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Given an input value € R, linear regression computes predictions as:

D
y(x; w,b) = zywy + 2wz + ... + xpwp +b/= inwi +b=x"w+0b.
i=1
The bias b can be considered one of the weights w if convenient.

We train the weights by minimizing an error function between the real target values and their
predictions, notably sum of squares:

' (y(cci;w) - ti)2

DO | =

There are various approaches to minimize it, but for linear regression an explicit solution exists:
w=(XT"X)'x"t
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Linear Regression Example

Assume we want to predict a t € R for a given & € R. If we train the linear regression with
“raw” input vectors ® = (&), only straight lines could be modeled.

However, if we consider input vectors

0 .1

= 1-
x= (2 z!,...,2M) for a given

M > 0, the linear regression is able |
to model polynomials of degree M,

because the prediction is then -1}
computed as

'woazo +'w1:131 + ... +wMa:M.

1t
4

Therefore, the weights are the
coefficients of a polynomial of degree ¢

M.

0 z 1 0 T !
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Linear Regression Example

To plot the error, the root mean squared error RMSE = v/ MSE is frequently used.

The displayed error nicely illustrates 1 - - - ;
two main challenges in machine —o6— Training
learning: S Test
® underfitting
® overfitting
=
= 05}
=
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Figure 1.5 of Pattern Recognition and Machine Learning.
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Model Capacity

We can control whether a model underfits or overfits by modifying its capacity.

® representational capacity

® cffective capacity
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Linear Regression Overfitting

Note that employing more data usually alleviates overfitting (the relative capacity of the model
is decreased).

1t 1t
t t

0f 0f
-1t -1}

Figure 1.6 of Pattern Recognition and Machine Learning.
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Regularization Uzt

Regularization, in a broad sense, is any change that is designed to reduce generalization error
(but not necessarily its training error) in a machine learning algorithm.

We already saw that limiting model capacity can work as regularization.

Chy mi 4/4/;/7 V7% ol
* o7 W7 Trivana dete. Ay s ikl
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https://upload.wikimedia.org/wikipedia/commons/1/19/Ovetfitting.svg
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L?-regularization is one of the oldest regularization techniques, which tries to prefer “simpler”
models by endorsing models with smaller weights.

Concretely, L?-regularization (also called weight decay) penalizes models with large weights
y g

by utilizing the following error function: ) )
y & & ol wari s wh

1 A\ / 7’%? ety vl w'ly.

2
a QBZ,‘UJ tz) _HwH2

2 X /ML /Mﬁéfm/v aly.

Note that the L?-regularization is usually not applied to the bias, only to the “proper” weights,
g y

because we cannot really overfit via the bias. Also, without penalizing the bias, linear regression
with L2-regularization is invariant to shifts (i.e., adding a constant to all the targets results in

the same solution, only with the bias increased by that constant; if the bias were penalized, this
would not be true).

For simplicity, we will not explicitly exclude the bias from the L2—regu|arization penalty in the
slides (several textbooks also take the same approach).
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L2 Regularization

One way to look at L?-regularization is that it promotes smaller

changes of the model (the gradient of linear regression with respect to
the inputs are exactly the weights, i.e., Voy(@; w) = w).

Considering the data points on the right, we present mean squared

errors and L? norms of the weights for three Jinear regression models:
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(b) #params = 9
MSE = 0.035
L2 norm =1.06
L1 norm = 2.32

(a) #params = 3
MSE = 0.006
L2 norm = 0.90
L1 norm = 0.98
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(c) #params = 9
MSE =0

L2 norm = 32.69

L1 norm = 70.03
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Figure a: § = 0.04 + 0.04z + 0.92>

Figure b: § = —0.01 + 0.01z + 0.82% 4+ 0.52% — 0.12* — 0.12° + 0.32% — 0.327 + 0.228

Figure c: § = —0.01 + 0.57x + 2.672% — 4.082% — 12.25z* + 7.412° + 24.872% — 3.7927 — 14.382%
https: //miro.medium.com/max/2880/1*UoclRIKXikCz7SFsPfSZrYQ.png
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L2 Regularization

The effect of L?-regularization

NPFL129, Lecture 2 Refresh
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can be seen as limiting the effective capacity of the model.
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Figure 1.7 of Pattern Recognition and Machine Learning.
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Figure 1.8 of Pattern Recognition and Machine Learning.
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In a matrix form, the regularized sum of squares error for linear regression amounts to
3| Xw —¢)* + 3w

When repeating the same calculation as in the unregularized case, we arrive at
(XTX + X\)w = X",

where I is an identity matrix.

Input: Dataset (X € RV*P ¢t € RY), constant A € R™.
Output: Weights w & R minimizing MSE of regularized linear regression.

e w+— (X'X + ) 'X"t.

