,7

L,7

V,T

C,8

V,3

an     egg     and     a     piece   of     the  big        ....       the   end

(V,6)

(C,8) = (L,7)p(C|L)p(big,C)+
(S,7)p(C|S)p(big,C)

(L,7)

(S,7)

(L,7)

(S,7)

(V,6) = (L,7)p(L|V)p(the,L)+
(S,7)p(S|V)p(the,S)

(C,8)

S,7

L,7
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Counts & Reestimation

• One pass through data
• At each position i, go through all pairs (si,si+1)
• Increment appropriate counters by frac. counts (Step 4):

• inc(yi+1,si,si+1) = a(si,i) p(si+1|si) p(yi+1|si+1) b(si+1,i+1) 
• c(y,si,si+1) +=  inc  (for y at pos i+1)
• c(si,si+1) +=  inc  (always)
• c(si) +=  inc  (always)

• Reestimate p(s’|s), p(y|s)
• and hope for increase in p(C|S) and p(V|L)...!!

V,6

S,7

L,7

C,8

of     the  big

inc(big,L,C) = (L,7)p(C|L)p(big,C)(C,8)

(L,7)

(S,7)
(C,8)

S,7

L,7inc(big,S,C) = (S,7)p(C|S)p(big,C)(C,8)
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HMM: Final Remarks

• Parameter “tying”:
– keep certain parameters same (~ just one “counter” for all of them)
– any combination in principle possible
– ex.: smoothing (just one set of lambdas)

• Real Numbers Output
– Y of infinite size (R, Rn):

• parametric (typically: few) distribution needed (e.g., “Gaussian”)

• “Empty” transitions: do not generate output
• ~ vertical arcs in trellis; do not use in “counting”
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