Note that the matrix X T X + AT is always regular for A > 0 (you can show that the matrix is
positive definite), so another effect of L2—regularization is that the inverse always exists.
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\»J/ 0//0 Vgéw/ )\ 2

Hyperparameters are not adapted by the learning algorithm itself.

Usually, a validation set or development set is used to estimate the generalization error,
allowing us to update hyperparameters accordingly. If there is not enough data (well, there is
always not enough data), more sophisticated approaches can be used.

So far, we have seen two hyperparameters, M and .

—©— Training

—O— Test
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When training a linear regression model, we minimized the sum of squares error function by
computing its gradient (partial derivatives with respect to all weights) and setting it to zero,
arriving at the following equation for optimal weights:

X' Xw=X"t.

If X7 X is regular, we can invert it and compute the weights as w = (X X) 1 X"¢,

It can be proven (see next slide) that rank(X ) = rank(X™* X). Therefore, the matrix
XTX € RP*D s regular if and only if X has rank D, which is equivalent to the columns of
X being linearly independent.
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We now show that the solution of XT Xw = X 7Tt always exists. @

Recall that the rank-nullity theorem states that for a matrix A € RV W
rank(A) + nullity(A) = dim(im(A)) + dim(ker(A)) = W.

Our goal is to show that im(X™* X) = im(X™'). Then the solution would always exist,
because for any ¢, X1t € im(X' X).

® We first show that ker(X™* X) = ker(X).
o If Xt =0, then also X* Xt =0, so ker(X* X) D ker(X).
o If X1 Xt =0, then also tT X' Xt = 0. Therefore (Xt)T(Xt) = 0, which implies
Xt =0, resulting in ker(X”* X) C ker(X).

® Therefore, the rank-nullity theorem implies that rank(X” X) = rank(X) = rank(X7').

® Finally, it is easy to see that im(X ' X) C im(X™'), which together with the rank
equality proves the required equation im(X* X) = im(X™).

SVD Solution
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Now consider the case that X X is singular. We already know that X Xw = X1¢ @

is solvable, but it does not have a unique solution (it has many solutions). Our goal in

this case will be to find the w with the minimum ||w/|| fulfilling the equation.

We now consider singular value decomposition (SVD) of X, writing X = USV?, where
o U c RV*N is an orthogonal matrix, i.e., ’u,lT’u,j =i =j] & U'U=IT=U"'=U",

e ¥ c RVxD s ; diagonal matrix,

o V € RPXP is again an orthogonal matrix.

Assuming the diagonal matrix 2 has a rank 7, we have

)8 0]

2:[0 0

where X, € R"™" is a regular diagonal matrix. Denoting U, and V', the matrices of first r
columns of U and V', respectively, we can write X = UTZTV,,T.
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Using the decomposition X = UTETV? we can rewrite the goal equation as @
(V.= u))(U,%, V) )w= (V. U, )t.

The transposition of an orthogonal matrix is its inverse. Therefore, our submatrix U, fulfills
U,:,FUT = I, because UTTUT is the top left submatrix of U U. Analogously, V,:,FVT = I

We therefore simplify the goal equation to
viv.y'vlu,. s viw=vIv,2 Ut
e Viw=3Ut
Because the diagonal matrix 23, = 271; is regular, we can divide by it and obtain

Viw=3% Ut

SVD Solution 16/32



We have V;F'w = E;lUft. If the original matrix X' X was regular, then r = D and
V', is a square regular orthogonal matrix, in which case w = VrﬂglUft.

Let 7 € RP*YN denote the diagonal matrix with

Y, i #0,

+ dof
Ei,i — .
0 otherwise.

Using this notation, we can rewrite w for the 7 = D case to w = VT U ¢.

Now if r» < D, ng = 4 is undetermined and has infinitely many solutions. To find the one

with the smallest norm ||w||, consider the full product V' w. Because V is orthogonal,

|V w|| = ||w]||, and it is sufficient to find w with the smallest |[V' w||. We know that the
first 7 elements of VX w are fixed by the above equation — therefore, the smallest ||V w)|| can
be obtained by setting the last D — r elements to zero. Finally, note that 2T U ¢ is exactly
> Ut padded with D — 7 zeros, which yields the same solution w = VETU't.
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The solution to a linear regression with sum of squares error function is tightly connected
to matrix pseudoinverses. If a matrix X is singular or rectangular, it does not have an

exact inverse, and X w = b does not have an exact solution.

However, we can consider the so-called Moore-Penrose pseudoinverse
def
Xt =zvetu?

to be the closest approximation to an inverse, in the sense that we can find the best solution
(with the smallest MSE) to the equation Xw = b by setting w = X 7b.

Alternatively, we can define the pseudoinverse of a matrix X as

X+_argm1nHXY INHF_argmmHYX IDHF

which can be verified to be the same as our SVD formula.
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A random variable x is a result of a random process, and it can be either discrete or
continuous.

Probability Distribution

A probability distribution describes how likely are the individual values that a random variable
can take.

The notation x ~ P stands for a random variable x having a distribution P.

For discrete variables, the probability that x takes a value x is denoted as P(x) or explicitly as

P(x = x). All probabilities are nonnegative, and the sum of the probabilities of all possible
values of xis ), P(x=1z) = 1.

For continuous variables, the probability that the value of x lies in the interval [a, b] is given by

f; p(x) dz, where p(x) is the probability density function, which is always nonnegative and
integrates to 1 over the range of all values of x.
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For two random variables, a joint probability
distribution is a distribution of all possible pairs of
outputs (and analogously for more than two):

P(szz,y:yl). Vi

Marginal distribution is a distribution of one vl 6
(or a subset) of the random variables and can be

obtained by summing over the other variable(s): .

3

P(x=z9) = Z P(x =z9,y = y).

Y

P(yy)

X
XJ X X3 X4
|
o o o
P(x2,y71)
o o o o
o ® o o
P(x>)

Conditional distribution is a distribution of one (or a subset) of the random variables, given

that another event has already occurred:

Px=zly =y1) = P(x =22,y = y1)/P(y = »n).

If P(x,y) = P(x)- P(y) or P(x|y) = P(x), random variables x and y are independent.

Random Variables
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Expectation
The expectation of a function f(x) with respect to a discrete probability distribution P(x) is

def
XNP E P

For continuous variables, the expectation is computed as:

Explf(2)] & / p(2)f(z) de.

Wi

defined as:

If the random variable is obvious from context, we can write only Ep[z], E,[z], or even E[x].

Expectation is linear, i.e., for constants a, 3 € R:

Ex|laf(z) + Bg(z)] = ok |f(2)] + BE«[g(z)].
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Variance

Variance measures how much the values of a random variable differ from its mean [E|z].

def

Var(z) = E (:13 - E[m])z} , or more generally,
Var,p(f(2) £ E |(f(2) — E[f(2))°]

It is easy to see that
Var(z) = E {:c2 — 2z - Elz] + (E[w])ﬂ =E [z*] - (E[m])z,

because ]E[Za: - E[CBH = 2(E[z])?.

Variance is connected to IE[:B2] the second moment of a random variable — it is in fact a
centered second moment.
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An estimator is a rule for computing an estimate of a given value, often an expectation of
some random value(s).

For example, we might estimate mean of a random variable by sampling a value according to its
probability distribution.

Bias of an estimator is the difference between the expected value of the estimator and the true
value being estimated:

. . def . .
estimator bias = Eestimator |€Stimate] — true estimated value.

If the bias is zero, we call the estimator unbiased: otherwise, we call it biased.

As an example, consider estimating Ep[f(x)] by generating a single sample  from P and
returning f(x). Such an estimate is unbiased, because E|estimate] = Ep[f(x)], which is
exactly the true estimated value.
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If we have a sequence of estimates, it might also happen that the bias converges to zero.
Consider the well-known sample estimate of variance. Given independent and identically
distributed random variables x1, ..., X,, we might estimate the mean and variance as

p= %ZZ zi, 67 = %Zz(ﬂcz - i)’

1

Such an estimate is biased, because E[6%] = (1 — )0, but the bias converges to zero with

increasing n.

Also, an unbiased estimator does not necessarily have a small variance — in some cases, it can
have a large variance, so a biased estimator with a smaller variance might be preferred.
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Sometimes it is more practical to search for the best model weights in an

iterative/incremental /sequential fashion. Either because there is too much data, or the direct

optimization is not feasible.

Assuming we are minimizing an error function

arg min F(w),

we may use gradient descent:
w+— w— aVy,E(w)

The constant « is called a learning rate and

specifies the “length” of a step we perform in
every iteration of the gradient descent.
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Let X € RV*P t € RY be the training data, and denote Paata(®,t) = oo [{ix(a, t)N(mi’ti)}‘.

Assume that the error function can be computed as an expectation over the dataset:

E(w) = Ex t)~po L(y(@;w), ), so that VuwE (W) = Ex t)~pre VwL(y(z; w),t).
/%7meﬁ&

e (Standard/Batch) Gradient Descent: We use all training data to compute V,, E(w).
® Stochastic (or Online) Gradient Descent: We estimate V,, E(w) using a single random
example from the training data. Such an estimate is unbiased, but very noisy.

VwE(w) ~ Vi, L(y(z; w),t) for arandomly chosen (x,t) from Paata-

® Minibatch SGD: Trade-off between gradient descent and SGD — the expectation in

VwE(w) is estlmated using B random independent examples from the training data.
/ Ch/& ' wenst M?Z/?/?/

Ve Z VwL(y(e;; w), z) for a randomly chosen (@;,t;) from pPyata-
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Assume that we perform a stochastic gradient descent, using a sequence of learning rates «;,
and using a noisy estimate J(w) of the real gradient V, E(w):

Wiyl < W; — OAZJ(’LUZ)

It can be proven (under some reasonable conditions; see Robbins and Monro algorithm, 1951)
that if the loss function L is convex and continuous, then SGD converges to the unique

optimum almost surely if the sequence of learning rates a; fulfills the following conditions:

— o 2
Vi:a; >0, zi:a’t 00, zi:az<oy th.. bty <o s’ slmnot

Note that the third condition implies that a; — O.

For nonconvex loss functions, we can get guarantees of converging to a local optimum only.
However, note that finding the global minimum of an arbitrary function is at least NP-hard.
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Gradient Descent Convergence

Convex functions mentioned on the previous slide are such that for w,v and real 0 < ¢ <1,

fltu+ (1 -t)v) < tf(u)+ (1—1t)f(v).

f(x)

~~}

SNy,
N

AN
=X

AN
~

NS

S

N
~
N

N
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=
NN
NS
\\\

tf (21) + (1= 1)f (x2)

f(tey + (1 —t)x2)

T try + (1 —t)xs T2

https: //upload.wikimedia.org/wikipedia/commons/c/c7/ConvexFunction.svg https: //commons.wikimedia.org/wiki/File: Partial_func_eg.svg

A twice-differentiable function of a single variable is convex iff its second derivative is always
nonnegative. (For functions of multiple variables, the Hessian must be positive semi-definite.)

A local minimum of a convex function is always the unique global minimum.

Well-known examples of convex functions are 2, €%, —log x, and also the sum of squares.
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To apply SGD on linear regression, we usually minimize one half of the mean squared error:

E(w) — E(Xat)Nﬁdata [%(y(w; w) T t)2:| — E(Xat)wﬁda‘ca [%(mTw o t)z:l °

If we also include L? regularization, we get
A
E(w) = E(x )y [3(2 w —t)°] + 5[Jw]*.

We then estimate the expectation by a minibatch of examples with indices B as
1 1 (T 2 A 2
B| Z sl w—1t)°) + 5w,
1B

which gives us an estimate of a gradient

VwE(w ‘Z(ww -)+)\w.

1€B
LR-SGD
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The computed gradient allows us to formulate the following algorithm for solving linear
regression with minibatch SGD.

Input: Dataset (X € RYXD ¢ e ]RN), learning rate a € R, L? strength A € R.

Output: Weights w € RP hopefully minimizing the regularized MSE of a linear regression
model.

® w < 0 or we initialize w randomly

® repeat until convergence (or until our patience runs out):
O sample a minibatch of examples with indices B

m either uniformly randomly,

® or we may want to process all training instances before repeating them, which can

be implemented by generating a random permutation and then splitting it into
minibatch-sized chunks

B the most common option; one pass through the data is called an epoch

O w4 w — aﬁ Siep ((®fw —t)x;) — cdw
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Recall that the input instance values are usually the raw observations and are given. However,
we might extend them suitably before running a machine learning algorithm, especially if the
algorithm is linear or otherwise limited and cannot represent an arbitrary function. Such instance
representations are called features.

We already saw this in the example from the previous lecture, where even if our training

examples were = and ¢, we performed the linear regression using features (2%, z!, ..., zM):

1 o0—0 M=0 A 1t
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Generally, it would be best if the machine learning algorithms would process only the raw

inputs. However, many algorithms are capable of representing only a limited set of functions (for

example linear ones), and in that case, feature engineering plays a major part in the final
model performance. Feature engineering is a process of constructing features from raw inputs.

Commonly used features are:

® polynomial features of degree p: Given features (1, Zs,...,Zp), we might consider all

products of p input values. Therefore, polynomial features of degree 2 would consist of
z? Vi and of z;z; Vi # j.

® categorical one-hot features: Assume, for example, that a day in a week is represented in
the input as an integer value of 1 to 7, or a breed of a dog is expressed as an integer value
of 0 to 366. Using these integral values as an input to linear regression makes little sense —
instead, it might be better to learn weights for individual days in a week or for individual
dog breeds. We might therefore represent input classes by binary indicators for every class,

giving rise to a one-hot representation, where an input integral value 0 < v < L is

th

represented as L binary values, which are all zero except for the v** one, which is one.

Features
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